

Article

Subscriber access provided by UNIV AUTONOMA DE COAHUILA UADEC

A Mechanochemical Non-hydrolytic Sol-Gel-Strategy for the Production of Mesoporous Multi-metallic Oxides

Zihao Zhang, Shize Yang, Xiaobing Hu, Haidi Xu, Honggen Peng, Miaomiao Liu, Bishnu Prasad Thapaliya, Kecheng Jie, Jiahua Zhao, Jixing Liu, Hao Chen, Yan Leng, Xiuyang Lu, Jie Fu, Pengfei Zhang, and Sheng Dai

Chem. Mater., Just Accepted Manuscript • DOI: 10.1021/acs.chemmater.9b01244 • Publication Date (Web): 01 Jul 2019

Downloaded from http://pubs.acs.org on July 2, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
20	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
/1	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54 57	
55	
56	
57	
58	
59	
60	

A Mechanochemical Non-hydrolytic Sol-Gel-Strategy for the Production of Mesoporous Multi-metallic Oxides

Zihao Zhang,^{abc} Shize Yang,^e Xiaobing Hu,^{fg} Haidi Xu,^c Honggen Peng,^b Miaomiao Liu,^c Bishnu Prasad Thapaliya,^c Kecheng Jie,^c Jiahua Zhao,^d Jixing Liu,^c Hao Chen,^a Yan Leng,^c Xiuyang Lu,^a Jie Fu,^{a*} Pengfei Zhang^{d*} and Sheng Dai^{bc*}

^a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of

Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

^b Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

^c Department of Chemistry, The University of Tennessee, Knoxville, TN, USA

^d School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

^e Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY11973,

USA

^f Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA

^g The NUANCE Center, Northwestern University, Evanston, IL 60208, USA

*Corresponding author: Jie Fu, E-mail: jiefu@zju.edu.cn

Pengfei Zhang, E-mail: chemistryzpf@sjtu.edu.cn

Sheng Dai, E-mail: <u>dais@ornl.gov</u>

Abstract: Mesoporous metal oxides with wide pore size, high surface area and uniform

porous structures have demonstrated excellent advantages in various fields. However, the state-of-art synthesis approaches are dominated by wet chemistry, accompanied by use of excessive solvent, and the requirement of time-consuming drving process. Herein, we report a mechanochemical solid-state route to synthesize mesoporous Al₂O₃ (meso-Al₂O₃) via aluminum isopropoxide-copolymers assembly. The obtained meso-Al₂O₃ shows a record high surface area ($\sim 644 \text{ m}^2 \text{ g}^{-1}$) and narrow pore size distribution (centered at $\sim 5 \text{ nm}$). Moreover, a mechanochemical nonhydrolytic sol-gel strategy is introduced to fabricate mesoporous transition metal (Cu, Co, Mn, Fe, Mg, Ni)-aluminium binary oxide by using anhydrous metal chlorides and aluminum isopropoxide interplay. More importantly, four or five metals-aluminum oxide complexes with abundant mesopores and single cubic crystalline phase known as high-entropy ceramics are produced. To the best of our knowledge, mesoporous high-entropy metal oxides have not been prepared before, because the high crystallization temperature would make mesopores collapse. Additionally, this high-entropy property endows (CuNiFeCoMg)O_x-Al₂O₃ with superior SO₂-resisting performance (1000 ppm SO₂ in N₂ at 280 °C) in the catalytic oxidation of CO compared to single CuO-Al₂O₃.

1. Introduction

Mesoporous metal oxides with wide pore size, high surface area, uniform pore size distribution as well as a variety of structures and compositions endow them particularly

Chemistry of Materials

attractive for applications in catalysis, adsorption, battery technology, sensing, and so on.^[1-6] Template-assisted processes via either soft- or hard templates were usually used for the synthesis of mesoporous metal oxides.^[7-12] In general, the hard-templating technique relied on mesoporous silica or carbon aerogel as the hard templates, which inevitably required additional steps and costs.^[9,13-21] In comparison, organic-inorganic assembly routes, using block co-polymers or surfactants as soft templates have been developed as a more straightforward method.^[22-26] It is undeniable that the solvent evaporation-induced self-assembly method has been successfully applied into the synthesis of many mesoporous metal oxides.^[27-29] However, several issues seem left in this wet soft-templating process, including: 1) Excessive organic solvents are used; 2) It requires the metal precursors that have to be dissolved in the solvents, which limits the applications of many insoluble metal precursors;^[3,30] 3) The slow solvent evaporation is a time-consuming step.^[31]

To resolve these disadvantages, solid-state synthesis, an old method in material processing, has been revisited.^[32-35] Several porous materials, such as zeolite, metal-organic frameworks, covalent-organic frameworks, ordered mesoporous ploymers and mesoporous carbons have been already synthesized via mechanochemical processes.^[36-38] Although, a solvent-free assembly method has also been introduced for the construction of mesoporous metal oxide (TiO₂), this route needs HCl as the solvent and aged at 140 °C for 24 h before calcination, making it not a "true" solvent-free system.^[37] As a result, the synthesis of

Chemistry of Materials

mesoporous metal oxides via mechanochemical solid-state method, especially for metal oxdies hybrids, is highly welcome. Moreover, alumina has been widely used as an important carrier in catalysis, and alumina-based mixed mesoporous metal oxides also display extensive application prospect.^[39-43] Therefore, the one-pot preparation of mesoporous alumina-supported metal oxides via mechanochemical solid-state method seems like a more efficient and straightforward pathway toward industrial catalysis.

Herein, we demonstrate the facile, rapid and solid-state synthesis of mesoporous aluminum oxide (meso-Al₂O₃) by a mechanochemical assembly between aluminum isopropoxide and commercial polymers (e.g., PEO-PPO-PEO, P123; polyethylene glycol, PEO, PEG). Moreover, binary Al-based oxides (Cu, Co, Mn et al.) with abundant mesopores can be easily constructed by mechanochemical nonhydrolytic sol-gel process (NHSG, metal chlorides and aluminum isopropoxide interplay).¹⁴⁴⁻⁴⁶ More interestingly, four or five transition metal species-aluminum oxide hybrids—the so-called high-entropy oxides—with single cubic crystalline phase and rich mesoporous structure were synthesized via this mechanochemical NHSG method. To our surprise, the high-entropy feature endows (CuNiFeCoMg)O_x-Al₂O₃ with superior SO₂-resisting performance (1000 ppm SO₂ in N₂ at 280 °C) in the catalytic oxidation of CO compared to CuO-Al₂O₃.

2. Experimental Section

2.1 Catalyst synthesis

*meso-Al*₂*O*₃: 1 g metal precursor (aluminum isopropoxide) and 0.2 g ~ 0.4 g soft templates (Pluronic P123: 5800g mol⁻¹; PEG: 4000 g mol⁻¹, Pluronic F127 (F127) and cetyltrimethylammonium bromide (CTAB)) were added in a 9.5 mL screw-capped iron reactor with two big (diameter: 1.2 cm) and three small (diameter: 0.5 cm) iron steel ball bearings. The sealed reactor was placed in a high-speed vibrating ball miller (Retsch MM400), and the mixtures were ball milled for 60 min at a vibrational frequency of 30 Hz. The resulting samples were washed using ethanol and dried at 40 °C under vacuum conditions, followed by calcinating at 400 °C with the heating rate of 2 °C min⁻¹.

mesoporous binary metal oxides (Cu, Co, and Mn et al.): Aluminum isopropoxide (2.67 mmol) and a transition metal chloride (4 mmol) as well as 0.4 g PEG were added in in a 9.5 mL screw-capped iron reactor with two big (diameter: 1.2 cm) and three small (diameter: 0.5 cm) iron steel ball bearings. After ball milling for 60 min, the post-treatment procedure is same with the synthesis of meso-Al₂O₃. All catalysts were washed using water for three times before use.

 $(CuNiFeCo)_x$ - Al_2O_3 : Aluminum isopropoxide (2.67 mmol), cooper chloride (1 mmol), nickel chloride (1 mmol), cobalt chloride (1 mmol) and ferrous chloride (1 mmol), as well as

0.4 g PEG are added in in a 9.5 mL screw-capped iron reactor with two big (diameter: 1.2 cm) and three small (diameter: 0.5 cm) iron steel ball bearings. After ball milling for 60 min, the post-treatment procedure is same with the synthesis of meso-Al₂O₃.

 $(CuNiFeCoMg)_x$ - Al_2O_3 : Aluminum isopropoxide (3.33 mmol), cooper chloride (1 mmol), nickel chloride (1 mmol), cobalt chloride (1 mmol), ferrous chloride (1 mmol) and Magnesium chloride (1 mmol), as well as 0.4 g PEG are added in in a 9.5 mL screw-capped iron reactor with two big (diameter: 1.2 cm) and three small (diameter: 0.5 cm) iron steel ball bearings. After ball milling for 60 min, the post-treatment procedure is same with the synthesis of meso-Al₂O₃.

2.2 Characterizations

X-rays diffraction (XRD) was collected on a PANalytical Empyrean diffractometer operated at 45 kV and 40 mA (scanning step: 0.02° per step). N₂ adsorption-desorption isotherms were analyzed on a TriStar 3000 volumetric adsorption analyzer manufactured and by Micromeritics Instrument Corp. A classical Barrett–Joyner–Halenda (BJH) method was employed to determine the pore size distribution by using adsorption branch of isotherms. Prior to analysis, all samples were activated at 160 °C for 8 h. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) mapping results was recorded using a Zeiss EVO-MA15 scanning electron microscope with a Bruker XFlash 6130 detector.

Chemistry of Materials

Scanning electron microscopy (SEM) images was recorded using a Zeiss AURIGA. Scanning transmission electron microscopy (STEM) was performed on a Nion microscope operated at 200 kV and ARM 200CF equipped with a probe corrector. The images are recorded using high angle annular dark field (HAADF) and bright field (BF) imaging. X-ray photoelectron spectroscopy (XPS) was performed by AXIS Ultra DLD spectrometer (Kratos, Japan). The obtained data was calibrated by C 1s standard peak and analyzed by Casa XPS software. Temperature programmed desorption (TPD) of CO was recorded using FineSorb-3010 from Zhejiang FINETEC INSTRUMENTS co., LTD with a thermal conductivity detector (TCD). Prior to characterization, fresh and spent catalysts were preheated at 120 °C under argon atmosphere. Elemental analysis of the samples was done by inductively coupledplasma atomic emission spectroscopy (ICP-AES) using the Optima 2100 DV spectrometer (PerkinElmer Corporation). The actual metal ratios are summarized in Table S1. Fourier Transform infrared spectroscopy (FTIR) spectra was collected on a Bio-Rad FTIR spectrometer (Excalibur series).

2.3 Experimental procedures

CO oxidation experiments were carried out in a fixed bed reactor (straight quartz tube with 4 mm inner diameter) at atmospheric pressure. For the measurement of CO light-off curves showing CO conversion as a function of reaction temperature, 20 mg of catalyst

supported by quartz wool was loaded in the reactor. The feed gas of 1% CO balanced with dry air (< 4 ppm water) passed though the catalyst bed at a flow rate of 10 mL/min corresponding to a gas hourly space velocity (GHSV) of 30,000 mL/(h g cat). The concentrations of CO and CO₂ in the reactor were analyzed by a Buck Scientific 910 gas chromatograph equipped with a dual molecular sieve/porous polymer column (Alltech CTR1) and a thermal conductivity detector. CO conversion is calculated as the peak areas of CO of consumption divided by that of CO before the reaction.

3. Results and discussion

Scheme 1 summarizes a mechanochemical route for the synthesis of meso-Al₂O₃ and related metal oxide hybrids using aluminum isopropoxide and anhydrous metal chlorides as the precursors, and P123 or PEG as the soft template. An efficient assembly between aluminum isopropoxide and P123 micelles is realized by mechanically grinding the mixture in a vibrating ball miller for 60 min (much shorter than the traditional solvent evaporation induced assembly process, $1 \sim 3$ days in most cases).^[23,47] It has been reported that the condensation between chloride and alkoxide by mixing the chloride precursors (MCl_x) and oxygen donor (Al(OR)₃) to produce the xerogels is considered as NHSG process^[48]. The resulting xerogels is then washed and dried under vacuum and finally calcined in air to achieve the corresponding metal oxides. In this work, the mechanochemical NHSG process between metal chlorides and aluminum isopropoxide in the solid-state via complex

 mechanism is restricted to the periphery of micelles. The obtained xerogels is performed by XRD (Figure S1) and then calcinated at 400 °C in air to remove template. By combining with aluminum isopropoxide-copolymers crosslinking and NHSG process in one-step, the mixed oxides with uniform mesopores can be prepared.

Scheme 1. The schematic diagram for the synthesis of meso-Al₂O₃, mesoporous mixed metal oxides using mechanochemical NHSG method.

The textural properties of the as-synthesized Al₂O₃ without and with different surfactants are summaried (**Table 1**) by N₂ adsorption-desorption isotherms at 77 K in Figure S2. The blank Al₂O₃ sample without templates offers a low surface area (246 m² g⁻¹) with a broad pore size distribution in Figure S2a,c. In comparison, a meso-Al₂O₃ sample with 0.2g P123 as the template gives a type-IV isotherm with a H3-type hysteresis loop, resulting in both high surface area (415 m² g⁻¹) and narrow pore size distribution centered at ~3 nm (Figure S2). For meso-Al₂O₃, a higher calcination temprature at 800 °C will lead to the collapse of a portion of mesopores, as seen in Figure S3. Additionally, PEG, F127 and CTAB

2	
3	
4	
5	
6	
7	
0	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
27	
52	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

as templates also contribute to the formation of meopores smaller than 10 nm (Table 1). The weight ratio of P123/Al precursor exhibites significant influence for the formation of mesopores. The N₂ adsoprtion-desorption isotherms and pore size distrubution results of meos-Al₂O₃ synthesized with 0.4 g P123 displays a higher surface area of 644 m² g⁻¹ and narrower pore size distribution of ~5 nm (Figure 1a,b). It is nothworthy that the difference between average pore size from Table 1 and pore size distribution from Figure 1 should be ascribed to the limitation and accuracy of BJH model used. The transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) image of meso-Al₂O₃ with 0.4g P123 as the template also reveal the existence of a sponge-like nanoarchitecture with a large number of apparent mesopores (Figure 2a,b). A portion of mesopores is marked by yellow circles from STEM-EDS image in Figure S4. The wide-angle X-ray diffraction (XRD) result of meso-Al₂O₃ calcined at 400 °C with different templates shows an amorphous structure (Figure 3a, S5).

Table 1. Summary of pore parameter for different metal oxides calculated using N_2 adsorption-desorption isotherms at 77 K.

Samples	$S_{BET} (m^2 g^{-1})$	Pore volume (cm ³ g ⁻¹)	Average pore size (nm)
Al ₂ O ₃	246	0.32	~
meso-Al ₂ O ₃ (0.4 g P123)	644	0.75	4.2
meso-Al ₂ O ₃ (0.2 g PEG)	257	0.16	2.3

2				
3				
4				
5	meso-Al ₂ O ₃ (0.2 g CTAB)	380	0.26	~
6				
7	meso-Al ₂ O ₂ (0.2 g E127)	329	0.24	~
8	$meso m_2 o_3 (0.2 \text{ gm} 127)$	52)	0.21	
9	mass $A1 \odot (0.2 \times \text{P122})$	415	0.24	26
10	$meso-Al_2O_3 (0.2 \text{ g P} 125)$	415	0.34	2.0
11				
12	CuO-Al ₂ O ₃	115	0.11	2.8
13				
14	Mn ₃ O ₄ -Al ₂ O ₃	143	0.27	4.9
15				
16	$C_{02}O_{4}$ -Al2O2	133	0.14	7 2
1/	00304711203	155	0.11	1.2
18		170	0.24	5 0
19	Fe_2O_3 -Al ₂ O ₃	1/8	0.24	5.8
20				
21	NiO-Al ₂ O ₃	168	0.15	3.3
22				
23	MgO-Al ₂ O ₃	176	0.18	6.3
25	e e			
26	$(CuNiFeCo)O = Al_{2}O_{2}$	129	0.13	3.0
27	$(Curvit CCO)O_x - AI_2O_3$	129	0.15	5.7
28		100	0.24	4.0
29	$(CuN1FeCoMg)O_x-Al_2O_3$	198	0.24	4.8
30				

^aSpecific surface area calculated using the BET equation.

^bSingle point adsorption total pore volume of pores.

^cAverage pore diameter from the distribution maxima by resolving adsorption branch with BJH model.

Compared with monometallic oxide, binary metal oxides tend to possess wider applications in catalysis. The traditional NHSG method for the production of metal oxides often takes place in organic solvents and the corresponding pore size distribution is much wide.^[46,48] By the mechanochemical NHSG route in the solid-state, mesoporous binary metal oxides (CuO-Al₂O₃, Mn₃O₄-Al₂O₃ and Co₃O₄-Al₂O₃) with uniform pore size distribution could be successfully synthesized with optimized PEG as the optimized template (Figure 1ch; Figure S6). In comparison to P123 and F127, PEG is a more safe, cheap and renewable

material. However, PEG has been used as soft templates with only limited success in directing mesopores until now. XRD results reveal the clear crystalline structures of CuO [JCPDS 44-0706], Mn₃O₄ [JCPDS 18-0803] and Co₃O₄ [JCPDS 43-1003] in CuO-Al₂O₃, Mn₃O₄-Al₂O₃ and Co₃O₄-Al₂O₃ samples respectively (**Figure 3a**), and the corresponding crystalline size calculated by Scherrer equation are 15.9, 13.4 and 11.8 nm respectively. Additionally, no diffraction peaks associated with Al₂O₃ can be found in three binary metal oxides. Moreover, the diffraction peaks corresponding to NiO, MgO and Fe₂O₃ crystalline phase respectively were discovered in the NiO-Al₂O₃, MgO-Al₂O₃ and Fe₂O₃-Al₂O₃ samples respectively, as shown in XRD results (Figure S7).

Chemistry of Materials

Figure 1. N₂ adsorption-desorption isotherms (a,c,e,g) and the corresponding pore size distribution (b,d,f,h) of meso-Al₂O₃, CuO-Al₂O₃, Mn₃O₄-Al₂O₃ and Co₃O₄-Al₂O₃ synthesized using mechanochemical NHSG method.

The surface area and pore structure of CuO-Al₂O₃, Mn₃O₄-Al₂O₃ and Co₃O₄-Al₂O₃ were examined with N_2 adsorption-desorption isotherm measurements (Figure 1c,e,g). All samples show representative type-IV curves with clear capillary condensation steps between the relative pressure (P/P_0) of 0.4–0.8, underscoring the presence of rich mesopores. The specific surface areas of CuO-Al₂O₃, Mn₃O₄-Al₂O₃ and Co₃O₄-Al₂O₃ are 115, 144 and 133 $m^2 g^{-1}$, respectively (**Table 1**). More importantly, the pore size distributions by resolving the adsorption branch of N₂ isotherms with Barrett-Joyner-Halenda (BJH) method centred at 4, 6 and 7 nm for CuO-Al₂O₃, Mn₃O₄-Al₂O₃ and Co₃O₄-Al₂O₃ respectively (Figure 1d, f, h).^[49] Moreover, N₂ adsorption and pore size distribution results of NiO-Al₂O₃, MgO-Al₂O₃ and Fe₂O₃-Al₂O₃ samples also reveal the existence of abundant mesoporous structure (**Table 1**; Figure S8). These obained abundant and uniform mesopores in binary metal oxides should be ascribed to solid-state self-assembly behavior of PEG micelles and different metal ions, confining NHSG process within the periphery of micelles. The results indicate that the mechanochemical NHSG route has the traits of universality for the preparation of a variety of binary metal oxides with uniform mesopore distributions. Additionally, the obtained surface area for both meso-Al₂O₃ and binary metal oxides are comparable to the previously reported mesoporous alumina and metal containing mesoporous alumina synthesized by conventional wet chemistry^[24,50].

Mn₃O₄-Al₂O₃ is then chosen as a representative to investigate the pore structure of binary metal oxides in a more tangible manner. Wormhole architectures with rich mesopores side by side are observed throughout the material backbone in the range of several hundred nanometers (**Figure 2c,d**). Furthermore, energy-dispersive X-ray spectroscopy (EDS) mapping results of representative binary Mn₃O₄-Al₂O₃ sample (**Figure 2e-g**; Figure S9) show the well distribution of Mn, Al and O, suggesting that the mesoporous structure is fabricated by the uniform mixture of Mn₃O₄ and Al₂O₃. Additionally, TEM and EDS-mapping results for CuO-Al₂O₃ and Co₃O₄-Al₂O₃ samples in Figure S10,11 also display existence of mesopores and unifrom mixture of CuO (Co₃O₄) and Al₂O₃.

60

b)

d)

200 nm

200 nm

100 nm

same method does not show the characteristic diffraction peaks of CuO, Fe₂O₃ or Co₃O₄

100 nm

(Figure S12). The XRD pattern of (CuNiFeCo)Ox-Al₂O₃ reveals its crystalline structure, which is close to 37.2 (111), 43.3 (012), 62.8 (110) and 75.4 (113) reflections of cubic NiO (JCPDS 65-2901). Above results suggest that Cu, Fe and Co may be incorporated into the sublattice of NiO to form a solid solution. STEM-HAADF images of (CuNiFeCo)Ox-Al₂O₃ sample reveal the aggregations of hybrid crystallites with a high degree of interstitial porosity (Figure 4a,b). EDS-mapping results show the highly uniform distribution of four metal species (Cu, Ni, Fe and Co), further suggesting the existence of (CuNiFeCo)O_x solid solution (Figure S13). The pore nature of (CuNiFeCo) O_x -Al₂O₃ sample was then evaluated via N₂ adsorption-desorption measurement at 77 K. A type-IV isotherm with an H₃ type hysteresis loop between the relative P/P_0 of 0.4 to 0.7 can be observed, leading to a surface area of 129 $m^2 g^{-1}$ (Table 1) with narrow pore size distribution (~4 nm) (Figure 5a,b). The molar ratio of Al:(CuNiFeCo) obtained from ICP-AES result is 1.9, similar with 1.5 determined from EDS result in Figure S13.

Figure 3. XRD results of a) meso-Al₂O₃, binary metal oxides and (CuNiFeCoMg)O_x-Al₂O₃; b) CO oxidation activity over different catalysts; Normalized XPS spectrums of c) Al 2p and d) Co 2p transitions for meso-Al₂O₃ (peak intensity for Al 2p is reduced) and (CuNiFeCoMg)O_x-Al₂O₃ samples.

Crystalline high-entropy metal oxides (normally containing five or more metal species), as a new class of material, have attracted great interest because of their unique structure and potential applications.^[51,52] To date, the state-of-art high-entropy metal oxides only possess very limited surface area (e.g., $<30 \text{ m}^2 \text{ g}^{-1}$)^[53,54], because their porous structures

would collapse during the removal of templates and the crystallization process, which limites their performance in catalysis. To synthesize mesoporous high entropy metal-Al mixed oxides. Mg was chosen as the fifth metal element for the preparation of $(CuNiFeCoMg)O_{x}$ -Al₂O₃. The basis for the choice of these metals is their similar atomic radius. The corresponding XRD patterns are displayed (Figure 3a). It is reassuring that when Mg is used as the fifth metal, the diffraction peaks become similar with the shift of diffraction peaks of cubic crystalline NiO. The diffraction peaks belonging to CuO, Fe₂O₃, Co₃O₄ and Mn₃O₄ in binary metal-Al oxides disappeared accidentally, suggesting the formation of single highentropy phase). The crystalline size of high-entropy phase is approximately 11.6 nm determined by Scherrer equation. Moreover, SEM-EDS results reveal that five elements (Cu, Ni, Fe, Co and Mg) signal are simultaneous discovered in selected regions (Figure 4e-I). The obtained results suggested that the high-entropy metal oxides (CuNiFeCoMg)O_x should be formed and mixed uniformly with Al₂O₃ to form a mesoporous complex. We deduced that the mechanochemical process together with calcination step in are the major reason for the formation of solid solution.

The metal valence is illustrated by X-ray photoelectron spectroscopy (XPS) analysis, and the results are shown in **Figure 3c,d** and Fiugure S14. The Al 2p XPS spectra in **Figure 3c** show the primary peak located at 74.6 eV for both meso-Al₂O₃ and (CuNiFeCoMg)O_x-Al₂O₃ samples, suggesting the existence of Al-O bonds in Al³⁺ (often known as Al₂O₃

Chemistry of Materials

species). The Cu 2p spectrum in Figure S14a can be fitted into four peaks, corresponding to Cu $2p_{3/2}$ (933.0 eV) and Cu $2p_{1/2}$ (953.0 eV) and their satellite peaks. These characteristics match well with standard peaks of CuO. The similar results in Ni 2p spectrum can identify the possible existence of NiO (Figure S14b)^[55]. The main peak from Mg 2p spectrum in Figure S14c is located around 50 eV, but valence state of Mg is difficult to be determined due to the close peak position of different state (Mg⁰ and Mg²⁺). However, Mg should exist in MgO form considering that the synthesis process is difficult to generate Mg⁰. For Co 2p spectrum in **Figure 3d**, the peaks at 781 eV together with strong satellite at 786.5 eV indicate the existence of Co²⁺, since the signature of Co³⁺ have no satellite peak^[56]. The Fe 2p spectrum in Figure S14d suggests the co-existence of Fe²⁺ and Fe³⁺.

STEM-HAADF images of (CuNiFeCoMg)O_x-Al₂O₃ sample suggest the existence of rich mesoporosity marked with small yellow circles (**Figure 4c-d**), which is also revealed by SEM images in Figure S15. The pore nature of (CuNiFeCoMg)O_x-Al₂O₃ sample was then evaluated by N₂ adsorption-desorption measurement at 77 K. A type-IV isotherm with steep adsorption peaks between the relative pressure (P/P₀) of 0.2–0.8, revealing the abundant mesoporous structure (**Figure 5c,d**). It offered a surface area up to 198 m² g⁻¹, and the relative lower surface area compared to meso-Al₂O₃ should be attributed to the blockage and collapse of pore channels during the crystallization process of high-entropy metal oxides. The molar ratio of Al:(CuNiFeCoMg) obtained from ICP-AES result is 1.3.

Figure 4. STEM (a) and SEM (b) images of (CuNiFeCo)O_x-Al₂O₃; STEM (c,d) images of (CuNiFeCoMg)O_x-Al₂O₃; SEM-EDS image (e) of (CuNiFeCoMg)O_x-Al₂O₃ and the corresponding element mapping signals f) Al, g) Cu, h) Ni, i) Fe, j) Co, k) Mg, l) O.

ACS Paragon Plus Environment

Figure 5. N₂ adsorption-desorption isotherms and the corresponding pore size distribution of (CuNiFeCo)O_x-Al₂O₃ (a,b) and (CuNiFeCoMg)O_x-Al₂O₃ (c,d) synthesized using mechanochemical NHSG method.

Subsequently, the catalytic activities of different mesoporous metal oxides are evaluated for CO oxidation (**Figure 3b**). The T_{100} values (temperature for 100% CO conversion) are 220 °C (CuO-Al₂O₃), 270 °C (Co₃O₄-Al₂O₃) and 260 °C ((CuNiFeCoMg)O_x-Al₂O₃), respectively. Among these catalysts, Mn₃O₄-Al₂O₃ exhibits much worse activity for the oxidation of CO, which may be attributed to the relatively inactive of Mn₃O₄ phase. And mesoporous CuO-Al₂O₃ catalyst become active at 120 °C and CO was completely converted at 220 °C, which are superior to most catalysts especially for Cu-Al mixed oxides prepared

Chemistry of Materials

using traditional impregnation and precipitation method as shown in Table S2.^[57-59] Moreover, both CuO-Al₂O₃ and (CuNiFeCoMg)O_x-Al₂O₃ catalysts exhibted remarble stability even after used for 48 h (Figure S16a,b). Considering the facile, fast and solventfree preparation method, these mesoporous mixed oxides may have great potential applications in industrial catalysis. As shown in Figure S17, XRD results of fresh and spent CuO-Al₂O₃ and (CuNiFeCoMg)O_x-Al₂O₃ catalysts display similar diffraction peaks and crystallite size. Additionally, temperature programmed desorption (TPD) of CO in Figure S18 reveals similar CO desorption peak area, indicating the dispersion of metal active species does not decrease remarkably after use.

The sulfur tolerance is of great importance in real-world catalysis. However, CO oxidation activity of most catalysts went down remarkably in the presence of SO₂, greatly affecting the process of industrialization. Therefore, we compared the performance of SO₂ resistance over CuO-Al₂O₃ and (CuNiFeCoMg)O_x-Al₂O₃ catalysts. Before the catalytic activity test, each catalyst was treated in 1000 ppm SO₂ at 280 °C for 5 h. The catalytic activity of CuO-Al₂O₃ decreased remarkably after SO₂ treatment (Figure S19a). It is noteworthy that there is a negligible effect of SO₂ on (CuNiFeCoMg)O_x-Al₂O₃ catalyst (Figure S19b). The decreased activity of CuO-Al₂O₃ is attributed to the formation of sulfites, evidenced by the feature in FTIR spectra around 1100 cm⁻¹ (Figure S10).^[60-61] However, it is clear that the formation of crystalline high-entropy metal oxides protect iteslf from SO₂

Chemistry of Materials

poisoning, contributing to the superior SO₂ tolerance compared with CuO-Al₂O₃. This result indicates that the (CuNiFeCoMg)O_x-Al₂O₃ catalyst may be stablized by the relative higher configurational entropy, preventing itself from being sulfurated.^[51]

4. Conclusions

In summary, an efficient, fast and facile route for the synthesis of mesoporous Al_2O_3 and its metal oxide hybrids has been developed based on mechanochemical non-hydrolytic method. The obtained meso- Al_2O_3 shows a record high surface area (~644 m² g⁻¹) and unifrom pore size (~5 nm). Moreover, mesoporous metal-aluminum oxide and four or five metal solid solution-aluminum oxide hybrids with rich mesoporous structure and single cubic crstalline phase was discovered. More importantly, this mechanochemical method does not need solvents and can shorten the pore filling process from 1 ~ 3 days to 60 min. The obtained mesoporous mixed metal oxide (such as (CuNiFeCoMg)O_x-Al₂O₃) exhibit not only an exceptional catalytic performance in CO oxidation, but also the superior SO₂ tolerance. This mechanochemical NHSG method may open the door to the scalable preparation of a new class of metal oxide catalysts.

Supporting Information

Additional results of characterization results (XRD, SEM, TEM, N₂ adsorption-desorption, CO-TPD, ICP-AES and FTIR)

Acknowledgments

S. Dai was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. J. Fu was supported by the National Natural Science Foundation of China (No. 21436007, 21706228), the Zhejiang Provincial Natural Science Foundation of China (No. LR17B060002). Z. Zhang thanks the China Scholarship Council for financial support as a joint PhD student. P. F. Z. acknowledges Shanghai Pujiang Program (Grant No.17PJ1403500), Thousand Talent Program, National Natural Science Foundation of China (Grant No. 21776174), and the Open Foundation of the State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University of China) (No. 1809) for the support.

References

[1] D. Gu, W. Schmidt, C. M. Pichler, H. J. Bongard, B. Spliethoff, S. Asahina, Z. Cao, O. Terasaki, F. Schüth, Surface-casting synthesis of mesoporous zirconia with a CMK-5-like structure and high surface area. *Angew. Chem. Int. Ed.* **2017**, 56, 11222.

[2] D. Gu, C.J. Jia, C. Weidenthaler, H.J. Bongard, B. Spliethoff, W. Schmidt, F. Schüth, Highly ordered mesoporous cobalt-containing oxides: structure, catalytic properties, and active sites in oxidation of carbon monoxide. *J. Am. Chem. Soc.* **2015**, 137, 11407.

[3] Y. Zhou, M. Antonietti, Synthesis of very small TiO₂ nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. *J. Am. Chem. Soc.* **2003**, 125, 14960.

[4] Z. Zhang, F. Zuo, P. Feng, Hard template synthesis of crystalline mesoporous anatase TiO₂ for photocatalytic hydrogen evolution. *J. Mater. Chem.* 2010, 20, 2206.
[5] C. Y. Ma, Z. Mu, J. J. Li, Y. G. Jin, J. Cheng, G. Q. Lu, Z. P. Hao, S. Z. Qiao, Mesoporous Co₃O₄ and Au/Co₃O₄ catalysts for low-temperature oxidation of trace ethylene. *J. Am. Chem.*

Soc. 2010, 132, 2608.

[6] J. Liu, S. Z. Qiao, Q. H. Hu, G. Q. Lu, Magnetic nanocomposites with mesoporous structures: synthesis and applications. *Small* **2011**, *7*, 425.

[7] Y. N. Ko, S. B. Park, K. Y. Jung, Y. C. Kang, One-pot facile synthesis of ant-cavestructured metal oxide-carbon microballs by continuous process for use as anode materials in Li-ion batteries. *Nano letters* **2013**, 13, 5462.

[8] Z. Jin, M. Xiao, Z. Bao, P. Wang, J. Wang, A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles. *Angew. Chem. Int. Ed.* 2012, 51, 6406.
[9] W. Xiao, S. Yang, P. Zhang, P. Li, P. Wu, M. Li, N. Chen, K. Jie, C. Huang, N. Zhang, S. Dai, Facile synthesis of highly porous metal oxides by mechanochemical nanocasting. *Chem. Mater.* 2018, 30, 2924.

[10] W.C. Li, A.H. Lu, C. Weidenthaler, F. Schüth, Hard-templating pathway to create mesoporous magnesium oxide. *Chem. Mater.* **2004**, 16, 5676.

[11] D. Gu, W. Li, F. Wang, H. Bongard, B. Spliethoff, W. Schmidt, C. Weidenthaler, Y. Xia,D. Zhao, F. Schüth, Controllable synthesis of mesoporous peapod-like Co₃O₄@carbon

nanotube arrays for high-performance lithium-ion batteries. *Angew. Chem. Int. Ed.* **2015**, 54, 7060.

[12] H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO₂ hollow spheres for high-performance lithium ion battery anodes. *J. Am. Chem. Soc.* 2015, 137, 13161.

[13] M. Zhen, B. Zhou, Y. Ren, Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis. *Front. Env. Sci. Eng.* 2013, 7, 341.

[14] V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C. W. Wu, J. H. Kim, Y.Yamauchi, Nanoarchitectures for mesoporous metals. *Adv. Mater.* 2016, 28, 993.

[15] W. Li, D. Zhao, An overview of the synthesis of ordered mesoporous materials. *Chem. Commun.* 2013, 49, 943.

[16] H. Yang, D. Zhao, Synthesis of replica mesostructures by the nanocasting strategy. J.*Mater. Chem.* 2005, 15, 1217.

[17] J. Lee, M. C. Orilall, S. C. Warren, M. Kamperman, F. J. DiSalvo, U. Wiesner, Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. *Nat. Mater.* **2008**, *7*, 222.

[18] Y. Ren, Z. Ma, P. G. Bruce, Ordered mesoporous metal oxides: synthesis and applications. *Chem. Soc. Rev.* 2012, 41, 4909.

Chemistry of Materials

[19] W. Yue, W. Zhou, Porous crystals of cubic metal oxides templated by cage-containing mesoporous silica. *J. Mater. Chem.* **2007**, 17, 4947. 19.

[20] X. Sun, Y. Shi, P. Zhang, C. Zheng, X. Zheng, F. Zhang, Y. Zhang, N. Guan, D. Zhao,

G. D. Stucky, Container effect in nanocasting synthesis of mesoporous metal oxides. *J. Am. Chem. Soc.* 2011, 133, 14542.

[21] J.-H. Smått, C. Weidenthaler, J. B. Rosenholm, M. Lindén, Hierarchically porous metal oxide monoliths prepared by the nanocasting route. *Chem. Mater.* **2006**, 18, 1443.

[22] P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. *Nature* 1998, 396, 152.

[23] Z. Zhang, Y. Zhu, H. Asakura, B. Zhang, J. Zhang, M. Zhou, Y. Han, T. Tanaka, A. Wang,

T. Zhang, Thermally stable single atom Pt/m-Al₂O₃ for selective hydrogenation and CO oxidation. *Nat. Commun.* **2017**, 8, 16100.

[24] Q. Yuan, A.-X. Yin, C. Luo, L.-D. Sun, Y.W. Zhang, W.T. Duan, H.C. Liu, C.H. Yan,
Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. *J. Am. Chem. Soc.* 2008, 130, 3465.

[25] G. Feng, J. Wang, M. Boronat, Y. Li, J.H. Su, J. Huang, Y. Ma, J. Yu, Radical-facilitated green synthesis of highly ordered mesoporous silica materials. *J. Am. Chem. Soc.* 2018, 140, 4770.

[26] D. M. Antonelli, J. Y. Ying, Synthesis of hexagonally packed mesoporous TiO₂ by a modified sol-gel method. *Angew. Chem. Int. Ed.* **1995**, 34, 2014.

[27] W. Zhou, W. Li, J.-Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao,
Ordered mesoporous black TiO₂ as highly efficient hydrogen evolution photocatalyst. *J. Am. Chem. Soc.* 2014, 136, 9280.

[28] Y. Zhu, Y. Zhao, J. Ma, X. Cheng, J. Xie, P. Xu, H. Liu, H. Liu, H. Zhang, M. Wu, Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. *J. Am. Chem. Soc.* **2017**, 139, 10365.

[29] Y. Li, W. Luo, N. Qin, J. Dong, J. Wei, W. Li, S. Feng, J. Chen, J. Xu, A. A. Elzatahry, Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H₂S sensing. *Angew. Chem. Int. Ed.* **2014**, 53, 9035.

[30] Y. Wang, C. M. Yang, W. Schmidt, B. Spliethoff, E. Bill, F. Schüth, Weakly ferromagnetic ordered mesoporous Co₃O₄ synthesized by nanocasting from vinyl-functionalized cubic *Ia3d* mesoporous silica. *Adv. Mater.* **2005**, 17, 53.

[31] M. Klimakow, P. Klobes, A. F. Thünemann, K. Rademann, F. Emmerling, Mechanochemical synthesis of metal-organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. *Chem. Mater.* **2010**, 22, 5216.

Chemistry of Materials

[32] A. Savateev, D. Dontsova, B. Kurpil, M. Antonietti, Highly crystalline poly(heptazine imides) by mechanochemical synthesis for photooxidation of various organic substrates using an intriguing electron acceptor-Elemental sulfur. J. Catal. 2017, 350, 203. [33] W. Cai, S. Zhang, X. Hu, M. Jaroniec, In situ synthesis of nitrogen-enriched activated carbons from procambarus clarkii shells with enhanced CO₂ adsorption performance. Energy Fuels 2018, 32, 9701. [34] D. Chen, J. Zhao, P. Zhang, S. Dai, Mechanochemical synthesis of metal-organic frameworks. Polyhedron 2019, 59, 64. [35] J. Zhao, Y. Shu, P. Zhang, Solid-state CTAB-assisted synthesis of mesoporous Fe₃O₄ and Au@Fe₃O₄ by mechanochemistry. Chinese J. Catal. 2019, 40, 1078. [36] Y. Jin, Q. Sun, G. Qi, C. Yang, J. Xu, F. Chen, X. Meng, F. Deng, F. S. Xiao, Solventfree synthesis of silicoaluminophosphate zeolites. Angew. Chem., Int. Ed. 2013, 52, 9172. [37] P. Zhang, L. Wang, S. Yang, J. A. Schott, X. Liu, S. M. Mahurin, C. Huang, Y. Zhang, P. F. Fulvio, M. F. Chisholm, S. Dai, Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking. *Nat. Commun.* 2017, 8, 15020.

[38] F. Liu, K. Huang, Q. Wu, S. Dai, Solvent-free self-assembly to the synthesis of nitrogendoped ordered mesoporous polymers for highly selective capture and conversion of CO₂. *Adv. Mater.* **2017**, 29, 1700445. [39] S. M. Morris, P. F. Fulvio, M. Jaroniec, Ordered mesoporous alumina-supported metal oxides. *J. Am. Chem. Soc.* **2008**, 130, 15210.

[40] A. A. Gonçalves, M. J. Costa, L. Zhang, F. Ciesielczyk, M. Jaroniec, One-pot synthesis of MeAl₂O₄ (Me=Ni, Co, or Cu) supported on γ -Al₂O₃ with ultralarge mesopores: enhancing interfacial defects in γ -Al₂O₃ to facilitate the formation of spinel structures at lower temperatures, *Chem. Mater.* **2018**, 30, 436-446.

[41] A. A. Gonçalves, M. Jaroniec, Evaporation-induced self-assembly synthesis of nanostructured alumina-based mixed metal oxides with tailored porosity, *J. Colloid Interf. Sci.* **2019**, 537, 725-735.

[42] A. A. Gonçalves, P. B. Faustino, J. M. Assaf, M. Jaroniec, One-pot synthesis of mesoporous Ni–Ti–Al ternary oxides: highly active and selective catalysts for steam reforming of ethanol, *ACS Appl. Mater. Interf.* **2017**, 9, 6079-6092.

[43] W. Cai, J. Yu, C. Anand, A. Vinu, M. Jaroniec, Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties, *Chem. Mater.* **2011**, 23, 1147-1157.

[44] B. Tian, X. Liu, B. Tu, C. Yu, J. Fan, L. Wang, S. Xie, G. D. Stucky, D. Zhao, Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. *Nat. Mater.* **2003**, 2, 159.

Chemistry of Materials

[45] D. P. Debecker, K. Bouchmella, C. Poleunis, P. Eloy, P. Bertrand, E. M. Gaigneaux, P.
H. Mutin, Design of SiO₂-Al₂O₃-MoO₃ metathesis catalysts by nonhydrolytic sol-gel. *Chem. Mater.* 2009, 21, 2817.

[46] Y. Liu, M. Wang, Z. Li, H. Liu, P. He, J. Li, Preparation of porous aminopropylsilsesquioxane by a nonhydrolytic sol-gel method in ionic liquid solvent. *Langmuir* **2005**, 21, 1618.

[47] H. Liu, Y. Li, C. Yin, Y. Wu, Y. Chai, D. Dong, X. Li, C. Liu, One-pot synthesis of ordered mesoporous NiMo-Al₂O₃ catalysts for dibenzothiophene hydrodesulfurization. *Appl. Catal. B: Environ.* 2016, 198, 493.

[48] D. P. Debecker, V. Hulea, P. H. Mutin, Mesoporous mixed oxide catalysts via nonhydrolytic sol-gel: a review. *Appl. Catal. A:* **2013**, 451, 192.

[49] J. L. Gunjakar, T. W. Kim, H. N. Kim, I. Y. Kim, S.J. Hwang, Mesoporous layer-bylayer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. *J. Am. Chem. Soc.* **2011**, 133, 14998.

[50] H. Jiang, H. Bongard, W. Schmidt, F. Schüth, One-pot synthesis of mesoporous Cu–γ-Al2O3 as bifunctional catalyst for direct dimethyl ether synthesis. *Microp. Mesopo. Mater.* **2012**, 164, 3.

[51] C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Entropy-stabilized oxides. *Nat. Commun.* 2015, 6, 8485.

[52] A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kubel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, B. Breitung, High entropy oxides for reversible energy storage. *Nat. Commun.* **2018**, 9, 3400.

[53] H. Chen, J. Fu, P. Zhang, H. Peng, C. W. Abney, K. Jie, X. Liu, M. Chi, S. Dai, Entropystabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. *J. Mater. Chem. A* **2018**, 6, 11129.

[54] A. Sarkar, R. Djenadic, N. J. Usharani, K. P. Sanghvi, V. S. Chakravadhanula, A. S. Gandhi, H. Hahn, S. S. Bhattacharya, Nanocrystalline multicomponent entropy stabilised transition metal oxides. *J. Eur. Ceram. Soc.* **2017**, 37, 747.

[55] Z. Zhang, Q. Yang, H. Chen, K. Chen, X. Lu, P. Ouyang, J. Fu, JG. Chen, In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier. *Green Chem.* **2018**, 20(1):197

[56] L. Óvári, S.K. Calderon, Y. Lykhach, J. Libuda, A. Erdőhelyi, C. Papp, J. Kiss, H.P. Steinrück, Near ambient pressure XPS investigation of the interaction of ethanol with Co/CeO₂ (111). *J: Catal.* **2013**, 307, 132.

Chemistry of Materials

[57] S. Nikolaev, E. Golubina, I. Krotova, M. Shilina, A. Chistyakov, V. Kriventsov, The effect of metal deposition order on the synergistic activity of Au-Cu and Au-Ce metal oxide catalysts for CO oxidation. *Appl. Catal. B: Environ.* 2015, 168, 303.
[58] M.F. Luo, P. Fang, M. He, Y.L. Xie, In situ XRD, Raman, and TPR studies of CuO/Al₂O₃ catalysts for CO oxidation. *J. Mol. Catal. A: Chem.* 2005, 239, 243.
[59] G. Pantaleo, L. Liotta, A. Venezia, G. Deganello, E. Ezzo, M. El Kherbawi, H. Atia,

Support effect on the structure and CO oxidation activity of Cu-Cr mixed oxides over Al₂O₃ and SiO₂. *Mater. Chem. Phys.* **2009**, 114, 604.

[60] A. Goodman, P. Li, C. Usher, V. Grassian, Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles. *J. Phys. Chem: A* **2001**, 105, 6109.

[61] F. F.Chen, K. Huang K, J. P. Fan, D. J. Tao D, Chemical solvent in chemical solvent: a class of hybrid materials for effective capture of CO₂, *AIChE J.* **2018**, 64, 632.

Table of Contents

The facile, solvent-free and scalable preparation of mesoporous metal oxides and metal oxide hybrids is complete by a mechanochemical nonhydrolytic sol-gel approach. The obtained meso-Al₂O₃ shows a record high surface area (~644 m² g⁻¹) and uniform pore size (~5 nm). More importantly, four or five metal species-aluminum oxide hybrids—the so-called high-entropy oxide—with rich mesoporous structure and single cubic crystalline phase are also discovered. The obtained (CuNiFeCoMg)O_x-Al₂O₃ sample exhibits surprising SO₂ resistance than CuO-Al₂O₃ owing to the formation of more stable high-entropy phase.

