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Abstract: A highly stereoselective synthesis of the novel 4-(l~-D-ribofuranosyl)imidazole 5 was accomplished in 4 

steps and 85% overall yield from protected D-ribose 1. Cyclization of the diol (RS)-3 having an intact imidazole by 

modified Mitsunobu reaction exclusively afforded benzylated ~-ribofuranosylimidazole ~-4a, accompanied by ct-4a, in a 

ratio of 26:!. Reductive debenzylation completed the synthesis. 2'-Deoxy derivative 8 was also synthesized 

stereoselectively in the same manner. 

C-Ribonucleosides have attracted much attention in view of their remarkable antitumor and antiviral 

activities. 1,2 However, the synthetic method of imidazole C-nucleosides, in general, is limited and requires many 

steps. 3 Although several imidazole C-nucleosides linked through C-2 have been synthesized, 4 only one synthetic 

study on C-4 linked 2'-deoxy-13-D-ribofuranosylimidazoles has been reported. 2 Since excellent Mitsunobu 

reagents were developed recently by Tsunoda et al, 5 we applied them to the synthesis of a novel 4-(13-D- 

ribofuranolsyl)imidazole 5 and its 2'-deoxy derivative 8. 2 The results are described herein. 
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A protected D-ribose 16 was allowed to react with an imidazole-lithium salt 7 to give the corresponding adduct 2, 

as illustrated in Scheme I. Hydrolysis of 2 in refluxing HCI afforded a 1:1 epimeric mixture of diol (RS)-3. 

Cyclization of (RS)-2 under the common Mitsunobu conditions [diethyl azodicarboxylate (DEAD) / Ph3P] 8 

brought about a small amount of cyclization products, whose structures were not determined. Alternatively, 

(RS)-3 afforded crystalline derivative 13-4b (15%)9with an ethoxycarbonyl group at N-i under the same 

conditions, after a partial chromatographic separation followed by recrystallization from hexane. X-ray 

crystallography established its structure as the desired 13-anomer. 9 When (RS)-3 was subjected to the new 

Mitsunobu reagent [I, l'-(azodicarbonyl)dipiperidine (ADDP)/Bu3P] 5a, 13-4a was obtained in a modest yield. 

The structure was confirmed by a conversion of 13-4a into fl-4b with ethyl chloroformate. Importantly, 

cyclization of (R)- and (S)-3 separated by column chromatography afforded only 13-anomer under the same 

conditions, respectively. The reaction was very clear, but the isolated yields were less satisfactory owing to the 

difficulty of the product isolation from hydrazine by-product. The problem has been solved by the use of 

N,N,N',N'-tetramethylazodicaboxamide (TMAD) 5b to give the excellent yield of 13-4a (91.7%), together with a 

small amount of ct-4a (3.6%). l0 The ratio of ~13 is 1/26. 

Yokoyama et al  1 la very recently reported the synthesis of C-ribonucleosides having aromatic beterocycles, 

in which the cyclization under Mitsunobu condition proceeded through an intramolecular SN2 reaction, and the 

orientation of glycosidic linkage was controlled by the configuration of the substrate. Interestingly, these facts 

were in contrast to our results. Hydrogenolytic debenzylation (quant.) of [I-4a over Pd/C was carried out, and we 

attained the synthesis of 4-(13-D-ribofuranosyl)imidazole 512 from 1 in 4 steps and 85% overall yield. 

Next, we synthesized 4-(2'-deoxy-l~-D-ribofuranosyl)imidazole 8 using this method. Thus, cyclization of a 

1:1 mixture of (RS)-6, which was similarly prepared from D-2-deoxyribose, brought about an inseparable 

mixture of 13- and ~t-anomers in a satisfactory ratio (5:1) (Scheme 2). Their mesyl derivatives could be separated 

by column chromatography on SiO2, giving 13- and ct-7 in 50% and 1 ! % yields, respectively. Deprotection of 13-7 

by treatments with 1.5N HCI followed by BCI31 lb completed the synthesis of 8 in 94% yield. 13 
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Scheme 2 

Cyclization of 9a,b having a substituted imidazole proceeded via a process of the common Mitsunobu 

reaction (Scheme 3, Table). Accordingly, the intact-imidazole moiety is indispensable for the exclusive formation 

of IB-anomer. The results suggest that the intramolecular hydrogen bonding between the nitrogen atom in the 

imidazole and oxygen-functional groups play a significant role for determination of the ratio of 13- vs a- 

glycosidation. 
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Table Cyclization of 9a,b 

Run 9 10 (ok) 

1 (S)-9a I~-10a (12)D 
2 (R)-9a cx-10a (7) 2) 
3 (S)-9b [~-10b (94) 
4 (R)-9b a-10b (88) 

1) Recovery of (S)-9a (65%) 

2) Recovery of (R)-9a (67%) 

The B-selectivity in our reaction can be rationalized as shown in Scheme 4.15 Reaction of TMAD-Bu3P 

adduct with (R)-3 forms a zwitterion 11. Preferential elimination of Bu3P--O from 11 leads to an isoimidazole 

12. Spontaneous cyclization of 12 assisted by the hydrogen bond gives 1~-4aJ 4 Although (S)-3 similarly leads 

to an activated species 12', it exclusively gives [3-anomer via the rotamer 12 being thermodynamically more 

stable. 

The synthetic approach of the imidazole C-nucleosides described here should promise to supply a variety of 

derivatives to assess their biological activities. 
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were dissolved in dry benzene (70 ml) with stirring at 
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10.4, 1.9 Hz), 3.95 (2H, overlapped), 4.14 (IH, dd, J = 7.2, 4.8 Hz), 4.31 (IH, dt, J = 7.2, 2.1 Hz), 
4.34-4.74 (6H, m), 5.21 (lH, d, J = 2.4 Hz), 6.78 (1H, s), 6.83 (IH, s), 7.15-7.50 (15H, br). 13C- 
NMR (CDCI3): 69.9, 72.1, 73.6, 76.9, 77.2, 80.2, 81.3, 120.1, 127.9, 128.1, 128.2, 128.5, 128.7, 
135.0, 137.4, 137.6, 137.8. [a]D +52.3* (c = 3.08, CHCI3). El-MS re~z: 470 (M+), HR-MS m/z: Calcd 
for C29H30N204,470.2204, Found: 470.2209. 
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12. 5: white wax, IR(Nujol) 3700-3050, 1150-1000 cm -I. IH-NMR (200 MHz, CD3OD): 3.72 (1H, dd, J = 
12.3, 3.9 Hz), 3.80 (IH, dd, J = 12.3, 3.5 Hz), 3.98-4.19 (3H, m), 4.83 (1H, d, J =  6.9 Hz), 7.58 (IH, 
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13. 1 H- and 13C_NM R of 8 were consistent with those of reference 2. 
14. Very recent report on an X-ray crystallographic analysis of a pyrrole analogue of 13-4a revealed a strong 

hydrogen bonding between NI-H and 0-5'. Patil, S.A.; Otter, B.A.; Klein, R.S. Tetrahedron Left., 1994, 
35, 5339. IH-NMR data on the sugar moiety of l~-4a are consistent with those of a pyrrole analogue. These 
facts support the existence of the hydrogen bonding in 1~-4a. 

15. Epimerization between 13-4a and a-4a was not observed. 
16. The difference between two reagents could not be observed. 
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