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The Covalent and Coordination Co-Driven Assembly of 
Supramolecular Octahedral Cages with Controllable Degree of 
Distortion
Shu-Jin Bao, Ze-Ming Xu, Yun Ju, Ying-Lin Song, Heng Wang, Zheng Niu,* Xiaopeng Li, Pierre 
Braunstein, and Jian-Ping Lang*

ABSTRACT: Discovering and constructing novel and fancy structures is the goal of many supramolecular chemists. In this work, 
we propose an assembly strategy based on the synergistic effect of coordination and covalent interactions to construct a set of 
octahedral supramolecular cages and adjust their degree of distortion. Our strategy innovatively utilizes the addition of sulfur atoms 
of a metal sulfide synthon, [Et4N][Tp*WS3] (A), to an alkynyl group of a pyridine-containing linker, resulting in a novel vertex 
with low symmetry, and of Cu(I) ions. By adjusting the length of the linker and the position of the reactive alkynyl group, the 
control of the deformation degree of the octahedral cages can be realized. These supramolecular cages exhibit enhanced third-order 
nonlinear optical (NLO) responses. The results offer a powerful strategy to construct novel distorted cage structures as well as 
control the degree of distortion of supramolecular geometries.

Supramolecular assembly provides a powerful route to 
construct diverse metal-containing entities with designed 
geometries and symmetries, owing to the highly directional 
and predictable nature of the metal-ligand coordination.1 
Supramolecular cages2 featuring predesigned polyhedron 
geometries, windows, and cavities have captured widespread 
attention in areas as diverse as chemical sensing,3 catalysis,4 
molecular encapsulation,5 and separations.6 Major 
developments have taken place in the assembly of 
supramolecular cages by coordination of Lewis-basic donor 
subunits to Lewis-acidic acceptor subunits.7 The usually high 
predictability of the inter-ligand angles around the metal 
center enables the design of supramolecular cages, although 
the limited number of possibilities hampers further structural 
diversity in their design.8 Combining the diversity of angles 
offered by coordination and covalent bonds9 appears a 
promising strategy for constructing unique supramolecular 
cage architectures.10 In recent years, covalent bonds have been 
used to build molecular cages, however, their vertices are still 
based on the single coordination or covalent interaction.11 
Employing both coordination and covalent interactions to 
construct supramolecular cages with novel vertices represents 
an exciting challenge.

To date, the kinds of vertices based on coordination 
interactions in supramolecular nanocage architectures are 
limited.12 The nature of the ligand field leads to a high 
symmetry around the metal center forming the vertices of the 
supramolecular cages, which makes increasing structural 
diversity and access to systematically distorted cage structures 
challenging.13 For example, most of the reported octahedral 
supramolecular cages are based on specific vertices, and their 
high local symmetry (C2v, C4v, and C3v) leads to highly 
symmetric octahedral supramolecular cages (Scheme 1).14 As 

illustrated in Scheme 1, a vertex that contains coordination and 
covalent interactions would possess a lower symmetry (Cs), 
thus providing an opportunity to construct the distorted 
octahedron-type cages. 
Scheme 1. Construction of the Existing Octahedron Cages 
and of Distorted Octahedron Cages by a New Strategy 
Reported Here

Based on above considerations, we present a strategy to 
construct distorted octahedron-type cages and achieve the 
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adjustment of their distorsion by employing synergistic effects 
between coordination and covalent interactions. The precursor 
[Et4N][Tp*WS3] (Tp* = hydridotris(3,5-dimethylpyrazol-1-
yl)borate) (A) (Figure 1a) was used as the cage vertex since 
the donor sulfur atoms can react with linear alkynyl linkers15 
to generate covalent attachment of a functional linker that is 
subsequently reacted with Cu(I) ions, leading to the 
emergence of variable angular orientations. This strategy 
provides the first family of octahedral cages where different 
degrees of distortion can be fine-tuned. This relies on 
adjusting the length of the alkyne ligand and the position of 
the alkynyl function. Furthermore, the assembly process from 
A to the supramolecular cage structures significantly enhances 
their third-order nonlinear optical (NLO) responses.

In the W(VI) synthon [Et4N][Tp*WS3] (A), which was 
synthesized according to the literature,16 the Tp* ligand 
occupies three coordination sites of the W(VI) ion (Figure 1a), 
and three sulfur atoms complete the octahedral coordination 
environment. Two sulfur atoms of Tp*WS3 can react with the 
triple bond of 1,2-bis(4-pyridyl)ethyne (L1) and form two S-C 
covalent bonds of the 1,2-enedithiolato intermediate (INT-1) 
(Figure 1b). The formation of INT-1 was confirmed by ESI-
TOF MS (Figure S1). This reaction lowers the local symmetry 
of A, thus leading to a vertex of Cs symmetry instead of the 
higher symmetry usually encountered (C2v, C4v, or C3v). The 
remaining terminal S and the two S (1,2-enedithiolato) atoms 
in INT-1 are available for reaction with Cu(I) ions, which can 
further bind to the pyridine donor of another INT-1 unit to 
generate the supramolecular cage. 

Figure 1. (a) The structure of A. (b) The proposed structure of 
intermediate INT-1. (c) The structure of cage 1. (d) The topology 
of cage 1. The cyan balls and orange balls respectively stand for 
the Tp*WS3 unit and reacted alkynyl ligand unit in Figure 1d. 
Color codes: The C atoms with an orange color represent the C 
atoms on the newly generated C=C bonds derived from the 
addition reaction between the S atoms and the alkynyl groups. W 
(cyan), Cu (azure), S (yellow), N (blue), C (silver), B (pink). The 
hydrogen atoms, guest solvent, and OTf anions were omitted for 
clarity.

Thus, the reaction of INT-1 with 2 equiv. [Cu(MeCN)4]OTf 
afforded a WS3Cu2 core-based cationic octahedral cage 
[Tp*WS3Cu2(L1a)]6(OTf)6 ([1](OTf)6) (Figure 1c) as a result of 
additional interactions between the Cu(I) centers and the 1,2-
enedithiolato S atoms (Scheme 2, Route 1). Since the product 
was obtained in only 20% yield, we examined an alternative 
strategy consisting in the one-pot reaction between A, 
[Cu(MeCN)4]OTf, and L1 (See section 2.4 in SI, Method 1). 
This self-assembly procedure led to [1](OTf)6 with improved 
yield of ca. 70%. Its ESI-TOF MS spectrum contains three 
signals at m/z = 1917.8164, 1401.1488, and 1091.1168 with 
the correct isotope distribution patterns for an assignment to 
[1](OTf)3]3+, [1](OTf)2]4+ and [1](OTf)]5+, respectively 
(Figures S2−S4). Furthermore, diffusion ordered spectroscopy 
(DOSY) revealed that both the aromatic signals and the 
aliphatic signals belong to a single species, with a diffusion 
coefficient of 4.0 ×10-10 m2 s-1, which confirms the high purity 
of the supramolecular cage 1 (Figure S15). 

The crystal structure of [1](OTf)6 was determined by single-
crystal X-ray diffraction (SCXRD) (Figure 1c and Figures 
S24−S27). It crystallizes in the trigonal space group R-3. The 
distorted trigonal planar geometry of each Cu(I) center in the 
Tp*WS3Cu2 units is completed by a pyridyl N atom and two 
μ3-S atoms. Interestingly, the Tp*WS3Cu2 units connect with 
each other through both coordination (Cu(I)···pyridine) and 
covalent interactions (S–C=C). If we assign the Tp*WS3 unit 
and the linker as the secondary building units (SBUs), cage 1 
would be simplified as an octahedral structure (Figure 1d), of 
lower symmetry compared with the reported octahedron cage 
structures. As detailed in Figure S43, the values of the angle 1 
in cage 1 are 59.51o and those of angles 1 and 1 are the 
same, 60.24o, resulting in nearly equilateral triangular faces 
(Figure S43 and Table S2). In view of the presence of covalent 
interactions between the linker and the Tp*WS3 units, the 
whole Tp*WS3Cu2(L1a) cluster can be considered as the vertex 
of cage 1 and it contains both the Lewis-basic donor and 
Lewis-acidic acceptor. To our knowledge, cage 1 is the first 
example of supramolecular octahedron based on the vertex 
with both covalent and coordination interactions.14

The reaction of A with 3 equiv. CuCl produces a highly 
stable heterometallic cluster [Et4N][Tp*WS3(CuCl)3] (B),17 
with an incomplete cubane-like core structure; each Cu(I) is in 
a trigonal-planar coordination environment defined by one 
terminal Cl and two µ3-S atoms (Figure S28). Its reaction with 
AgOTf and L1 afforded the same octahedral cage [1](OTf)6 
(Route 2 in Scheme 2 and section 2.4 in SI, Method 2). The 
alkyne group of L1 reacted with two S atoms of the 
Tp*WS3Cu3 unit to give an 1,2-enedithiolate moiety by in-situ 
formation of C-S bonds, and this triggered the elimination of 
one Cu(I) atom.
Scheme 2. Two Different Approaches Leading to the Self-
Assembly of Octahedral Cage 1 
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The unique approach described above allows us to 
investigate the influence of the pyridyl alkyne-containing 
spacer length on the structure of the resulting cage. With the 
longer alkyl ligands 1,4-bis(pyridine-4-ylethynyl)benzene (L2) 
and 4,4’-bis(pyridine-4-ylethynyl)-1,1’-biphenyl (L3) (Scheme 
3), the octahedral cage compounds [2](OTf)6 (Figure S32) and 
[3](OTf)6 (Figure S39) were successfully prepared, 
respectively (See sections 2.5 and 2.6 in SI). Since only one 
alkyne group of the ligand can undergo coupling with the 
sulfur atoms of the Tp*WS3 unit, an unsymmetrical situation 
arises for the spacer (Scheme 3). When the length of Part I 

(4.30 Å) is approximately equal to that of Part II (4.26 Å), as 
in ligand L1, a nearly regular octahedral supramolecular 
structure results whereas an octahedron with an increasing 
degree of distortion is generated when the value of Part II 

increases, which impacts the angles in the vertex (Figures S24, 
S29 and S36). Thus, the increased value of Part II (11.080 Å) 
in L2 leads to a significant decrease of  while  and  notably 
increase, with 2, 2 and 2 being 36.87o, 71.57o, and 71.57o, 
respectively. In cage 3, the length of Part II in L3 is increased 
to 15.34 Å, yielding an even more distorted octahedron, with 
angles 3, 3 and 3 of 30.13o, 74.93o, and 74.93o, respectively 

(Table S2). Consequently, by adjusting the length of one part 
of the ligand, it is possible to control the degree of distortion 
of the resulting supramolecular cages. 

Scheme 3. Rigid Linear Alkynyl-Containing Ligands Allowing 
a Control of the Distortion of the Octahedral Cages Generated 
(The Cyan Balls and Orange Balls Respectively Stand for the 
Tp*WS3 Units and Reacted Alkynyl Ligand Units.) 

Among the very important third-order nonlinear optical 
(NLO) materials, W-S-Cu compounds show unique NLO 
performance and this led us to investigate the NLO properties 
of A and cage compounds [1](OTf)6, [2](OTf)6 and [3](OTf)6. 
By using the Z-scan technique with 15 picosecond (ps) width 
laser pulse at 532 nm, A showed no detectable NLO response 
in MeCN (Figures S45 and S46). However, after self-assembly 
of A with Cu+ ions and the alkynyl ligands, these cage 
compounds exhibited significant NLO responses in MeCN 
with reversed saturable absorption (Figure 2a, Figures S53 and 
S55) and nonlinear refraction performance (Figure 2b, Figures 
S54 and S56) under the same experimental conditions. Clearly, 
activation/amplification of the NLO response results from the 
formation of the octahedral supramolecular cages.18 Similarly, 
the hyperpolarizability  19 increases on going from [1](OTf)6 
(4.73×10-29 esu) to [2](OTf)6 (6.39×10-29 esu) and [3](OTf)6 
(6.95×10-29 esu) (Table S3), most likely owing to the 
increasing π-conjugation in the ligands, as observed with 
organic molecules.20

(a) (b)

Figure 2. Third-order NLO responses for [1](OTf)6 in MeCN 
obtained for 15 ps, 532 nm laser pulses. (a) Normalized Z-scan 
data for [1](OTf)6 under open-aperture conditions, displaying a 
reversed saturable absorption. (b) Normalized Z-scan data for 
[1](OTf)6 under closed aperture conditions, displaying nonlinear 
refraction performance. Dots represent experimental data while 
the red solid lines stand for the numerical simulations. 

In conclusion, we reported a general strategy to control the 
degree of distortion of octahedron-type supramolecular cages 
by employing both coordination and covalent interactions. 
Through the simple addition reactions between the sulfur 
atoms and pyridine-substituted alkynyl ligands, followed by 
those of Cu(I) ions, three novel cationic cages with different 
degrees of distortion have been obtained and characterized by 
NMR spectroscopy, mass spectrometry, and single crystal X-
ray crystallography. We could demonstrate that the degree of 
distortion of these octahedral supramolecular cages can be 
adjusted simply by changing the length of the rigid alkynyl-
containing pyridine linkers. The cages reported in this work 
display obvious third-order NLO responses. The approach 
reported here could be extended to control the self-assembly 
process and the distortion of topologically fascinating 
structures.
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