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Abstract 3-Hydroxypyridine-4-one derivatives have

shown good inhibitory activity against bacterial strains. In

this work we report the application of MOLMAP

descriptors based on empirical physicochemical properties

with genetic algorithm partial least squares (GA-PLS) and

counter propagation artificial neural networks (CP-ANN)

methods to propose some novel 3-hydroxypyridine-4-one

derivatives with improved antibacterial activity against

Staphylococcus aureus. A large collection of 302 novel

derivatives of this chemical scaffold was selected for this

purpose. The activity classes of these compounds were

determined using the two quantitative structure activity

relationships models. To evaluate the predictability and

accuracy of the obtained models, nineteen compounds

belonging to all three activity classes were prepared and the

activity of them was determined against S. aureus. Com-

paring the experimental results and the predicted activity

classes revealed the accuracy of the obtained models.

Seventeen of the nineteen synthesized molecules were

correctly predicted by GA-PLS model according to the

antimicrobial evaluation method. Molecules 5f and 5h

proved to be moderately active and active experimentally,

but were predicted as inactive and moderately active

compounds, respectively by this model. The CP-ANN

based prediction was correct for sixteen out of the nineteen

synthesized molecules. 5a, 5h and 5q were moderately

active and active based on the antimicrobial assays, but

they were introduced as members of inactive, moderately

active and inactive classes of compounds, respectively

according to CP-ANN model.
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Abbreviations

ANN Artificial neural networks

CP-ANN Counter propagation artificial neural

networks

2D Two dimensional

3D Three dimensional

GA-PLS Genetic algorithm partial least squares

MIC Minimum inhibitory concentration

MLR Multiple linear regression

MOLMAP Molecular map of atom-level properties

SOM Self-organizing maps

QSAR Quantitative structure activity relationships

Introduction

Iron is one of the trace elements inevitably required for the

survival and proliferation of all living things [1]. Pathogenic

bacteria require iron to proliferate and cause infectious dis-

eases in the human body. Vertebrate hosts withhold iron
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from microbial invaders as a major defence mechanism

against infection [2]. Many bacteria synthesize small mole-

cules known as siderophores, which possess high affinity to

iron and scavenge it from the environment [3]. 3-Hydroxy-

pyridine-4-one derivatives and their oxygen-containing

analogues, 3-hydroxypyran-4-ones, belong to a class of iron

chelators with reported in vitro antibacterial, antifungal and

antimalarial activities [4–7]. They have shown inhibitory

effects on the growth of Escherichia coli, Listeria inocua and

Staphylococcus aureus [8–10]. We have previously reported

the antimicrobial activities of novel Mannich bases of

2-alkyl-3-hydroxy-pyridine-4-ones as well as 1-alkyl

substituted 2-alkyl-3-hydroxypyridine-4-ones. They have

shown inhibitory effects on the growth of S. aureus, Sal-

monella enteritidis and Aspergillus flavus [11].

Quantitative structure activity relationships (QSAR)

approach has been widely developed because of its powerful

ability to predict drug activity [12]. QSAR models are math-

ematical equations relating chemical structures to their bio-

logical activities. Various methods have been applied to

construct QSAR models including linear and nonlinear

regression methods. Multiple linear regression (MLR) and

artificial neural networks (ANN) have been extensively

employed in QSAR studies owing to their outstanding linear

and nonlinear mapping capability, respectively [13, 14].

Appropriate application of the structural and physicochemical

features of molecules is an essential key to achieve successful

QSAR models [12]. Nowadays, a multi-way analytical

method based on Kohonen network, originated from a method

for calculation of molecular descriptors called MOLMAP

(molecular map of atom-level properties), has been introduced

[15–17]. Kohonen self-organizing maps (SOM) are a class of

unsupervised neural networks whose characteristic feature is

the reduction of multidimensional data to 2 dimensional (2D)

ones [18]. In QSAR modeling based on MOLMAP approach,

the resulted Kohonen scores are used as descriptors for clas-

sification and regression purposes.

The chemical reactivity of a compound, being related to

the ability to make and break bonds, primarily depends on

the properties of the bonds available in a molecule. Ga-

steiger et al. proposed that seven empirical physicochem-

ical properties are particularly relevant for representing

bonds and for modeling chemical reactivity [19]. These

properties are calculated by empirical procedures imple-

mented in PETRA program [20]. To explore all that

information for an entire molecule, and simultaneously

have a fixed-length representation, they proposed to map

all the bonds of a molecule into a fixed-length 2D SOM: a

MOLMAP [21]. A SOM must be trained previously with a

diversity of bonds from different structures (each bond

described by the seven bond properties) [18]. Then, all the

bonds of one molecule are submitted to the trained SOM,

each bond activates one neuron, and the pattern of

activated neurons is a map of the reactivity features of that

molecule (MOLMAP) as a fingerprint of the bonds avail-

able in that structure.

Regression models for a series of 3-hydroxypyrane-4-

one and 3-hydroxypyridine-4-one derivatives have been

previously investigated by our research group [11, 22].

According to these studies the most significant QSAR

models were obtained by GA-PLS against S. aureus.

Sometimes biological data can be classified into discrete

categories. For example, a chemical may be classified as

either active or inactive, or in several classes according to

the potency of the activity. In such cases, other statistical

techniques, such as classification methods must be applied,

in which the physicochemical properties of the compounds

are used to discriminate between activity and inactivity.

In this paper, we used the PETRA 3.20 software pack-

age to calculate empirical physicochemical properties of

bonds, and MOLMAP descriptors were generated on the

basis of the bond properties [19, 20]. These descriptors

were applied with GA-PLS and CP-ANN methods to pro-

pose some novel 3-hydroxypyridine-4-one derivatives with

improved antibacterial activity against S. aureus. The

proposed compounds were prepared in the lab and their

antibacterial potency was evaluated. The reason for

selecting this microorganism and this chemical scaffold

was the good diversity in the antimicrobial potencies

observed in our previously reported studies. Significant

GA-PLS models have described the effect of structural

modification of this scaffold and anti S. aureus activity too

[11, 22]. We performed the computational part of the study

on a large collection consisted of 302 novel derivatives of

3-hydroxypyridine-4-one. Most of these compounds have

not been prepared experimentally yet and none were

evaluated as antimicrobial agents previously. It is well

known that the hydrazone group plays an important role for

the antimicrobial activity in many different scaffolds.

Furthermore, a number of acylhydrazone derivatives have

been demonstrated to possess interesting antibacterial,

antifungal [23], antimalarial [24] and antitubercular activ-

ities [25]. Schiff’s bases have also been shown to exhibit a

broad range of biological activities, including antiviral,

antimalarial, antifungal and antibacterial properties [26,

27]. Thus, the antimicrobial capacity of hydrazide-hydra-

zone and Schiff’s base moieties was considered in the

design of these compounds.

Materials and methods

QSAR analysis

The experiments described here required two major steps:

generation of descriptors and development of predictive
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models. To generate the descriptors, some properties were

processed by a Kohonen SOM to MOLMAPs scores [18].

For training this map, each object of the training set was a

chemical bond, each bond represented by seven empirical

physicochemical properties. This training set contains

bonds from diverse structures. Once trained, the map is

used to obtain molecular descriptors. Bonds of one mole-

cule were submitted to the trained SOM, and the pattern of

activated neurons, which is a map of the reactivity features

of that molecule (MOLMAP), is the descriptor of the

molecule. The second step consisted of establishing rela-

tionships between MOLMAP descriptors and antimicrobial

activity against S. aureus.

Data set

A set of thirty-one 3-hydroxypyridine-4-one and 3-hy-

droxypyran-4-one derivatives was compiled from literature

and our previous reports [4, 5, 11]. The antimicrobial

activity (against S. aureus) was reported as MIC. Different

strains of this microorganism were used in these reports:

PTCC 1337, ATCC 25923, and PTCC 29213. It was

assumed that there will be no big differences between the

susceptibility of these different strains and the strain

applied in the present study (PTCC 1112) against the

antimicrobial activity of the studied compounds. The

molecules were classified as active (class 1) if they

exhibited 8 lg/mL B MIC B 32 lg/mL (3 molecules);

moderately active (class 2) if 64 lg/mL B MIC B 128 lg/

mL (9 molecules) and inactive (class 3) if MIC was more

than 128 lg/mL (19 molecules). The structural features,

biological activity and the class of these compounds are

listed in Table 1.

Training of a Kohonen self-organizing map with empirical

physicochemical descriptors

Kohonen SOM is an unsupervised neural network that

reveals similarities between objects. It can be used for the

reduction of multidimensional objects to two dimensional

objects. In this study, we used SOMs to reduce the

dimensions of chemical bonds, represented by seven

empirical physicochemical bond properties calculated by

PETRA to 2D data. A Kohonen SOM consists of a grid of

so-called neurons, each containing as many elements

(weights) as input variables. Figure 1s shows the archi-

tecture of a Kohonen network. Here the objects are bonds,

and the input variables are the seven properties of bonds.

Before the training starts, the weights take random values.

During the training, each individual bond is mapped into

the neuron that contains the most similar weights compared

to its properties. This is the central neuron, or winning

neuron [18]. The winning neuron was activated by the

bond, and its weights were then adjusted to make them

even more similar to the properties of the presented bond.

Not only the winning neuron, but also the neurons in its

neighborhood have their weights adjusted. The extent of

adjustment depends, however, on the topological distance

to the winning neuron, the closer a neuron is to the central

neuron the larger is the adjustment of its weights. The

objects of the training set are iteratively fed to the map, the

weights corrected, and the training is stopped when a pre-

defined number of cycles are attained. A trained Kohonen

SOM will reveal similarities in the objects of a data set in

the sense that similar objects (similar bonds) are mapped

into the same or closely adjacent neurons [18]. Figure 1s is

shown in the supplementary materials.

Molecular descriptors

Chemical bonds were represented by seven empirical

physicochemical bond properties calculated by PETRA

3.20. These properties were the difference of r electro-

negativity between the two atoms of the bonds, difference

of p atomic charges, difference of total atomic charges,

bond polarity, mean bond polarizability, resonance stabil-

ization, and bond dissociation energy. As some properties

depend on the orientation of the bond, each bond was

represented as (A–B) [21]. Figure 1 shows the common

bonds (11 bonds) in the molecules and the numbers

assigned to the bonds. A three-dimensional array of

empirical physicochemical parameters (molecules, bonds

and the empirical physicochemical properties on each

dimension, a 333 9 11 9 7 array) was provided (Fig. 1).

Then, the pattern of the activated neurons can be consid-

ered as a fingerprint of the objects and constitute their

MOLMAP scores [18]. At last; the map is transformed into

a vector by concentration of columns resulting in a fixed

length MOLMAP score where each scores of each object

have a dimension of (N 9 N). The best value of v was

obtained by trial and error, and the best results were

obtained for N = 5. It should be noted that output layer

dimensions (4 9 4) to (13 9 13) over (10–120) epochs

was also checked but the best results were achieved using

5 9 5 = 25 over 20 epochs. For Kohonen mapping, the

MOLMAP toolbox, developed by Milano Chemometrics

and QSAR research Group, was used [28].

Modeling procedures

Model development with PLS In this approach the partial

least squares (PLS) regression was employed to evaluate

the structure–activity relationships and genetic algorithm

(GA) was used as variable selection method. In the case of

MOLMAP approach the set of 25 Kohonen scores (i.e.,

5 9 5 Nodes) over 60 epochs was used as input. In order to
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investigate the prediction ability of the models, the data set

(n = 31) was divided into two group: calibration set

(n = 25) and prediction set (n = 6). Given 25 calibration

samples; leave-one out cross-validation procedure was

used to find the optimum number of latent variables for

each PLS model. GA produces a population of acceptable

Table 1 Chemical structure, experimental and predicted class of the antimicrobial activity of compounds used in QSAR analysis against S.
aureus by GA-PLS and CP-ANN

X

R2

R1

O

R3

R4

Compd. X R1 R2 R3 R4 Experimental

MIC (lg/mL)

Activity class

of compound

GA-PLS CP-ANN

1 NH CH3 OH CH2–Ra H 64 2 2 2

2 NH C2H5 OH CH2–Ra H 512 3 3 3

3 NH CH3 OH CH2–N(CH3)2 H 512 3 3 3

4 NH C2H5 OH CH2–N(CH3)2 H 512 3 3 3

5* NH CH3 OH CH2–N(C2H5)2 H 512 3 3 3

6 NH C2H5 OH CH2–N(C2H5)2 H 512 3 3 3

7 N–Ph CH3 OH H H 128 2 2 2

8* N–m–OH–Ph CH3 OH H H 512 3 3 3

9 N–C3H7 CH3 OH H H 512 3 3 3

10 N–C4H9 CH3 OH H H 128 2 2 2

11 O CH2Cl H OH H 256 3 3 3

12 O CH3 H OH H 256 3 3 3

13 O CH2OH OH H CH3 256 3 3 3

14 O CH2OH OCH2Ph H CH3 256 3 3 3

15 O CHO OCH2Ph H CH3 64 2 2 2

16 O COOH OCH2Ph H CH3 256 3 3 3

17 O CONHRb OCH2Ph H CH3 256 3 3 3

18 O CONHRc OCH2Ph H CH3 256 3 3 3

19* O CONHRd OCH2Ph H CH3 128 2 3 3

20 O CONHRb OH H CH3 64 2 1 3

21 O CONHRc OH H CH3 256 3 3 3

22 O CONHRd OH H CH3 8 1 1 3

23 O CH2OH H OCH2Ph H 256 3 3 3

24* O COOH H OCH2Ph H 256 3 3 3

25 O CONHPh H OCH2Ph H 128 2 2 2

26 N–CH3 CONHPh H OCH2Ph H 128 2 2 2

27 N–CH3 CONHPh H OH H 16 1 1 1

28* O CONH–Re H OCH2Ph H 128 2 2 2

29 N–CH3 CONH–Re H OCH2Ph H 256 3 3 1

30* N–CH3 CONH–Re H OH H 32 1 1 1

31 O CH2OH H OH H 256 3 3 3

a Compounds used as prediction set

N
N

N O O

CH3

Ra is , Rb is , Rc is , Rd is , Re is
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models in each run. In this work, many different GA-PLS

runs were conducted using different initial set of popula-

tions (50–250) and therefore a large number of acceptable

models were created.

The PLS regression method used was the NIPALS-

based algorithm existed in the chemometrics toolbox of

MATLAB software (version 7.1 Math work Inc.). Leave-

one-out cross-validation procedure was used to obtain the

optimum number of factors based on the Haaland and

Thomas F-ratio criterion [29].

Model development with CP-ANNs Genetic algorithm

(GA) was used for variable selection. Counter-propagation

artificial neural networks (CP-ANNs) were used to model

the relationship between the MOLMAP descriptors of the

compounds and the corresponding MIC values. Four

MOLMAP descriptors selected by genetic algorithm were

used to train CP-ANNs of size 7 9 7 nodes over 60

epochs. Leave-one-out (LOO) method was used to predict

the class of the compounds. CP-ANNs are very similar to

Kohonen maps and are essentially based on the Kohonen

approach, but combine characteristics from both supervised

and unsupervised learning [30]. CP-ANNs consist of two

layers of neurons. The first layer is a Kohonen map, and

this is responsible for choosing the winning neuron. It

stores information concerning the input data. The second

layer; whose neurons have as many weights as the number

of classes to be modeled, when dealing with classification

issues, have exactly the same number and the same layout

of neurons as the Kohonen one. CP-ANN generally is a

successful method for modeling classes separated with

non-linear boundaries [30].

Chemistry

All chemicals used for the synthesis of the compounds

were purchase from Merck or Fluka. Melting points were

determined on a Mettler capillary melting point apparatus

and were uncorrected. The IR spectra were recorded on a

WQF-510 Ratio Recording FT-IR spectrometer as a KBr

disc (c, cm-1). The 1H-NMR spectra (DMSO-d6) were

recorded on a Bruker 400 MHz spectrometer. Chemical

shifts (d) are reported in ppm downfield from the internal

standard tetramethylsilane (TMS). The mass spectra were

acquired with a Finnigan TSQ-70 mass spectrometer.

Electron-impact ionization was performed at an ionizing

energy of 70 eV. The synthesis pathway followed for the

preparation of the compounds is represented in Scheme 1.

The commercially available maltol was chosen as starting

compound to design several novel acylhydrazone deriva-

tives. 3-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) ben-

zoic acid (2) was prepared by the reaction of maltol (1) and

3-aminobenzoic acid in aqueous ethanol at pH 5.0 [31].

Compounds 3 and 4 were prepared according to our recent

report [32] as follows. Carboxylic acid 2 was treated in

methanol with carbonyl diimidazole (DCI) and dimethyl

aminopyridine (DMAP) to furnish the desired methyl 3-(3-

hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) benzoate (3)

derivative. Refluxing 3 with hydrazine-hydrate in methanol

produced 3-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl)

benzohydrazide (4), which was condensed with an aro-

matic aldehyde to yield (5a–o). Compounds 5p–s were

prepared by the same method and recently reported by this

group [32].

General procedure for the synthesis of 3-[3-Hydroxy-2-

methyl-4-oxopyridine-1(4H)-yl] benzoic acid [aryl (het-

aryl) methylene]-hydrazides (5a–o).

Equimolar amounts of 4 and appropriate aldehyde

(1.00 mmol) in 20 mL ethanol were heated under reflux for

24 h. The obtained precipitate was filtered and recrystal-

lized twice from ethanol/diethyl ether (compounds 5a, 5e,

5g, 5m, 5p, 5q, 5r, and 5s). The other compounds (5b, 5c,

5d, 5f, 5h, 5i, 5j, 5k, 5l, 5n, and 5o) were purified by

preparative thin layer chromatography using (chloroform/

methanol:100/8).

Antimicrobial activity determination

Mueller–Hinton broth at pH 7.0 was used to culture S.

aureus [33]. The inoculum of microorganism (108 c.f.u/

mL) was cultured for 16–24 h at 37 �C and prepared to

turbidity equivalent to McFarland standard No. 0.5 The

final size of inoculum was 1.5 9 104. The test compounds

were dissolved in dimethyl sulfoxide (DMSO) (final con-

centration of 0.5 % v/v) and diluted with culture broth to

concentration of 512 lg/mL. Serial two fold dilutions were

made in concentration range from 1 to 512 lg/mL in sterile

96-well microplates. 100 lL of each dilution were dis-

tributed in 96-well microplates, as well as a sterility control

and a growth control (containing culture broth plus DMSO,

without antimicrobial substance). 100 lL of a 24 h old

inoculum of 105 c.f.u/mL was added to each well. Plates

were covered and sealed with parafilm and incubated for

24 h at 37 �C. MIC values were defined as the lowest

concentration of each tested compound, which completely

inhibited microbial growth [34]. Ampicilin and tetracycline

were used as standard antibacterial drugs.

X

OH

R1

O

R3

R4

1

2

34

5
610

7

11

8 9

Fig. 1 Common bonds and the

number of bonds in the

molecules
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Results and discussions

QSAR analysis

Analysis of empirical physicochemical parameters

by MOLMAP approach

In the case of MOLMAP analysis, the empirical physico-

chemical parameters should be arranged in a three-way

array in the direction of molecules, bonds and empirical

physicochemical parameters. Then, this 3D array should be

introduced as input of Kohonen network to obtain the

related scores. Here, we investigated different dimensions

in the range of (4 9 4) to (13 9 13) over different epochs

(20–120) and, in each case; the resulting scores were used

as input of GA-PLS model. Best results were obtained by a

(5 9 5) over 20 epochs dimension for all data sets. The

PLS estimate of the regression coefficients is shown in

Figure 2s. The distribution of bonds in the resulted Ko-

honen map (5 9 5) is represented in Figure 3s. It should be

noted that the map contains 25 nodes, which can be

numbered sequentially from 1 to 25 so that the nodes of the

first row are numbered as N1–N5, those of the second row

as N6–N12 and so on. The map shows a relatively random

distribution of bonds. The scores of this map (25 variables)

were used as input of GA-PLS regression. The relative

importance of selected neurons for GA-PLS model is

shown in Figure 3s.

The resulted GA-PLS models using MOLMAP scores as

input variables possessed high prediction ability to deter-

mine the activity class of compounds in the calibration set.

All molecules in this set (Table 1) were correctly predicted

as active, moderately active and inactive as it was experi-

mentally observed. The results are shown in Table 1. The

predictive ability of the model was measured by applica-

tion of 6 external test set molecules. The model also is able

to correctly predict the activity class of compounds. Five

out of six molecules were correctly predicted while mole-

cule 27 was experimentally active but was predicted to be

moderately active by this model. This model was applied

for the prediction of the activity class of 302 novel

3-hydroxypyridine-4-one derivatives. The structures of

these compounds are depicted in Table 1s. Most of these

compounds have not been synthesized and none of them

O

O
OH

CH3

NH2

COOH

N

O
OH

CH3

COOH

pH5

CH3OH

CDI,DMAP N

O
OH

CH3

COOCH3

NH2NH2,H2O

C2H5OH N

O
OH

CH3

CONHNH2

N

O
OH

CH3

2 6

11

5
7

10
12

139
8

3 4

1

15
14

16

17

ArCHO

H
N

O
Ar

C2H5OH

Ar:

1 2 3

5a-s

4

Cl

Cl

Br2'

1'

3'

4'4'

5'6'

H3CO 2'

1'

3'

4'

5'6'

HO 2'

1'

3'

4'

5'6'

3'

2'

5'
1'1'

1'

2'

6' 6'

1'

5'

5'
4'

4'

3' 3'

2'

OCH3

2'

1'
6' 5'

4'

3'

CH3

2'

1'
6' 5'

4'

3'

Br

2'

1'
6' 5'

4'

3'

N(CH3)2

2'

1'
6' 5'

4'

3'

NO2

2'

1'
6' 5'

4'

3'

NO2

4'

5'
1'

2'

6'

3'2'

1'
6' 5'

4'

3'

2'

1'

6'

5'4'

3'

7'8'

O

3'

1'

5'

4'

2' S

N

N

3'

2'

4'

5' NO2

CH3 1'
O

3'

2'

4'

5' NO2
1'

N

N

3'

2'

4'

5' SCH3

CH3

-CH3

1'

5b 5d 5e 5f

5h 5i 5j

5a 5c

5g 5k

5m 5o 5s5r5q

5l

5n 5p

Scheme 1 Synthesis of N-aryl-3-hydroxypyridine-4-ones 5a–s
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have been evaluated for antimicrobial activity yet. The

prediction results are shown in Table 2s. The prediction

results of N-aryl-3-hydroxypyridine-4-ones 5a–s are shown

in Table 2. Tables 1s, 2s and Figures 2s, 3s are shown in

the supplementary materials.

Analysis of MOLMAP descriptors by CP-ANNs approach

GA-PLS method applied a regression-based approach to

predict the activity of the studied compounds. The bio-

logical activity class of discrete values can also be modeled

by classification-based methods. Here CP-ANN was used

as a classification method. CP-ANNs were trained to pre-

dict the activity class of the compounds on the basis of four

MOLMAP descriptors selected by GA. To find optimal CP-

ANN settings, several networks were evaluated by chang-

ing the number of neurons and training epochs. Settings

were then selected on the basis of optimization of a clas-

sification parameter, such as error rate, evaluated in cross

validation. In Table 3 part of the classification indices

calculated by the toolbox (non error rate and error rate) is

shown. In Table 4, the other classification indices (speci-

ficity, sensitivity, and precision) are shown for all modeled

activity classes. The top map of the calculated model

(7 9 7 neurons and 60 epochs) is shown in the Fig. 2. In

the top map with 49 neurons, each sample is labeled on the

basis of the Kohonen weight of variable 1, going from low

values (white) to high values (black). Since the model was

built with a toroidal boundary condition, each edge of the

Kohonen map has to be seen as connected with the oppo-

site ones. It was seen that variable 1 is more influential on

the molecules of activity class 2 than the molecules of the

class 1 and 3. Therefore, it is possible to inspect each

variable on the top map, at the same time. The profile of

Kohonen weights of one of the neurons where class 2

molecules are placed is shown in Figure 4s. It was seen that

molecules in this class are characterized by having high

values of variable 1 and 4, low values of variable 2, and

extremely low values of variable 3. It is not possible to

have a comprehensive insight into the relationships

between variables and molecules, since we can only plot

the weights of one variable at a time for all the neurons

(Fig. 2) or, on the contrary, the variable profile of one

neuron simultaneously (Figure 4s). The weights of Koho-

nen layer are arranged as a data matrix W with 49 rows and

4 columns, as explained before, and PCA was calculated.

In Figs. 3 and 4 the score and loading plots of the first two

components (explaining together 83 % of the total

Table 2 Predicted classes of

N-aryl-3-hydroxypyridine-4-

ones 5a–s

No. GA-PLS CP-ANN

5a 2 3

5b 2 2

5c 3 3

5d 3 3

5e 1 1

5f 3 2

5g 1 1

5h 2 2

5i 2 2

5j 2 2

5k 2 2

5l 3 3

5m 2 2

5n 2 2

5o 3 3

5p 2 2

5q 2 3

5r 2 2

5s 2 2

Table 3 Non-error rate (NER) and error rate (ER) obtained in fitting

and cross-validation

Fitting Cross-validation

NER 0.83 0.79

ER 0.17 0.21

Table 4 Specificity (SP), sensitivity (Sn), and precision (P) for all

the predefined activity classes obtained in cross-validation

Activity class SP Sn P

1 0.97 1 0.94

2 0.91 0.77 0.92

3 0.80 0.93 0.93

23
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3

3

3

2
3

3

2

33

33

2 33
3 2

2

3

1

3

3

221
23

1

3

Fig. 2 Kohonen top map with toroidal boundary condition, each

molecule is labeled on the basis of its class; neurons are colored on

the basis of the weight of variable 1
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information) are shown, respectively. In the score plot of

Figs. 3, each point represents a neuron of the previous CP-

ANN model. Each neuron is colored on the basis of the

output weight of each activity class (three classes). For

example the neurons assigned to class 2 are all clustered

and placed at the left side of the score plot. Variables 1 and

4 are placed at the left side of the loading plot and thus are

directly correlated with class 2; on the contrary, variable 3

has the largest positive loadings in the first component and

the molecules of class 2 will be characterized by small

value of this variable. The same conclusion could be made

by analyzing the single profile of Figure 4s. Figure 5

highlights the relationships between structural features and

the class of compounds. Inspection of a CP-ANN trained

with all molecules (Fig. 5) revealed that structurally simi-

lar molecules were mapped together in one neuron or as a

cluster of neurons. In this figure, the neurons with a low

output (inactive molecules) are colored in yellow and

neurons corresponding to active and moderately active

molecules are colored in green and blue, respectively.

Molecules 27, 29 and 30 which were predicted to be potent

appeared in a single neuron at the bottom left. Two of these

three molecules were experimentally observed to be active

(the first class) and one inactive (molecule 29 in the third

class). Molecules 1, 7, 10, 15, 25, 26 and 28 were clustered

to each other at the mid, bottom and top of the CP-ANN

surface in Fig. 5. All of these compounds were correctly

predicted to be moderately active.

Twenty-one molecules predicted inactive were clustered

into yellow neurons. Eighteen out of twenty-one molecules

were experimentally observed to be inactive whereas two

molecules were identified as moderately active (molecules

19 and 20) and one as active (molecule 22). Figure 4s is

shown in the supplementary materials.

Proposing new compounds

Based on the developed QSAR models by GA-PLS and

CP-ANN, and considering the structural similarities with

the studied compounds, 302 more compounds, most of

them have not been previously synthesized, were proposed

and their antimicrobial activities were predicted. The

results are shown in Table 2s and Table 2.

To evaluate the predictability and accuracy of the

obtained QSAR models, 19 compounds belonging to all

three activity classes were selected among the 302
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Fig. 3 Score plot of the first two principal components calculated on

the Kohonen weights. Each neuron is colored on the basis of the

output weight of each activity class. Active, partially active, and

inactive neurons are in green, blue and yellow color, respectively
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Fig. 4 Loading plot of the first two principal components calculated

on the Kohonen weights. Each variable is labeled with its identifi-

cation number

Fig. 5 Representation of the CP-ANN output layer, with neurons

predicted as active, partially active, and inactive (green, blue and

yellow color, respectively)
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compounds. The proposed compounds were synthesized

and their antimicrobial activity was evaluated against S.

aureus. Comparing the experimental results (as MIC) for

anti S. aureus activity and the predicted activity classes, the

accuracy of the obtained models can be judged. The col-

lected results in Table 2 disclose this fact that seventeen

out of the nineteen synthesized molecules were correctly

predicted by GA-PLS model according to antimicrobial

evaluation method. Two molecules (5f and 5h) proved to

be experimentally moderately active and active, respec-

tively but were predicted to be inactive and moderately

active by this model, respectively.

The CP-ANN based prediction was correct for sixteen

out of the nineteen synthesized molecules. Three molecules

(5a, 5h and 5q) were moderately active and active based on

the antimicrobial assays but they were introduced as

members of inactive, moderately active and inactive class

of compounds according to CP-ANN model.

Chemistry

Formation of the desired compounds was confirmed with

FT-IR, 1H-NMR and Mass spectra. All spectral data are

provided below. Carbon atoms are numbered sequentially

to facilitate the assignment of protons in 1H-NMR spectra

(Scheme 1). The hydrazone N=CH- and -NH-signals

appeared as two singlets at 8.09–9.00 and 11.59–12.35,

respectively. H2 signal was seen among a group of signals

belonging to the aromatic protons. H3 was observed in all

molecules as a doublet (J constant = 8.00 Hz) at

6.22–7.20. Singlet signal belonging C5–CH3 hydrogens

was found in the range of 1.96–2.06. A broad singlet for

C4–OH appeared at 3.40–3.80. In all Mass spectra a frag-

ment with the molecular weight of about 199 was detected.

This fragment can be attributed to C12H9NO2 in which the

acylhydrazone moiety is cleaved and the hydroxyl proton

on the 3-hydroxyopyridin-4-one scaffold is gone.

3-[3-Hyroxy-2-methy-4-oxopyridin-1(4H)-yl] benzoic acid

(2-chloro-phenyl methylene)-hydrazide (5a) 118.87 mg

(82 %) compound was obtained as light pink crystals, m.p.

158–159 �C; FT-IR (KBr Disc) m/cm-1: 3130–3300 (broad,

NH and OH), 3064 (CH, aromatic), 2980 (CH, aliphatic),

1684 (C=O, ketone), 1628 (C=O, acylhydrazone), 1577

(shouldered, C=N, C=C), 1489 (C=C aromatic); 1H-NMR

(DMSO-d6, 400 MHz): (dppm) 12.14 (s, 1H, NH), 8.84

(1H, N=CH17), 8.09 (bs, 1H, H10), 7.98–8.06 (m, 2H, H13,

H30), 7.70–7.76 (m, 2H, H9, H11), 7.65 (d, J = 7.20 Hz, 1H,

H2), 7.54 (d, 1H, H60), 7.42–7.48 (m, 2H, H40, H50), 6.27 (d,

J = 7.20 Hz, 1H, H3), 3.42 (bs, 1H, OH), 2.00 (s, 3H, C5–

CH3). MS (EI): m/z = 199.1 [M?�–CONHN=CHC6H4Cl,

100 %], 381.2 [M?� (35.5Cl), 96 %], 383.2 [M?� (37.5Cl),

37 %].

3-[3-Hyroxy-2-methy-4-oxopyridin-1(4H)-yl] benzoic acid

(4-chloro-phenyl methylene)-hydrazide (5b) 118.87 mg

(82 %) compound was obtained as a light pink crystals,

m.p. 219–220 �C; FT-IR (KBr Disc) m/cm-1: 3150–3300

(broad, NH and OH), 3064 (CH, aromatic), 2925 (CH,

aliphatic), 1668 (C=O, ketone), 1628 (C=O, acylhydraz-

one), 1577 (shouldered C=C, C=N), 1491 (C=C aromatic);
1H-NMR (DMSO-d6, 400 MHz): (dppm) 12.00 (s, 1H,

NH), 8.42 (1H, N=CH17), 8.09 (bs, 1H, H10), 7.98 (bs, 1H,

H13), 7.70–7.80 (m, 4H, H9, H11, H30, H50), 7.62 (m, 1H,

H2), 7.52 (d, J = 8.00 Hz, 2H, H20, H60), 6.23 (m, 1H, H3),

3.41(bs, 1H, OH), 1.99 (s, 3H,C5–CH3). MS (EI):

m/z = 199.2 [M?�–CONHN=CHC6H4Cl, 80 %], 381.2

[M?� (35.5Cl), 100 %], 383.2 [M?� (37.5Cl), 38 %].

3-[3-Hyroxy-2-methy-4-oxopyridin-1(4H)-yl] benzoic acid

(3-bromo-phenyl methylene)-hydrazide (5c) 121.69 mg

(75 %) compound was obtained as a light pink crystals,

m.p. 258–259 �C; FT-IR (KBr Disc) m/cm-1: 3433 (NH),

3359 (OH), 3062 (CH, aromatic), 2970 (CH, aliphatic),

1660 (C=O, ketone), 1628 (C=O, acylhydrazone), 1572

(shouldered, C=N, C=C), 1495 (C=C aromatic); 1H-NMR

(DMSO-d6, 400 MHz): (dppm) 12.06 (s, 1H, NH), 8.40

(1H, N=CH17), 8.06 (s, 1H, H10), 7.94–7.98 (m, 2H, H13,

H20), 7.61–7.77 (m, 5H, H2, H9, H11, H40, H60), 7.43 (t, 1H,

H50), 6.25 (d, J = 8.00 Hz, 1H, H3), 3.42 (s, 1H, OH), 2.00

(s, 3H,C5–CH3). MS (EI): m/z = 199.1 [M?�–CON-

HN=CHC6H4Br, 100 %], 427.2 [M?� (79Br)�, 66 %], 429.2

[M?� (81Br)�, 66 %].

3-[3-Hyroxy-2-methy-4-oxopyridin-1(4H)-yl] benzoic acid

(4-bromo-phenyl methylene)-hydrazide (5d) 113.58 mg

(70 %) compound was obtained as a light pink crystals,

m.p. 174–175 �C; FT-IR (KBr Disc) m/cm-1: 3100–3250

(broad, NH and OH), 3003 (CH, aromatic), 2925 (CH,

Aliphatic), 1668 (C=O, ketone), 1630 (C=O, acylhydraz-

one), 1570 (shouldered, C=N, C=C), 1487 (C=C aromatic);
1H-NMR (DMSO-d6, 400 MHz): (dppm) 11.98 (s, 1H,

NH), 8.40 (1H, N=CH17), 8.06 (bs, 1H, H10), 7.96 (bs,1H,

H13), 7.62–7.78 (m, 7H, H2, H9, H11, H20, H30, H50, H60),

6.25 (bs, 1H, H3), 3.42 (bs, 1H, OH), 1.98 (s, 3H,C5–CH3).

MS (EI): m/z = 199.1 [M?�–CONHN=CHC6H4Br,

100 %], 427.2 [M?� (79Br), 83 %], 429.2 [M?� (81Br),

83 %].

3-[3-Hyroxy-2-methy-4-oxopyridin-1(4H)-yl] benzoic acid

(4-nitro-phenyl methylene)-hydrazide (5e) 119.16 mg

(80 %) compound was obtained as a light brown crystals,

m.p. 290–291 �C; FT-IR (KBr Disc) m/cm-1: 3329 (NH),

3211(OH), 3064 (CH, aromatic), 2925 (CH, aliphatic),

1672 (C=O, ketone), 1630 (C=O, acylhydrazone), 1570

(shouldered, C=N, C=C), 1497 (C=C aromatic); 1H-NMR

(DMSO-d6, 400 MHz): (dppm) 12.21 (s, 1H, NH), 8.54

(1H, N=CH17), 8.31 (d, J = 8.00 Hz, 2H, H30, H50), 8.09 (s,
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1H, H10), 8.00 (d, 3H, H9, H11, H13), 7.72–7.76 (d, 2H, H20,

H60), 7.65 (d, J = 7.78 Hz, 1H, H2), 6.27 (d, J = 7.78 Hz,

1H, H3), 3.43 (bs, 1H, OH), 2.00 (s, 3H, C5–CH3). MS (EI):

m/z = 199.1 [M?�–CONHN=CHC6H4NO2, 75 %], 392.2

[M?�, 100 %].

3-[3-Hyroxy-2-methy-4-oxopyridin-1(4H)-yl] benzoic acid

(4-methyl-phenyl methylene)-hydrazide (5f) 102.88 mg

(75 %) compound was obtained as a light pink crystals,

m.p. 244–245 �C; FT-IR (KBr Disc) m/cm-1: 3250–3300

(broad, NH and OH), 3075 (CH, aromatic), 2922 (CH,

aliphatic), 1682 (C=O, ketone), 1630 (C=O, acylhydraz-

one), 1570 (shouldered, C=N, C=C), 1483 (C=C, aro-

matic); 1H-NMR (DMSO-d6, 400 MHz): (dppm) 11.85 (s,

1H, NH), 8.39 (1H, N=CH17), 8.05 (bs, 1H, H10), 7.96 (bs,

1H, H13), 7.71 (bs, 2H, H9, H11), 7.60–7.66 (m, 3H, H2,

H30, H50), 7.28 (d, 2H, H20, H60), 6.25 (d, J = 8.00 Hz, 1H,

H3), 3.42 (bs, 1H, OH), 2.34 (s, 3H, C40–CH3), 1.99 (s,

3H,C5–CH3). MS (EI): m/z = 199.1 [M?�–CON-

HN=CHC6H4CH3, 75 %], 361.2 [M?�, 100 %].

3-[3-Hyroxy-2-methy-4-oxopyridin-1(4H)-yl] benzoic acid

(2-methoxy-phenyl methylene)-hydrazide (5g) 117.47 mg

(82 %) compound was obtained as a white crystals, m.p.

187–188 �C; FT-IR (KBr Disc) m/cm-1: 3413 (NH), 3209

(OH), 3070 (CH, aromatic), 2927 (CH, aliphatic), 1653

(C=O, ketone), 1620 (C=O, acylhydrazone), 1599 (C=C,

aromatic), 1572 (shouldered, C=N, C=C), 1483 (C=C,

aromatic); 1H-NMR (DMSO-d6, 400 MHz): (dppm) 11.89

(s, 1H, NH), 8.79 (1H, N = CH17), 8.07 (s, 1H, H10), 7.98

(s, 1H, H13), 7.88 (d, J = 8.00 Hz, 1H, H60), 7.73–7.69 (m,

2H, H9, H11), 7.59–7.62 (bs, 1H, H2), 7.43 (t, J = 8.00 Hz,

1H, H50), 7.12 (d, J = 8.00 Hz, 1H, H30), 7.03 (t, 1H, H40),

6.24 (d, J = 7.78 Hz, 1H, H3), 3.37 (bs, 1H, OH), 3.86 (s,

3H, OCH3), 2.00 (s, 3H,C5–CH3). MS (EI): m/z = 199.2

[M?�–CONHN=CHC6H4OCH3, 90 %], 377.3 [M?�,

100 %].

3-[3-Hyroxy-2-methy-4-oxopyridin-1(4H)-yl] benzoic acid

(4-methoxy-phenyl methylene)-hydrazide (5h) 114.60 mg

(80 %) compound was obtained as a white crystals, m.p.

281–282 �C; FT-IR (KBr Disc) m/cm-1: 3200–3300 (broad,

NH and OH), 3068 (CH, aromatic), 2920 (CH, aliphatic),

1670 (C=O, ketone), 1628 (C=O, acylhydrazone), 1608

(C=C, aromatic), 1572 (shouldered, C=N, C=C), 1495

(C=C, aromatic); 1H-NMR (DMSO-d6, 400 MHz): (dppm)

11.79 (s, 1H, NH), 8.38 (1H, N = CH17), 8.05 (bs, 1H,

H10), 7.96 (bs, 1H, H13), 7.65–7.73 (m, 4H, H9, H11, H20,

60), 7.63 (d, J = 7.2 Hz, 1H, H2), 7.02 (d, J = 8.00 Hz, 2H,

H30, H50), 6.24 (d, J = 7.2 Hz, 1H, H3), 3.80 (s, 3H, OCH3),

1.99 (s, 3H, C5–CH3). MS (EI): m/z = 199.2 [M?�–

CONHN=CHC6H4OCH3, 45 %], 377.3 [M?�, 100 %].

3-[3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl] benzoic acid

[(1-methyl-5-nitro-1H-imidazol-2-yl)methylene]- hydrazide

(5i) 109.85 mg (73 %) compound was obtained as a yel-

low crystals, m.p. 284–285 �C; FT-IR (KBr Disc) m/cm-1:

3100–3250 (broad, NH and OH), 3050 (CH, aromatic),

2964 (CH, aliphatic), 1684 (C=O, ketone), 1630 (C=O,

acylhydrazone), 1579 (shouldered, C=N, C=C), 1487

(C=C Aromatic); 1H-NMR (DMSO-d6, 400 MHz):

(dppm) 12.27 (s, 1H, NH), 8.45 (1H, N = CH17), 8.22 (s,

1H, H40), 8.08 (bs, 1H, H10), 7.97 (bs, 1H, H13), 7.73–7.78

(m, 2H, H9, H11), 7.63 (d, 1H, H2), 6.24 (d, 1H, H3), 4.28

(s, 3H, N–CH3), 3.39 (bs, 1H, OH), 1.99 (s, 3H, C5–CH3).

MS (EI): m/z = 199.1 [M?�–CONHN=CHC3H4N3O2,

100 %], 396.2 [M?�, 33 %].

3-[Hyroxy-2-methy-4-oxopyridin-1(4H)-yl] benzoic acid

[(5-nitrofuran-2-yl) methylene]-hydrazide (5j) 113.22 mg

(78 %) compound was obtained as a yellow crystals, m.p.

260–261 �C; FT-IR (KBr Disc) m/cm-1: 3100–3400 (broad,

NH and OH), 3066 (CH, aromatic), 2990 (CH, aliphatic),

1695 (C=O, ketone), 1635 (C=O, acylhydrazone), 1564

(shouldered, C=N, C=C), 1477 (C=C aromatic); 1H-NMR

(DMSO-d6, 400 MHz): (dppm) 12.35 (s, 1H, NH), 8.40 (1H,

N = CH17), 8.09 (bs, 1H, H10), 7.99 (s, 1H, H13), 7.80 (d, 1H,

H40), 7.75–7.78 (m, 2H, H9, H11), 7.70 (d, J = 7.78 Hz, 1H,

H2), 7.30 (bs, 1H, H30), 6.34 (d, J = 7.78 Hz, 1H, H3), 3.40

(bs, 1H, OH), 2.01 (s, 3H, C5–CH3). MS (EI): m/z = 199.1

[M?�–CONHN=CHC4H2NO3, 100 %], 382.2 [M?�, 33 %].

3-[3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl] benzoic

acid [(1-methyl-2-(methylthio)-1H-imidazol-5-yl)methy-

lene]-hydrazide (5k) 98.05 mg (65 %) compound was

obtained as a yellow crystals, m.p. 278–279 �C; FT-IR

(KBr Disc) m/cm-1: 3100–3300 (broad, NH and OH), 3060

(CH, aromatic), 2933 (CH, aliphatic), 1674 (C=O, ketone),

1628 (C=O, acylhydrazone), 1574 (shouldered, C=N,

C=C), 1485 (C=C aromatic); 1H-NMR (DMSO-d6,

400 MHz): (dppm) 11.76 (s, 1H, NH), 8.33 (1H, N =

CH17), 8.03 (bs, 1H, H10), 7.93 (s,1H, H13), 7.68–7.72 (m,

2H, H9, H11), 7.63 (d, J = 8.00 Hz, 1H, H2), 7.41 (s, 1H,

H40), 6.24 (d, J = 8.00 Hz, 1H, H3), 3.83 (s, 3H, N–CH3),

3.42 (bs, 1H, OH), 2.59 (s, 3H, S–CH3), 1.99 (s, 3H,

C5–CH3). MS (EI): m/z = 199.1 [M?�–CON-

HN=CHC4H7N2S, 100 %], 397.2 [M?�, 96 %].

3-[3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl benzoic

acid (Phenylvinyl) -hydrazide. (5l) 110.55 mg (78 %)

compound was obtained as a yellow to white crystals, m.p.

189–190 �C; FT-IR (KBr Disc) m/cm-1: 3200–3300 (broad,

NH and OH), 3037 (CH, aromatic), 2935 (CH, aliphatic),

1674 (C=O, ketone), 1626 (C=O, acylhydrazone), 1562

(shouldered, C=N, C=C), 1479 (C=C aromatic); 1H-NMR

(DMSO-d6, 400 MHz): (dppm) 11.81 (s, 1H, NH), 8.30

(1H, N = CH17), 8.22 (bs, 1H, H10), 7.95 (bs, 1H, H13),

7.68–7.73(m, 2H, H9, H11), 7.60–7.66 (m, 3H, H2, H40,

H 80), 7.31–7.40 (m, 3H, H50, H60, H70), 7.04–7.10 (m, 2H,
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H10, H20), 6.24 (m, 1H, H3), 3.56 (bs, 1H, OH), 1.99 (s, 3H,

C5–CH3). MS (EI): m/z = 199.2 [M?�–CONHN=CHC8H7,

60 %], 373.3 [M?�, 100 %].

3-[3-Hyroxy-2-methy-4-oxopyridin-1(4H)-yl]) benzoic acid (4-

dimethylamino- phenyl methylene)-hydrazide (5m) 121.52 mg

(82 %) compound was obtained as a yellow crystals, m.p.

201–202 �C; FT-IR:(KBr Disc) FT IR: (KBr Disc) m/cm-1:

3100–3500 (broad, NH and OH), 3072 (CH, aromatic), 2922

(CH, aliphatic), 1653 (C=O, ketone), 1630 (C=O, acylhyd-

razide), 1597 (C=N), 1576 (C=C), 1483 (C=C aromatic); 1H-

NMR (DMSO-d6, 400 MHz): (dppm) 11.61 (s, 1H, NH),

8.28 (1H, N=CH17), 8.04 (bs, 1H, H10), 7.94 (bs, 1H, H13),

7.68–7.72 (m, 2H, H9, H11), 7.62 (d, J = 8.00 Hz, 1H, H2),

7.53 (d, J = 8.00 Hz, 2H, H30, H50), 6.77 (d, J = 8.00 Hz,

2H, H20, H60), 6.23 (d, J = 8.00 Hz, 1H, H3), 3.42 (bs, 1H,

OH), 2.97 (s, 6H, N–CH3), 1.99 (s, 3H,C5–CH3). MS (EI):

m/z = 199.1 [M?�–CONHN=CHC8H10N, 25 %], 375.3

[M?�–CH3, 100 %], 390.3 [M?�, 100 %].

3-[3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl] benzoic acid

(2-hydroxy-phenyl methylene)-hydrazide (5n) 93.79 mg

(68 %) compound was obtained as a yellow to white crystals,

m.p. 284–285 �C; FT-IR (KBr Disc) 3100–3300 (broad, NH

and OH), 3064 (CH, aromatic), 2925 (CH, aliphatic), 1670

(C=O, ketone), 1628 (C=O, acylhydrazide), 1570 (shoul-

dered, C=N, C=C), 1493(C=C aromatic); 1H-NMR (DMSO-

d6, 400 MHz): (dppm) 12.13 (s, 1H, NH), 11.12 (bs, 1H, C20–

OH), 9.00 (1H, N = CH17), 8.64(bs, 1H, H10), 8.13 (bs,1H,

H60), 7.99 (s 1H, H13), 7.54–7.78 (m, 4H, H2, H9, H11, H30),

7.39 (t, 1H, H40), 7.30 (t, 1H, H50), 6.25 (d, 1H, H3), 3.42 (bs,

1H, OH), 1.99 (s, 3H,C5–CH3). MS (EI): m/z = 199.1 [M?�–

CONHN=CHC6H4OH, 67 %], 227.1 [M?� -

NHN = CHC6H4OH, 100 %], 363.1 [M?�, 13 %].

3-[3-Hyroxy-2-methy-4-oxopyridin-1(4H)-yl] benzoic acid

ethylidene-hydrazide (5o)] 82.52 mg (75 %) compound

was obtained as a white crystals, m.p. 223–224 �C; FT-IR

(KBr Disc) m/cm-1: 3120–3300 (broad,NH and OH), 3062

(CH, aromatic), 2927 (CH, aliphatic), 1670 (C=O, ketone),

1631 (C=O, acylhydrazide), 1564 (shouldered, C=N, C=C),

1485 (C=C aromatic); 1H-NMR (DMSO-d6, 400 MHz):

(dppm) 11.59 (s, 1H, NH), 8.00–8.09 (m, 2H, N = CH17,

H10), 7.90 (bs, 1H, H13), 7.68–7.78 (bs, 2H, H9, H11), 7.60

(d, 1H, H2), 6.22 (d, 1H, H3), 3.49 (bs, 1H, OH), 1.97 (s,

3H, C5–CH3), 1.86 (s, 3H, H10). MS (EI): m/z = 199.1

[M?�–CONHN=CHCH3, 100 %], 285.1 [M?�, 7 %].

3-[3-Hydroxy-2-methyl-4-oxopyridine-1(4H)-yl] benzoic acid

[(furan-2-yl) methylene]-hydrazide (5p)

3-[3-Hydroxy-2-methyl-4-oxopyridine-1(4H)-yl] benzoic acid

[(thiophene-2-yl) methylene]-hydrazide (5q)

3-[3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl] benzoic acid-

phenylmethylene-hydrazide (5r)

3-[3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl] benzoic

acid (3-nitro-phenyl methylen)-hydrazide (5s) Spectral

data for the compounds 5p–s are described elsewhere [32].

Antimicrobial activity

Minimum inhibitory concentrations (MICs) were deter-

mined by microdilution method. S. aureus was obtained

from the Persian type culture collection (PTCC), Tehran,

Iran (PTCC 1112). Mueller–Hinton agar was used to cul-

ture this microorganism for 24 h at 37 �C. The antibacte-

rial activity data are given in Table 5.

Significant antibacterial activity was observed in some

compounds against S. aureus. Compounds 5e, 5g and 5h

inhibited the growth of this microorganism at 32 lg/mL.

Compounds 5a, 5b, 5k, 5n, 5p, 5r, 5s showed good

inhibitory activity (64 lg/mL) against its growth. It is

generally accepted that iron chelators inhibit microbial

growth by reducing iron absorption by microorganism.

Table 5 In vitro antibacterial activity (MIC values, lg mL-1) of

different 3-hydroxypyridine-4-one derivatives

Compound MIC (lg mL-1)

5a 64

5b 64

5c 256

5d 256

5e 32

5f 128

5g 32

5h 32

5i 128

5j 128

5k 64

5l 256

5m 128

5n 64

5o 256

5p 64

5q 128

5r 64

5s 64

Ampicillin 256

Tetracycline 64

MIC (lg/mL) = minimum inhibitory concentration, i.e., the lowest

concentration to completely inhibit bacterial growth

Ampicillin, Tetracycline: standard drug for bacteria
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Conclusion

QSAR models allow medicinal chemists to predict the

biological activities of untested and even not prepared

compounds. Using traditional techniques, it may take

months to synthesize a new compound for biological

assays. Application of computational techniques for

designing biologically active novel compounds reduces

experimental research cost and saves a lot of time. Search for

new antimicrobial agents with novel modes of action rep-

resents a major target in anti infective chemotherapy. The

reason is the increasing number of pathogenic bacteria and

fungi that are resistant to therapeutic agents. 3-Hydroxy-

pyridine-4-one derivatives have shown good inhibitory

activity against bacterial strains such as S. aureus. In this

work we reported the application of MOLMAP descriptors

based on empirical physicochemical properties with

GA-PLS and CP-ANN methods to predict some novel

3-hydroxypyridine-4-one derivatives with improved anti-

bacterial activity against this microorganism. A large col-

lection of 302 novel derivatives of this chemical scaffold was

selected for this purpose, which the activity class of these

compounds was determined using the two QSAR models. To

evaluate the predictability and accuracy of the obtained

models, nineteen compounds belonging to all three activity

classes were prepared and the anti S. aureus activity of them

was determined. Comparing the experimental results (as

MICs) and the predicted activity classes revealed the accu-

racy of the GA-PLS and CP-ANN models.

In sum, it seems that the MOLMAP approach is a

powerful and reliable method to assist medicinal chemists

for a rational design of successful bioactive agents.
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