
ISSN 1001-604X • CN 31-1547/O6
mc.manuscriptcentral.com/cjoc

www.cjc.wiley-vch.de

Title: Synthesis of Phenanthridine and Quinoxaline Derivatives via Copper-
Catalyzed Radical Cyanoalkylation of Cyclobutanone Oxime Esters and Vinyl Azides

Authors: Qi Liang, Long Lin, Guodong Li, Xianqiang Kong,* and Bo Xu*

This manuscript has been accepted and appears as an Accepted Article online.

This work may now be cited as: Chin. J. Chem. 2021, 39, 10.1002/cjoc.202100050.

The final Version of Record (VoR) of it with formal page numbers will soon be
published online in Early View: http://dx.doi.org/10.1002/cjoc.202100050.

Accepted Article

中 国 化 学 - An International JournalCJC
Chinese Journal 

of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcjoc.202100050&domain=pdf&date_stamp=2021-04-01


Xu Bo (Orcid ID: 0000-0001-8702-1872) 
 
 

 
*E-mail:    

 
Chin. J. Chem. 2021, 39, XXX－XXX © 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH 

   

 
Supporting Information  View HTML Article  

Cite this paper: Chin. J. Chem. 2021, 39, XXX—XXX. DOI: 10.1002/cjoc.202100XXX 

Synthesis of Phenanthridine and Quinoxaline Derivatives via Cop-
per-Catalyzed Radical Cyanoalkylation of Cyclobutanone Oxime 
Esters and Vinyl Azides 
Qi Liang, a† Long Lin, a† Guodong Li,a Xianqiang Kong,b,* and Bo Xua,* 

a Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotech-
nology, Donghua University, Shanghai 201620, China. 
b School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China 
†These authors contributed equally to this work. 
E-mail: xianqiangk@sina.com (X. Kong); bo.xu@dhu.edu.cn (B. Xu). 

 

Copper | Radical | Cyanoalkylation | Vinyl Azides | phenanthridine 

 

A copper-catalyzed radical cyclization of cyclobutanone oxime esters and vinyl azide is described. This method provides facile access 
to the cyanoalkyl-substituted phenanthridines and quinoxalines with excellent isolated yields. Moreover, these reactions proceed un-
der mild conditions with a board substrate scope and excellent functional group tolerance. 
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Background and Originality Content 

Nitrogen-containing heterocycles, especially phenanthridine 
and quinoxaline derivatives, had been applied extensively in phar-
maceuticals, materials, and organic synthesis.1-6 Therefore, the ex-
ploration of efficient and selective preparation methods for phe-
nanthridine and quinoxaline derivatives is of great significance.7 Da-
ting from 1896, Pictet and Hubert have already found that N-([1,1'-
biphenyl]-2-yl)acetamide can transform into 6-substituted phenan-
thridine with high temperature and low yield.8 Since then, many re-
searchers have begun to explore the efficient and selective prepa-
ration of phenanthridine9-14 and quinoxaline15-19 derivatives. Re-
cently, vinyl azides have become a class of versatile synthon for or-
ganic synthesis.20-25 And cyclization of vinyl azides utilizing radical 
addition reaction provides a new method to prepare the phenan-
thridine and quinoxaline derivatives (Scheme 1a).26-33 
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Scheme 1. Literature background. 
 

Cyanoalkyl moieties are of wide appearance in modern phar-
maceuticals and bioactive compounds.34-38 Cyano groups could also 
be converted to many other common functional groups conven-
iently.39-41 Therefore, a wide variety of methods have been devel-
oped for cyanoalkylation.42,43 Traditionally, cyanoalkyl is usually pre-
pared using inorganic cyanides and alkyl halides. Inorganic cyanides 
are highly toxic, and the preparation of alkyl halides may also need 
extra steps. Recently, the C-C bond cleavage of cyclic iminyl radicals 
has been successfully applied to synthesizing alkyl nitriles (Scheme 
2b).44-53And cyclobutanone oxime esters have become important 
raw materials for organic synthesis. 54-59 Especially, cyanoalkyl can 
be introduced to the nitrogen-containing heterocycles by using cy-
clo ketone oxime esters.60,61 For example, the group of Guo has re-
ported a metal-catalyzed radical cyclization of cyclobutanone oxime 
esters and vinyl azides to synthesize cyanoalkyl-substituted phe-
nanthridines.62,63 Besides, the group of Li64 and our group65 have 
described visible-light-driven cyanoalkylation of quinoxalinones. 
Herein, we are glad to report radical cyclization of cyclobutanone 
oxime esters and vinyl azides to synthesize cyanoalkyl-substituted 
phenanthridine and quinoxaline derivatives by using inexpensive 
Cu(II) as the catalysts (Scheme 1c). 
 

Results and Discussion 

Table 1. Optimization for synthesis 6-substituted phenanthridinesa 

10 mol % Catalyst

solvent, 14 h, 100 oC

1a 2a 3a

N3

NN
O Ph

O

CN

+

 

Entry Solvent 2a 

 

Catalyst Yield 

 1 1,4-dioxane 1.2 Cu(OTf)2 65 
2 Toluene 1.2 Cu(OTf)2 51 
3 Diethyl Ether 1.2 Cu(OTf)2 42 
4 THF 1.2 Cu(OTf)2 48 
5 DMF 1.2 Cu(OTf)2 39 
6 CH3CN 1.2 Cu(OTf)2 46 
7 DMSO 1.2 Cu(OTf)2 72 
8 DMSO 1.2 CuBr2 54 
9 DMSO 1.2 CuI2 49 
10 DMSO 1.2 Cu(OAc)2 62 
11 DMSO 1.2 Cu(CF3SO3)2 67 
12 DMSO 2.0 Cu(OTf)2 87 (83c) 
13d DMSO 2.0 Cu(OTf)2 54 
14e DMSO 2.0 Cu(OTf)2 75 
15f DMSO 2.0 Cu(OTf)2 79 
16 DMSO 2.0 - trace 
a Reaction conditions: 1a (0.2 mmol), 2a, 10% mmol catalyst, N2, solvent 
(2 mL) at 100 oC, 14 h. b Yields were determined by 1H-NMR. c Isolated 
yield. d Temperature: 60 oC. e Temperature: 80 oC. f Temperature: 120 
oC. 

 
Vinyl azide 1a and cyclobutanone O-benzoyl oxime 2a were 

chosen as model substrates to optimize the reaction conditions (Ta-
ble 1). Initially, Cu(OTf)2 was evaluated as the catalyst. As expected, 
1a can be successfully transformed to 3a with 65% yield at 100 oC 
using 1,4-dioxane as the solvent (Table 1, entry 1). Different sol-
vents were examined (Table 1, entries 2-7), and DMSO was the op-
timal solvent (72% yield). A variety of CuII catalysts was investigated 
as well (Table 1, entries 8-11). However, they were less effective. 
The use of a larger amount of cyclobutanone O-benzoyl oxime (2a) 
led to a higher chemical yield (83%) (Table 1, entry 12). Modification 
of  temperature (60 oC, 80 oC, 120 oC) could not improve the reac-
tion (Table 1, entries 13-15). Finally, a control experiment revealed 
that only a trace amount of 3a was formed in the absence of CuII 
catalyst. 

 
With the optimized reaction conditions in hand (Table 1, entry 

12), we then explored the scope and functional group tolerance of 
the phenanthridine synthesis (Table 2). First, we evaluated the ef-
fects of R2 functional group. The substitution pattern (meta, para) 
and electronic properties of aromatic substituents (electron defi-
cient or rich) of R2 played a small role; good yields were obtained 
regardless (Table 2, 3b-3d, 3e-3f). The halogen (Table 2, 3g, 3h, 3j), 
alkyl (Table 2, 3i, 3j), even naphthalene (Table 2, 3k) groups were 
well-tolerated. Then, the effect of R1 functional groups was also 
investigated: a very wide range of substituents were all suitable for 
this transformation (Table 2, 3m-3r, 3t), furnishing the correspond-
ing products in good yields. Also, 3-substituted substrates were also 
converted into the desired products (Table 2, 3u−3x) in 55−64% 
yields. 
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Table 2. Synthesis of phenanthridine derivatives.a 
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a Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), Cu(OTf)2 (10 mol%), N2, 
solvent (2 mL) at 100 oC, 14 h. All yields are isolated yields. 

Table 3. Synthesis of quinoxalinone derivatives.a 
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a Reaction conditions: 4 (0.2 mmol), 2 (0.24 mmol), Cu(OTf)2 (10 mol%), N2, 
solvent (2 mL) at 100 oC, 14 h. All yields are isolated yields. 

After completion of phenanthridine synthesis, we turned our 
attention to the quinoxalinone synthesis (Table 3). When we ex-
posed 2-azido-N-methyl-N-phenylacrylamide 4a as our radical ac-
ceptor to our standard conditions, the quinoxaline product 5a was 
isolated in a slightly lower yield (62%), possibly due to the fact that 
2-azido-N-methyl-N-phenylacrylamide 4a is an electron-poorer al-
kene than 2-(1-azidovinyl)-1,1'-biphenyl 1a. Subsequently, the sub-
strate scope was explored by using various quinoxalinones and dif-
ferent 3-substituted cyclobutanone oxime esters. Methyl, chloro, 
bromo, trifluoromethyl, and cyano groups on the benzene ring were 
well-tolerated under the standard conditions, and the correspond-
ing products were isolated in good yields (Table 3, 5b−5h). We 
found that cyclobutanone oxime esters bearing the bulky groups 
(Table 3, 5i-5o), even the 3-N-substituted cyclobutanone oxime es-
ter (Table 3, 5i), and the cyclobutanone oxime ester substituted 
with ester group, all were suitable substrates.  

Table 4. Synthesis of spiro-cyclic compound 6a 
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a Reaction conditions: 4 (0.2 mmol), 2 (0.24 mmol), Cu(OTf)2 (10 mol%), N2, 
solvent (2 mL) at 100 oC, 14 h. All yields are isolated yields. 

We found that spiro-cyclic compound 6 was isolated synthe-
sized with the starting material 2-azido-N-(4-methoxyphenyl)-N-
methylacrylamide (Table 4). 3-Ester-, 3-oxybenzyl-, and 3-phenyl 
substituted cyclobutanone oxime esters were suitable substrates, 
affording the corresponding products good yields (65−73%)(Table 4, 
6d−6g). The 3,3-disubstituted substrates were also converted into 
the desired products 6c in 57% yields. Surprisingly, the 2,3-disubsti-
tuted substrates were well-tolerated in this transformation (Table 4, 
6h). 

Based on the previous reports, a possible mechanism is pro-
posed (Scheme 2). Initially, iminyl radical A is generated from the 
decomposition of cyclobutanone oxime ester catalyzed by copper 
catalysts and rearranges to cyanoalkyl radical B by C−C bond cleav-
age. The addition of radical B to the double bond in starting material 
1 to give iminyl radical C with the generation of N2 gas. Cyclization 
of iminyl radical C to generate radical D, which is re-oxidized by the 
copper to give cation E. After deprotonation, cation E is converted 
to final product 5. 
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Scheme 2. Plausible reaction mechanism. 

N
O

O

OBz

N

CN

OBz

HOBz

Ph
N O

N3

N2

N

O

N

CN

N

N O

H
CN

N

N O

H
CN

N

N O

CN

R

R

R

R

R

R

E

[Cu]
+

[Cu]

R

2

A

+

B

C

D

5

 

Conclusions 

In summary, we have developed an efficient method of radical 
cyclization of cyclobutanone oxime esters and vinyl azides using an 
accessible and inexpensive Cu(II) catalyst. Using this uncomplicated 
method, we were able to synthesize cyanoalkyl-substituted phe-
nanthridine and quinoxaline derivatives from readily available and 
safe starting materials under mild conditions. 
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