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Abstract
Some aryl amide Schiff base Co(II), Ni(II) and Cu(II) distance between Cu(II) and complexes (1–7) have been obtained 
and identified by various analytical and spectroscopic tools. To through a light on the probability of structure changes with 
γ-irradiation, powder samples of complexes 1, 3, 5 and 6 were irradiated with 60Co γ-rays at dose of 100 kGy (hereafter 
referred to as 1F, 3F, 5F and 6F). Spectral, molar conductance, magnetic susceptibility, thermal, X-ray diffraction and anti-
oxidant activity for the irradiated complexes were gained using similar methods used for the non-irradiated complexes. The 
data revealed that the irradiated complexes were not seriously affected by the utilized γ-irradiation dose.
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Introduction

Studies on the effects produced in solids materials by the 
interaction of ionizing radiation have received considerable 
attention [1–5]. Energetic γ-radiation can affect on the color, 
chemical composition, spectral, catalytic properties, mag-
netic, structural, optical, electrical, thermal and biological 
behavior of variety of solids [6–8]. γ-irradiation can enhance 
thermal decomposition process of the solids, owing to lat-
tice defects and chemical damage [8–10]. γ-irradiation also 
affects on crystallinity leading to changes in lattice parame-
ters according to X-ray studies [11–14]. The specific surface 
areas, the particle size and the catalytic activities of certain 
γ-irradiated catalytic systems can be altered upon irradiation 
[15]. FT-IR and electronic spectral studies showed that the 
position and intensity of the characteristic bands changed 
upon irradiation [16, 17] and irradiation can encourage 

disturbance of energy levels as well as distortion of elec-
tronic spectrum [18–21]. These changes provide essential 
information about the physicochemical consequences of 
radiation effects in solids materials [4, 22].

The chemistry of aryl amide Schiff base ligands is a fas-
cinating area of research and has attracted a lot of atten-
tion owing to their versatile bioactivities and their extensive 
applications in many scientific fields [23–29]. So, the liga-
tion of Schiff base with transition metal ions is with great 
significance in the range of bioinorganic chemistry and 
medicine. However, over generation of free radicals may 
encourage some oxidative damages to bio-molecules like 
carbohydrates, proteins, lipids, DNA and so on. Antioxidants 
interact with the free radicals, acting as electron donors 
and prevent the damage by reactive oxygen species (ROS) 
[30]. A lot of Schiff base complexes have been examined as 
potential scavengers of ROS [31–34]. In addition, synthetic 
antioxidants are vastly used due to their effective and are 
cheaper than natural antioxidants [35].

Recently, we have reported the impact of γ-irradiation on 
spectral, X-ray diffraction, SEM, DNA binding, molecular 
modeling and antibacterial activity of some acetohydrazide 
dervative metal(II) complexes [36]. The physicochemical 
effect of γ-irradiation at 30 kGy dose on some transition 
metal complexes with the tetraaza [N4] ligand (L) had been 
reported by us [37]. Previously, we studied the impact of 
high energetic ionizing radiation on hydrazine carbothioam-
ide derivative (H2L) and its Cu(II) complexes [10].
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With this regard and in continuation of our previous 
studies on the impact of ionizing γ-irradiation on powder 
solid samples of metal complexes, the present work aims 
to study the impact of γ-irradiation on some aryl amide 
bridged Schiff base metal complexes. Spectral, molar con-
ductivity, magnetic susceptibility measurements, thermal 
and XRD of both non-irradiated and irradiated samples 
were studied. Moreover, the antioxidant activity of both 
non-irradiated and irradiated samples was evaluated rela-
tive to ascorbic acid.

Experimental

Materials

All the reagents used were procured from Sigma-Aldrich 
Company. Metal salts (E. Merck) were used without addi-
tional purification. All solvents were used as received.

Synthesis of H2L ligand

N,N′-(1,2-phenylene)bis(2-aminobenzamide) (S) has 
been prepared according to previous reported method 
[38]. The current H2L ligand: N,Nʹ(1,2-phenylene)bis(2-
(((Z)-(2-hydroxynaphthalen-1-yl)methylene)amino)ben-
zamide) (Fig. 1) has been prepared by adding ethanolic 
solution (20 mL) of (S) (0.5 g, 0.144 mmol) to a solu-
tion of 2-hydroxy-1-naphthaldehyde in the same solvent 
(0.4976 g, 0.289 mmol) in 1:2 molar ratio, respectively. 
The reaction mixture was allowed to reflux with stirring 
about 12 h at 70–80 °C. The yellow solid product formed 
was isolated and washed many times with cold ethanol and 
dried over P4O10/CaCl2.

Synthesis of the metal complexes

0.5 g of (H2L) in 30 mL ethanol was magnetically stirred 
in a bottom flask to which a dropwise addition of ethanolic 
solution of CoCl2·6H2O, Co(CH3CO2)2·4H2O, NiCl2·6H2O, 
Ni(CH3CO2)2·4H2O, CuCl2·2H2O, CuBr2 and CuN2O6·3H2O 
for complexes (1–7), respectively in 1:1 molar ratio. The 
reaction mixture was heated under reflux near 12 h. The 
reaction progress was confirmed by thin-layer chromatog-
raphy (TLC). The formed solid precipitate was removed 
by filtration, washed with ethanol several times, dried and 
stored in a desiccator at 25 °C under P4O10/CaCl2 for further 
characterization.

Physical measurements

Microanalyses (carbon, hydrogen and nitrogen), metals and 
halide analyses, molar conductivity, magnetic measure-
ments, FT-IR, electronic, proton magnetic resonance, EPR 
spectra and TG were all performed as described in the lit-
erature [36, 37, 39].

Irradiation studies

For irradiation studies, powder samples of complexes 1, 3, 
5 and 6 (hereafter referred to as 1F, 3F, 5F and 6F) were 
irradiated at dose of 100 kGy with the 60Co γ-ray Indian 
at a dose rate of 2.2 kGy h−1 cell type GE-4000 A. The 
samples were irradiated at 25 °C in the absence of air, at 
the Atomic Energy Authority of Egypt, Nasr City. For the 
irradiated samples the FT-IR, electronic, EPR, XRD spectra, 
molar conductance, magnetic measurements and TG were 
performed by the same methods used for the non-irradiated 
complexes [36, 37].

Antioxidant study

The antioxidant property of the ligand, non-irradiated com-
plexes (1, 3, 5 and 6) and their corresponding irradiated sam-
ples (1F, 3F, 5F and 6F) was evaluated by 1,1′-diphenyl-
2-picrylhydrazyl (DPPH) method [40] and compared with 
standard (Ascorbic acid). To a different concentrations (100, 
150 and 200 µg mL−1) in dimethylsulphoxide (DMSO) of 
each sample solutions (2 mL), a solution of 400 μM DPPH 
(2 mL) in methanol was added. The mixture was allowed to 
stand in the dark 25 °C for 30 min. The absorbance values of 
the mixture were then recorded at 517 nm. The percentage 
of inhibition of the DPPH radical (%) was calculated using 
equation reported elsewhere [40].

Fig. 1   Proposed structure of the ligand H2L
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Results and discussion

Microanalyses and molar conductance

The ligand H2L i.e.: N,Nʹ (1,2-phenylene)bis(2-(((Z)-(2-hy-
droxynaphthalen-1-yl)methylene)amino)benzamide) was 
allowed to react with some transition metal(II) salts, in 
1:1 molar ratio to yield the current complexes (1–7). All 
isolated complexes are colored and air stable. They are 
partially soluble in most popular organic solvents by heat-
ing but readily soluble in DMSO and dimethylformamide 
(DMF). The elemental and physical data of the ligand and 
its complexes were tabulated in Table 1. Microanalyses 
data showed that all complexes are formed in 1M:1L molar 
ratio and agree well with the suggested formula.

Conductivity measurements of 10−3 M solutions of the 
complexes in DMF at 25 °C were recorded and the data 
are given in Table 1. All complexes have molar conduct-
ance values in the range of 1–34 Ω−1 cm2 mol−1 and are 
non-electrolytic in nature [41].

Color and molar conductivity of irradiated 
complexes

Upon irradiation, color change was observed only for 
cobalt(II) complex (1). Its color changed from red to 
brown after γ-irradiation (1F). This change in color may 
be owing to surface changes generated by γ-irradiation 
[4]. The metal complexes exposed to γ-irradiation showed 
slight change in values of Λm and there is no alteration in 
their non-electrolytic behavior (Table 1) [41].

Spectroscopic studies

Proton nuclear magnetic resonance spectrum of the ligand

The spectrum (1H-NMR) of the ligand was measured in 
DMSO-d6 solution. 1H-NMR spectrum showed singlet 
at δ = 15.41 ppm corresponding to –OH protons which 
corresponds to two protons. Singlet at δ = 10.42 ppm is 
corresponded to the amide (–CO–NH–) protons, with 
integration intensity equivalent to two hydrogens and 
the appearance of a singlet at δ = 8.97 ppm is owing to 
imine proton (–CH=N–) which integrated to two protons 
[23–25]. Additionally, the 1H-NMR spectrum exhibits a 
multiplets at δ = 6.7–8.21 ppm corresponding to aromatic 
protons. Thus, the 1H-NMR data confirm the proposed 
structure (Fig. 1).
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FT‑IR

The characteristic FT-IR spectral data of the obtained 
compounds are summarized and given in Table  2. In 
the infrared spectrum of H2L the occurrence of peaks at 
3412 and 3241 cm−1 is attributable to ν(OH) and ν(NH) 
vibration modes, respectively. The strong band appeared 
at 1623 cm−1 in the spectrum of the ligand is owing to 
imine group vibration. The lowering of imine frequency 
value in all complexes 1603–1613  cm−1 indicates the 
involvement of imine nitrogen in the coordination [24]. 
The naphthalic ν(C–O) vibration band in the free ligand 
appeared at 1284 cm−1. The shift of this band to lower fre-
quency 1209–1274 cm−1 in metal complexes (1, 2, 4 and 
7) emphasis the coordination through deprotonated oxy-
gen atom [12]. New observed band at about 586–550 cm−1 
is consistent with ν(M–O) vibrations. Another new band 
at about 495–433 cm−1 was attributed to ν(M–N) vibra-
tions [30]. The presence of water of crystallization and/or 
coordination in the compounds structure, as indicated by 
microanalysis data, render it difficult to get information 
from ν(OH) of the H2L ligand which will be interfered 
by those of water molecules. Therefore, the above argu-
ments confirmed that the ligand coordinates as a dibasic 
tertradentate one in complexes (1, 2, 4, 7) ligates through 
the imine nitrogen atoms and the oxygen atoms of the 
deprotonated hydroxyl groups or as a neutral bidentate 
one in complexes (3, 5, 6) with imine nitrogen atoms.

FT‑IR of irradiated complexes

By comparing the FT-IR spectra of non-irradiated and 
irradiated complexes (Fig. 2a, b; Table 2), it is noted that, 
medium intensity band centered around 1670 cm−1 was 
appeared in the FT-IR spectra of all irradiated complexes 

except for complex (1F). This peak may be due to the exist-
ence of ketoamine-enolimine toutomerism in these com-
plexes due to transformation of the ligand molecule induced 
by γ-irradiation [23, 42]. The absence of this peak in the 
infrared spectrum of complex (1F) obviously confirms the 
deprotonation of naphtholic hydroxyl groups. In addition, 
pronounced changes in the intensities as well as position of 
some characteristic peaks are observed. The broad bands 
of ν(OH/NH) in the irradiated complexes (1F, 3F, 5F) are 
observed at higher energy (Table 2). The imine stretching 
vibration was shifted to higher energy to the extent of 8 cm−1 
in some irradiated complexes. For bands corresponding to 
the ν(M–O), these bands were shifted to lower energy upon 
γ-irradiation whereas the bands due to the ν(M–N) were 
shifted to higher energy. The shift observed in the FT-IR 
bands may be owing to the deformity of lattice planes 
induced by γ-irradiation [4].

UV–visible spectral studies and magnetic 
susceptibility measurements

The UV/vis spectra of the ligand and its complexes were 
done in DMF solution. The absorption bands showed by 
the compounds alongside with their magnetic susceptibility 
data at 25 °C (μeff B.M.) are collected in Table 2. The elec-
tronic absorption spectrum of the free ligand shows strong 
absorption bands with maxima at 321, 366, 444–461 nm, 
respectively. The first absorption with maxima at 321 nm 
is assigned to the π → π*, transition through the aromatic 
rings, imine and carbonyl groups. The other bands 366, 
444–461 nm are attributed to the n → π* transition between 
the lone pair of electrons of the imine and carbonyl groups 
and the conjugated π bond of the aromatic rings and charge 
transfer (CT) band [26].

Table 2   FT-IR (cm−1), UV/vis (λmax, nm) and magnetic susceptibility data (µeff, B.M.) of the compounds

s strong, m medium, w weak, b broad

No. Compound ν(OH/NH) ν(C=N) ν(C–O) ν(M–O) ν(M–N) λmax (nm) (B.M.)

H2L 3412, 3241(b) 1623(s) 1284(m) – – 461, 444, 366, 321 –
1 [Co(L)]·2H2O 3429(b) 1613(s) 1209 (w) 563(w) 472(w) 460, 435, 320 3.15
1F [Co(L)]·2H2O 3433(b) 1615(s) 1210(s) 542(s) 495(s) 458, 432, 319 3.15
2 [Co(L)(H2O)2]·3H2O 3419(b) 1603(s) 1260(m) 566(m) 495(m) 486, 454, 430, 328 2.59
3 [Ni(H2L)Cl2]·H2O 3425(b) 1613(s) 1270(m) 562(w) 433(w) 466, 441, 321 dia
3F [Ni(H2L)Cl2]·H2O 3433(b) 1615(s) 1284(s) 539(s) 496(s) 462, 440, 360, 320 dia
4 [Ni(L)(H2O)2]·H2O 3425(m) 1605(s) 1210(m) 572(m) 424(m) 458, 445, 323 3.60
5 [Cu(H2L)Cl2(H2O)2] 3416(b) 1608(s) 1286(m) 563(w) 437(w) 465, 442, 365, 319 2.12
5F [Cu(H2L)Cl2(H2O)2] 3431(b) 1616(s) 1284(s) 539(s) 471(s) 462, 440, 365, 320 2.12
6 [Cu(H2L)Br2(H2O)2]·H2O 3431(b) 1611(s) 1284(m) 586(w) 450(w) 475, 446, 325 2.10
6F [Cu(H2L)Br2(H2O)2]·H2O 3431(b) 1614(s) 1285(s) 539(s) 498(s) 471, 445, 365, 335 2.10
7 [Cu(L)(H2O)2]·2H2O 3415(b) 1607(s) 1274(m) 550(w) 467(w) 457, 445, 350, 323 2.10
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The UV/vis spectrum of Co(II) complex (1) displays 
bands with maxima at 460–435 nm which may be due 
to ligand–metal charge transfer (LMCT) transition. The 
value of magnetic moment is 3.15 B.M., so square planar 
geometry was suggested for this complex [43]. Complex 
(2) has electronic transition bands at 486–454 nm which 
may be correlated to 4T1g(F) → 4A2g(P) transition, its mag-
netic moment value is 2.59 B.M., confirming the low spin 
octahedral configuration [26, 44].

The UV/vis spectrum of nickel(II) complex (3) displays 
bands with maxima at 466–441 nm which correspond to 
LMCT transition that hides the d–d transition. The dia-
magnetic behavior of this complex confirms its square pla-
nar geometry [43]. Nickel(II) complex (4) exhibits band at 
458–445 nm which corresponds to LMCT transition. The 
μeff of this complex recorded at room temperature is 3.6 
B.M., confirming the octahedral configuration [26].

The copper(II) complexes (5, 6, 7) showed UV/vis 
broad spectral bands within 475–457 nm range due to 
LMCT transition in a distorted octahedral configuration. 

The μeff of all copper complexes is 2.10 B.M., that is cor-
related to the existence of one unpaired electrons [45].

UV–visible spectral studies of irradiated complexes

Comparing the electronic spectra of irradiated complexes 
with that of non-irradiated complexes we observed that, 
for irradiated [Co(L)].2H2O (1F) the broad peaks cor-
responded to LMCT transitions at 458, 432  nm were 
recorded with a small shift in λmax to higher energy side 
to the extent of 1–3 nm with no change in the measured 
magnetic moment value of the irradiated sample (3.15 
B.M), indicating that there is no change in the geometry 
upon γ-irradiation and the observed color change (brown) 
is due to surface changes and deformation of the complex 
structure as a result of γ-irradiation [43]. When the LMCT 
band of irradiated [Ni(H2L)Cl2]·H2O complex (3F) is com-
pared with that of non-irradiated [Ni(H2L)Cl2]·H2O (3), the 
LMCT band, slightly shifted to higher energy side at 462, 
440 nm was observed in complex (3F). Also the diamagnetic 

Fig. 2   a FT-IR spectra of complexes (1, 1F) and b FT-IR spectra of complexes (5, 5F)
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behavior of the irradiated complex confirms its square planar 
geometry so, there is no change in the configuration after 
γ-irradiation [43]. The electronic spectra of the irradiated 
(5F) and (6F) complexes also exhibited hypsochromic shift 
in electronic absorption peaks. Also there is no change in the 
magnetic moment values (2.10, 2.10 B.M.) for these com-
plexes indicating that there is no configuration change after 
γ-irradiation.

EPR spectra of non‑irradiated and irradiated 
copper(II) complexes

The room temperature (300 K) EPR spectra of the non-irra-
diated Cu(II) complex (6) and its irradiated (6F) were per-
formed on the X-band frequency 9.719 GHz. By comparing, 
the EPR spectra of both non-irradiated and irradiated sample 
were seen to be quite similar except slight decrease in the 
intensity of the perpendicular component of the irradiated 
sample (Fig. 1S). Both spectra displayed the parallel and the 
perpendicular features indicating axially symmetric anisot-
ropy spectra. The g-tensor parameters with g∕∕ = 2.197 and 
g⊥ = 2.026 for complex (6) and g∕∕ = 2.190, g⊥ = 2.036 for 
complex (6F) i.e. g∕∕ > g⊥ > 2.0023, indicated that the Cu(II) 
center has a tetragonal distorted geometry with dx2–y2 ground 
state for both samples [46]. The g∕∕ is less than 2.3 sug-
gesting covalent bond character around the Cu(II) ion. The 
exchange interaction parameter G = g∕∕− 2.0023/g⊥− 2.0023 
for complexes (6, 6F) is higher than 4 (7.579) for complex 
(6) and (6.333) for complex (6F)) suggesting no exchange 
coupling in the solid state. The bonding coefficients �2 
(covalent in-plane σ-bonding), �2 and �2 (covalent in-plane 
and out-of-plane π-bonding) have been computed for both 
non-irradiated and irradiated samples, using Eqs. (2) and 
(3) [47, 48].

where (λ = − 828 cm−1) and E is the electronic transition 
energy. The smaller value of �2 (0.558, 0.5249) compared 
to �2 (1.107, 1.146) showed that the in-plane σ-bonding has 
greater covalent bond character than the in-plane π-bonding. 
The values of �2 are 0.992 for complex (6), 1.021 for com-
plex (6F). For complex (6F) �2 > 1 shows considerable ionic 
character of the out-of-plane π-bonding.

The parallel K∕∕ and perpendicular K⊥ components of 
orbital reduction factors were calculated by the expressions 
notified elsewhere [49]. The complexes (6, 6F) showed K∕∕ , 
K⊥ in the order K∕∕ > K⊥ due to considerable out-of-plane 
π-bonding [49]. The small values of K (0.641, 0.613) suggest 

(2)𝛼2 =
A∕∕

0.036
+ (g∕∕ − 2.0023) +

3

7
(g⊥ − 2.0023) + 0.04

(3)�2 = (g∕∕ − 2.0023)E∕8��2

the covalent character of the complexes [50]. The quotient 
f = g∕∕/A// gives value of 194, 193 cm which correlated to a 
marked distortion around the copper(II) site.

Thermal studies

Thermal properties have been carried out using TGA, at 
heating rate 10 °C min−1 in N2 atmosphere from RT-800 °C 
using platinum crucible. The results of the thermal analysis 
for both non-irradiated and γ-irradiated metal complexes are 
shown in Table 3. The TG thermograms of non-irradiated 
and irradiated complexes have nearly the similar profile, it is 
seen that the desolvated non-irradiated and irradiated com-
plexes decomposed in two or three steps.

The TG curve of Co(II) complex (1) (Fig. 3a) shows 
mass loss of 4.8 (Calc. 4.8%) within the region 25–150 °C, 
which agrees well with elimination of two water molecules. 
The TG thermogram also reveals that complex (1) decom-
posed at 150 °C giving Co metal as a final residue. The 
TG curve of Co(II) complex (2) shows weight loss of 6.72 
(Calc. 6.72%) due to the removal of three water molecules 
in RT-170 °C range. The coordinated water molecules were 
removed with decomposition steps, where a gradual weight 
loss appeared in 170–600 °C range, and CoO as is remain 
as a final residue.

The TG thermograms of Ni(II) complexes (3, 4) (Fig. 3a) 
displays weight loss of 2.3 (Calc. 2.3%) and 2.3 (Calc. 
2.3%), respectively within RT-150 °C range, corresponding 
to removal of one hydrated water molecule for both com-
plexes, after that the TG curves show that complex (3) starts 
degradation at 150 °C, whereas complex (4) decomposed at 
270 °C, followed by the oxidation to nickel oxide for both 
complexes.

The TG thermogram of Cu(II) complex (5) (Fig. 3b) 
shows no weight loss till 170 °C, confirming the absence 
of H2O or solvent molecules outside coordination sphere. 
However, The TG thermograms of Cu(II) complexes (6, 
7) (Fig. 3b) show weight loss of 1.93 (Calc. 1.93%) in the 
25–110 °C range; 4.5 (Calc. 4.5%) in the 25–170 °C range, 
respectively correlated with release of one hydrated water 
molecule (complex 6), two water molecules (complex 7). 
The complexes (5, 7) start the decomposition process at 
170 °C, while complex (6) decomposed at 160 °C. The 
decomposition process ended with the air stable CuO as end 
product for all Cu(II) complexes.

Thermal properties of irradiated complexes

To highlight the impact of γ-rays on the thermal behavior 
of irradiated complexes, their TG thermograms were also 
recorded (Table 3). The TG curve of irradiated Co(II) com-
plex (1F) (Fig. 3a) shows mass loss of 4.8 (Calc. 4.8%) in 
the 25–150 °C range which corresponds to the elimination 
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of two hydrated water molecules. The complex starts decom-
position at 170 °C and the residual part was Co metal. The 
complete sublimation of the organic ligand finished at 
800 °C whereas for non-irradiated complex the sublimation 
process finished at 700 °C.

The TG curve of irradiated Ni(II) complex (3F) (Fig. 3a) 
displays mass loss of 2.3 (Calc. 2.3%) in the 25–90 °C range, 
which agrees well with the elimination of one hydrated water 
molecule. By comparison, complex (3F) lost its water mol-
ecule at lower temperature than complex (3). The complex 
progressively decomposed at 190 °C, leaving Ni as a final 
end residue. The decomposition process of irradiated (3F) 
finished at 550 °C, while for non-irradiated sample it com-
pletely finished at 700 °C.

The TG thermogram of Cu(II) complex (5F) (Fig. 3b) 
also shows no weight loss till 180 °C, confirming the 
absence of H2O or solvent of crystallization. However, 
The TG thermogram of Cu(II) complex (6F) (Fig. 3b) 
shows mass loss of 1.93 (Calc. 1.93%) in the 25–110 °C 
range related to release of one hydrated water molecule. 
The complexes (5F, 6F) start the decomposition process 
at 180, 190 °C, the sublimation of the organic ligand 
ended at 620 and 650 °C, respectively leaving Cu as final 
decomposition product. This indicates that irradiation 
enhances the thermal stability for the irradiated com-
plexes (3F, 5F, 6F), this may be related to the intramo-
lecular and/or intermolecular hydrogen bonds present in 
ketoamine –enolimine forms of these complexes [35].

Table 3   TGA data of the 
compounds

a Final percent

No Compound Temp. range/°C Mass loss% Reaction

Calc. F.

1 [Co(L)]·2H2O 25–150 4.807 4.807 –2H2O
150–700 86.37 86.37 –decomp.
at 700 8.823 8.901a ≡Co

1F [Co(L)]·2H2O 25–150 4.807 4.807 –2H2O
170–800 88.70 88.70 –decomp.
at 800 6.493 6.810a ≡Co

2 [Co(L)(H2O)2]·3H2O 25–170 6.725 6.725 –3H2O
170–270 4.475 4.48 –2H2O
270–600 76.50 76.50 –decomp.
at 600 12.30 12.50a ≡CoO

3 [Ni(H2L)Cl2]·H2O 25–150 2.353 2.353 –H2O
150–700 89.90 89.90 –decomp.
at 700 7.747 7.810a ≡NiO

3F [Ni(H2L)Cl2]·H2O 25–90 2.353 2.353 –H2O
190–550 91.20 91.20 –decomp.
at 550 6.447 6.515 a ≡Ni

4 [Ni(L)(H2O)2]·H2O 25–150 2.347 2.347 –H2O
270–600 87.64 87.64 –decomp.
at 600 10.01 10.01a ≡NiO

5 [Cu(H2L)Cl2(H2O)2] 170–800 91.00 91.50 –decomp.
at 800 9.000 8.500a ≡ CuO

5F [Cu(H2L)Cl2(H2O)2] 180–620 92.29 92.68 –decomp.
at 620 7.701 7.311a ≡ Cu

6 [Cu(H2L)Br2(H2O)2]·H2O 25–110 1.932 1.932 –H2O
160–800 89.30 90.00 –decomp.
at 800 8.768 8.068a ≡CuO

6F [Cu(H2L)Br2(H2O)2]·H2O 25–110 1.932 1.932 –H2O
190–650 91.25 91.17 –decomp.
at 650 6.818 6.901 a ≡Cu

7 [Cu(L)(H2O)2]·2H2O 25–170 4.559 4.559 –2H2O
170–570 85.37 85.37 decomp.
at 570 10.07 10.07a ≡CuO
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X‑ray diffraction studies of non‑irradiated 
and irradiated complexes

The X-ray diffractograms for copper(II) complexes (5, 
5F) and (6, 6F) before and after irradiation are given in 
Fig. 4. It is noted that all samples are found to have very 

few reflections indicating their amorphous nature [37]. 
The intensity of powder lines of irradiated Cu(II) complex 
(6F) is found to be slightly different from non-irradiated 
sample (6). While for (5, 5F) the intensities of powder 
lines are almost the same.

Fig. 3   a TG curves of non-irradiated complexes (1 and 3) and their irradiated (1F and 3F) and b TG curves of non-irradiated complexes (5 and 
6) and their irradiated (5F and 6F)

Fig. 4   XRD patterns of non-irradiated complexes (5 and 6) and their irradiated (5F and 6F)
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Molecular modeling studies of ligand and its Ni(II) 
complex (3)

The model geometric structure of the ligand (Fig. 2S) and 
its [Ni(H2L)Cl2]·H2O complex (3) (Fig. 5) was achieved uti-
lizing Hyper Chem Sketch 15.0 version [51]. The selected 
bond lengths and bond angles of significant importance were 
computed and the data are reported in Tables 1S, 2S. The 
bond lengths of the azomethine (C=N): N(32)–C(34), and 
N(31)–C(33) for the ligand are 1.262 and 1.267 Å, respec-
tively. Upon chelation, the bond length of these groups 
altered to 1.267 and 1.289 Å. The bond lengths become 
somewhat longer confirming the chelation with Ni(II) 
ion which occurs via N atoms of the two imine (>C=N) 
groups. Other changes have been noted in other bond 
lengths. The actual bond angles of the azomethine (C=N): 
C(34)–N(32)–C(30) and C(33)–N(31)–C(21) for the ligand 
are 119.04° and 133.24°, respectively. These bond angles in 
the complex changed to 123.23 and 120.11°. The values of 
bond angles (Tables 1S, 2S) confirmed that Ni(II) ion has 
square planar configuration [36, 48].

Based on the above discussions, the possible structures 
for the metal complexes are shown in Fig. 6a, b.

Antioxidant activity of non‑irradiated and irradiated 
samples

The antioxidant property of the synthesized ligand (H2L) 
and its non-irradiated (1, 3, 5, 6) and irradiated (1F, 
3F, 5F, 6F) complexes were determined by their scav-
enging ability on the stable  1,1′-diphenyl-2-picrylhy-
drazyl (DPPH) free radical [40]. As depicted in Fig. 7, 
the calculated IC50 values = 253.15, 292.32, 75.13, 
20.00, 41.28 µg mL−1 for H2L, 1, 3, 5, 6, respectively 

these values demonstrated that the non-irradiated com-
plexes have greater antioxidant activities than their free 
ligand except for complex (1). Among the series stud-
ied, Cu(II) complex (5) possesses excellent antioxidant 
activity (IC50 = 20.00 µg mL−1) better than ascorbic acid 
(IC50 = 28.21 µg mL−1). This confirmed the potential value 
of metal ion in improving the antioxidant activity of the 
ligand [52, 53]. The scavenging activity of the non-irradi-
ated compounds is in the order:

Fig. 5   3D structure of [Ni(H2L)Cl2]·H2O (3) (protons are omitted for 
simplicity)

a

b

Fig. 6   a Structure of the complexes (1, 2, 4 and 7) and b structure of 
the complexes (3, 5 and 6)
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It is worth to notify that γ-irradiation leaded to notewor-
thy change in the values of the antioxidant activity. The 
irradiated samples (1F, 3F, 5F, 6F), with IC50 values 
22.08, 153.03, 73.57, 196.57 µg mL−1, respectively and 
based on data on Fig. 7, it was seen that the IC50 of com-
plex (1F) was enhanced upon γ-irradiation it presents an 
excellent antioxidant activity better than ascorbic acid 
(IC50 = 28.21 µg mL−1). Other exposed metal complexes 
showed decrease in their antioxidant activity but still better 
than their non-irradiated free ligand. The antioxidant scav-
enging activity after irradiation is in the order

This pronounced property of the complexes may be due to 
the chelating function of the organic ligand to the metal ions 
[33]. The higher antioxidant activity of complexes (3, 5, 6) 
than complex (1) may be due to the significant contribu-
tion of the hydroxyl groups [35]. The increased free radi-
cal scavenging action of the irradiated complex (1F) can be 
assigned to the surface changes generated by γ-irradiation 
which may facilitate the release of hydrogen atom or an 
electron to reduce the DPPH radical [35]. However, the 
decreased free radical scavenging action of the irradiated 
complexes (3F, 5F, 6F) may be related to the intramolecular 
and/or intermolecular hydrogen bonds present in ketoamine-
enolimine toutomeric forms of these complexes that dislikes 
the DPPH scavenging activity, due to the enhanced bind-
ing of the hydrogen atoms. It was known that the H-bond 
increases the structure stability, thus, the energy required to 

Cu(II)(�) > Ascorbic acid > Cu(II)(�) > Ni(II)(�) > H
2
L > Co(II)(�)

Cu(II)(��) > Ascorbic acid > Cu(II)(��) >

Ni(II)(��) > Co(II)(��) > H
2
L

remove the hydrogen atom from it is higher than in the non 
H-bonded one [35].

Conclusion

In our study, the impact of γ-ray irradiation on the physico-
chemical properties of some aryl amide Schiff base Co(II), 
Ni(II) and Cu(II) complexes was investigated by different 
analytical, spectral, thermal and XRD tools. The results 
showed the rigidity of the complexes to the applied dose 
and can be summarized as follows:

1.	 Change in color was observed in the irradiated Co(II) 
complex (1F).

2.	 New FT-IR side peaks, slight change in position, shape 
and intensity of some FT-IR peaks were appeared after 
irradiation in some irradiated complexes.

3.	 No change in geometry was observed.
4.	 XRD patterns of both non-irradiated and irradiated com-

plexes indicated their amorphous nature.
5.	 TGA results suggested that γ-irradiation enhanced 

the dehydration process for Co(II) complex (1F) and 
increases the thermal stability for complexes (3F, 5F, 
6F).

6.	 Antioxidant activity was enhanced by γ-irradiation for 
Co(II) complex(1F).
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