

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Structure–activity relationship studies of imidazo[1,2-c]pyrimidine derivatives as potent and orally effective Syk family kinases inhibitors

Akihito Hirabayashi*, Harunobu Mukaiyama, Hiroaki Kobayashi, Hiroaki Shiohara, Satoko Nakayama, Motoyasu Ozawa, Eiichi Tsuji, Keiji Miyazawa, Keiko Misawa, Hideki Ohnota, Masayuki Isaji

Central Research Laboratory, Kissei Pharmaceutical Company Ltd, 4365-1, Kashiwabara, Hotaka, Azumino-City, Nagano-Pref 399-8304, Japan

ARTICLE INFO

Article history: Received 1 July 2008 Revised 1 September 2008 Accepted 5 September 2008 Available online 9 September 2008

Keywords: Protein tyrosine kinases (PTKs) Syk family kinases Syk ZAP-70 Autoimmune diseases Syk and/or ZAP-70 kinase inhibitor

ABSTRACT

Spleen tyrosine kinase (Syk) and zeta-associated protein kinase of 70 kDa (ZAP-70) are members of the Syk family and non-receptor-type protein tyrosine kinases, which play crucial roles in B- and T-cell activation. Therefore, a Syk family tyrosine kinases inhibitor would be a useful therapeutic agent for the treatment of various allergic disorders and autoimmune diseases. Previously, we reported that 1,2,4-triazolo[4,3-c]pyrimidine derivative **1** and 1,2,4-triazolo[1,5-c]pyrimidine derivative **2** showed strong inhibitory activities against Syk family kinases. These compounds also exhibited high-level suppression of IL-2 in cellular assays. However, their oral efficacies were poor in a mouse model of IL-2 production. To improve oral effectiveness, we investigated a new series of Syk family kinases. Among these agents, compound **9f** not only showed strong inhibitory activities against Syk and inhibitory activities against Syk and prove or of both the passive cutaneous anaphylaxis reaction and Concanavalin A-induced IL-2 production in a mouse model.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Protein tyrosine kinases (PTKs) are important enzymes in cell signal transduction.¹ Syk family kinases comprise the cytosolic non-receptor tyrosine classes of Syk and ZAP-70.^{2,3} Specifically, Syk is present in platelets, B lymphocytes, mast cells, basophils, neutrophils, dendritic cells, macrophages, and monocytes. Syk kinases also possess functional roles in immunoreceptor tyrosinebased activation motif (ITAM)-mediated signal transduction, which is expressed in various hematopoietic cell types. In contrast, ZAP-70 expression is restricted to T lymphocytes and natural killer (NK) cells. Syk family kinases play crucial roles in immune responses and are implicated in inflammatory and autoimmune diseases.^{4–6} Furthermore, several Syk inhibitors were recently reported to be effective in the treatment of inflammatory and autoimmune diseases.^{7–11} Therefore, Syk family tyrosine kinase inhibitors are candidate therapeutic agents for the treatment of various allergic and autoimmune disorders.

In the course of our studies aimed at developing a tyrosine kinase inhibitor,¹² we discovered that 1,2,4-triazolo[4,3-c]pyrimidine derivative **1** and 1,2,4-triazolo[1,5-c]pyrimidine derivative **2** showed strong inhibitory activities against Syk and ZAP-70 kinases in a cellular assay. However, despite the high potency of

Syk family kinase inhibition in vitro, these derivatives exhibited poor oral effectiveness in suppressing IL-2 production in a mouse model (data not shown). We examined the physicochemical properties of compounds **1** and **2** and found that these derivatives exhibited low Caco-2 permeability and poor solubility in water. As these parameters are correlated with oral bioavailability,^{13,14} we designed new imidazo[1,2-c]pyrimidine derivatives. Analyses of these new imidazo[1,2-c]pyrimidine derivatives indicated that compound **9f** possessed not only excellent in vitro inhibitory activity against Syk family kinases, but also oral efficacy in suppressing both the passive cutaneous anaphylaxis (PCA) reaction and Concanavalin (Con)A-induced IL-2 production in mice. In the present paper, we outline the development of this imidazo[1,2-c]pyrimidine derivative as a new Syk family kinase inhibitor.

2. Chemistry

As shown in Scheme 1, imidazo[1,2-*c*]pyrimidine derivatives were synthesized from 4,6-dichloro-2-methylsulfanylpyrimidine-5-carbonitrile $\mathbf{3}^{15}$ in a four-step conversion. Compound **3** was treated with various aniline derivatives and Hünig's base in tetrahydrofuran (THF), to produce 4-anilinopyrimidine derivatives **4a**-**f**. The reaction of compounds **4a**-**f** with aqueous ammonia solution in *N*,*N*-dimethylformamide (DMF) generated 6-aminopyrimidine derivatives **5a**-**f**. Hydrolysis of the nitrile groups of **5a**-**f**

^{*} Corresponding author. Tel.: +81 263 82 8820; fax: +81 263 82 8827. *E-mail address:* akihito_hirabayashi@pharm.kissei.co.jp (A. Hirabayashi).

^{0968-0896/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2008.09.015

Scheme 1. Reagents: (a) RNH₂, *i*-Pr₂NEt, THF; (b) NH₄OH, DMF; (c) 30% H₂O₂, 5 M NaOH, DMSO, EtOH; (d) ClCH₂CHO, DMF.

under basic conditions afforded the corresponding carboxamides **6a–f**. The imidazo[1,2-*c*]pyrimidine derivatives **7a–f** were synthesized by treating carboxamide derivatives **6a–f** with chloroacetal-dehyde in DMF. Compounds **8a–g** and **9a–f** were synthesized by substitution reactions of the appropriate commercially available amines in DMF or *N*-methylpyrrolidone (NMP), as shown in Scheme 2.

Scheme 3 summarizes the synthesis of 5-amino-2-phenylimidazo[1,2-c]pyrimidine-8-carboxamide derivatives 15a-c. Compound **4f** was reacted with (R)-(-)-2-phenylglycinol to give the alcohol derivative 10. Construction of 2,3-dihydroimidazo[1,2*c*]pyrimidine core **11** was achieved by treating compound **10** with phosphorus oxychloride. Conversion of compound 11 to compounds 12a-c was achieved by introducing various mono-Boc-protected diamino derivatives. Hydrolysis of the nitrile groups in 12ac under basic conditions yielded compounds **13a–c**. The absolute configuration of **13a** was confirmed by X-ray crystallography, as shown in Figure 1. The configuration of another diastereomer, 13b, was determined based on X-ray crystallography of 13a. The palladium-catalyzed oxidation of 2-phenyl-2,3-dihydroimidazo[1,2-c]pyrimidine derivatives 13a-c afforded 2-phenylimidazo[1,2-c]pyrimidine derivatives 14a-c. Finally, deprotection of the Boc group by treatment with hydrochloric acid or TFA of derivatives 14a-c gave compounds 15a-c. The chemical structures of the compounds thus prepared were determined from spectroscopic data (¹H NMR, mass spectrometry) and elemental analyses.

3. Binding model

Due to the relatively high degrees of structural homology between Lck and ZAP-70 (or Syk) at their ATP-binding sites, we constructed a ZAP-70 homology model based on the previously published crystal structures of the activated Lck kinase domain (PDB code 1QPD)^{16,17} using the full automatic modeling system (FAMS).¹⁸ The binding modes of several compounds were examined using the ADAM software.¹⁹

4. Results and discussion

4.1. SAR for Syk and ZAP-70 kinases

The Syk and ZAP-70 kinase inhibitory activities of the compounds synthesized in the present study were evaluated by coupled spectrophotometric enzyme assays (Tables 1–5).

1,2,4-Triazolo[4,3-*c*]pyrimidine derivative **1** and 1,2,4-triazolo o[1,5-*c*]pyrimidine derivative **2** showed good inhibitory activities against Syk and ZAP-70, being almost equivalent to the activities of staurosporine. However, these compounds were not orally effective in suppressing IL-2 production in the mouse model. In the analyses of the physicochemical properties of 1,2,4-triazolo[4,3*c*]pyrimidine derivative **1** and 1,2,4-triazolo[1,5-*c*]pyrimidine derivative **2**, these compounds showed low Caco-2 permeability and poor solubility in water (Table 1). Compounds with high polar

Scheme 2. Reagents: (a) Commercially available amines, i-Pr₂NEt, DMF or NMP; (b) cis-1,2-cyclohexyldiamine, DMF.

surface areas (PSAs) tend to show low Caco-2 permeability and poor oral bioavailability.^{20,21} We found that the PSA values of compounds **1–2** were comparatively high (141 for compound **1** and 139 for compound **2**). We designed imidazo[1,2-c]pyrimidine analogs of 1,2,4-triazolo[4,3-c]pyrimidine and 1,2,4-triazolo[1,5c]pyrimidine derivatives with lower PSA values by reducing the number of nitrogen atom. The results of our previous studies on 1,2,4-triazolo[4,3-c]pyrimidine and 1,2,4-triazolo[1,5-c]pyrimidine derivatives¹² indicate that imidazo[1,2-c]pyrimidine derivatives retain similar pharmacophores with triazolopyrimidine analogs. Therefore, 5-aminoimidazo[1,2-c]pyrimidine derivatives would be expected to show strong inhibitory activities against Syk family kinases. We investigated the effects of substituents at the 5-position in the imidazo[1,2-c]pyrimidine skeleton (Table 2).

The simple amino derivative 8a showed weak inhibitory activities against Syk and ZAP-70 kinase. For compound 8b, the inhibitory effects on both Syk and ZAP-70 were slightly improved by the introduction of a hydroxyethylamino group, in comparison to compound 8a. The 2-aminoethylamino analog 8c exhibited enhanced Syk kinase inhibition, whereas 8c showed only slightly improved ZAP-70 inhibitory activity. Both the Syk and ZAP-70 inhibitory activities were reduced in the 3-aminopropylamino derivative 8d. We investigated several cyclohexylamino derivatives based on their abilities to fit in the sugar pocket. The 2-methylcyclohexylamino derivative 8e exhibited moderate inhibitory activities against Syk and ZAP-70. Compound 8f, which possesses a 2-hydroxycyclohexylamine at the 5-position, showed enhanced inhibition of both Syk and ZAP-70 in comparison to 8e. Next, we examined the cyclohexyldiamino derivatives, which show excellent inhibitory effects on Syk family kinases in the 1,2,4-triazolstate.12b o[4,3-*c*]pyrimidine The trans-cyclohexyldiamino derivative 8g showed weak inhibitory activity against Syk family kinases and had completely lost the ZAP-70 kinase inhibitory activity. In contrast, cis-cyclohexyldiamino derivative 9f showed excellent kinase inhibitory activity. This stereochemical preference was consistent with that found in the preceding triazole derivatives **1** and **2**.^{12b} These findings indicate that the amino group in the cyclohexyl ring plays a crucial role in Syk and ZAP-70 inhibition in comparison to other substituents, such as the methyl and hydroxyl groups. Moreover, the configuration of the amino group in the cyclohexyl ring has an impact inhibitory activity against Syk family kinases.

Subsequently, we investigated the effects of varying substitutions at the 7-anilino groups of the imidazo[1,2-c]pyrimidines (Table 3). The 2-methoxy derivative 9a showed no inhibitory effects on the Syk or ZAP-70 kinase (IC₅₀ > 10 μ M for both Syk and ZAP-70). The 3-methoxy derivative **9b** and 4-methyoxy derivative **9c** showed strong inhibitory effects against Syk kinase ($IC_{50} = 0.030$ and 0.092 µM for **9b** and **9c**, respectively) although they showed weak inhibitory activities against the ZAP-70 kinase (IC₅₀ > 1.0 μ M for both **9b** and **9c**) in comparison to Syk inhibition. The results for compounds **9b** and **9c** indicate that substitution in the meta position is superior to that in the para position. Therefore, we focused on the meta substituent and investigated 3,5-di-substituted derivatives. Compounds 9d-f showed excellent inhibitory effects against Syk family kinases, especially the Syk kinase. Among these three derivatives, compound **9f** exhibited the greatest inhibitory potency against Syk family kinases (IC₅₀ = 0.006 μ M and 0.23 μ M for Syk and ZAP-70, respectively). These findings indicate that substituents on the 7-anilino group influence inhibitory activity against Syk family kinase inhibition. Substitution at the meta and para positions is desirable for kinase inhibition. Substitution at the meta position was most favorable and di-substitution at the meta position in the 7-anilino-group contributed to a greater improvement in inhibition potency against Syk family kinases, as compared to a mono-substituent analog. Specifically, the 3,5-dimethoxy group was the most effective substituent for Syk family kinases inhibition as compared to 3,5-difluoro or 3,5-dimethyl

Scheme 3. Reagents: (a) (*R*)-(-)-2-Phenylglycinol, *i*-Pr₂NEt, DMF; (b) POCl₃; (c) diamine derivatives, DMF; Boc₂O, CH₂Cl₂; (d) 30% H₂O₂, 5 M NaOH, DMSO, EtOH; (e) O₂, 10% Pd-C, cyclohexene, EtOH, DMSO; (f) 4 M HCl-EtOAc; (g) TFA, CH₂Cl₂.

derivatives. Examination of the binding mode between ZAP-70 and compound **9f** revealed that the N-H group and the carbonyl group of 8-carbamoyl interacts with the carbonyl group of Glu415 and the N-H group of Ala417, respectively; the N-H group of aniline forms a hydrogen bond with the carbonyl group of Ala417; the imidazole core of compound **9f** occupies the gate keeper residue²² to form a CH- π interaction with the methyl group of Val352; and the 7-anilino group of compound **9f** on the lipophilic plug²² forms a CH- π interaction with the methylene groups of Leu344 and Gly420. Moreover, the cyclohexyldiamino group at the 5-position of the imidazo[1,2-c]pyrimidine core may contribute to the effective occupation of the sugar pocket (Fig. 2).²² Conversely, substitution at the ortho position was undesirable. Several studies have reported that the conformation of the ortho-substituted diphenylaniline derivatives show twisting between the two aromatic rings.²³ We anticipated that twisting conformation between the two aromatic rings broke $CH-\pi$ interaction with the methylene groups of Leu344 and Gly420 shown in Figure 2. This phenomenon may be responsible for the loss of Syk family kinase inhibitory activity of compound **9a**.

When examining the binding mode in the ZAP-70 homology model, we found a comparatively large space around the imidazole unit. In addition, Syk family kinase inhibition was increased by the introduction of a phenyl group at the 2-position.¹² To improve further the inhibitory activities against Syk and ZAP-70 kinases, we examined 2-phenylimidazo[1,2-c]pyrimidine-8-carboxamide derivatives (Table 4). The inhibitory effects of compound 15b on ZAP-70 kinase were improved by introducing a phenyl group at the 2-position ($IC_{50} = 0.041 \mu M$). However, the Syk inhibitory activity was somewhat reduced (IC₅₀ = 0.028 μ M) compared to that of **9f** (IC₅₀ = 0.006 μ M). In contrast, compound 15a, which is a diastereomer of compound 15b, showed decreased potency for Syk family kinase inhibition. The 2-methylpropane-1,2-diamine derivative **15c** showed moderate inhibitory activities against Syk and ZAP-70 kinases, as compared to the cyclohexyldiamino derivative 15b. A full large space was produced around the imidazole core by the introduction of a phenyl group (Fig. 3), such that this modification contributed to the inhibitory effect on ZAP-70. Contrary to our expectations, this conversion did not yield an inhibitory effect on Syk.

Figure 1. X-ray crystal structure of 13a.

4.2. Cellular assays and in vivo efficacy in several mouse models

Compounds **9d–f** and **15b** showed excellent kinase inhibitory activities. Therefore, we investigated their effects on IL-2 production in peripheral blood mononuclear cells (PBMCs) and a whole blood (WB) assay system, to evaluate the inhibitory effects on Syk family kinases. The results are summarized in Table 5. Although compounds 9d and 9e showed good Syk kinase inhibitory activities, they were less potent than staurosporine in both the PBMCs and WB assay. The 2-phenylimidazo[1,2-c]pyrimidine derivative 15b was also less active than staurosporine in the cellular assay and in the WB system. In contrast, compound 9f showed excellent inhibition in both the PBMCs and the WB assay. The IL-2suppressive effect of compound 9f was almost equivalent to that of staurosporine in our assay system. We then investigated the physicochemical properties of 9f and 15b. The Caco-2 permeability of compound **9f** $(3.33 \times 10^{-6} \text{ cm/s})$ was superior to that of compound **15b** $(0.43 \times 10^{-6} \text{ cm/s})$. We postulate that the higher Caco-2 permeability of **9f** contributes to its greater cellular potency in comparison with **15b**.

Table 1

Physicochemical properties of triazopyrimidine derivatives

Staurosporine

2

Compound	Solubility in water ($\mu g/mL$)	Caco2/Papp (10 ⁻⁶ cm/s)		IC ₅₀ ^a (μM)		
			Syk	ZAP-70	РВМС	WB
taurosporine	NT ^b	NT ^b	0.003	0.053	0.016	0.10
l	351	0.01	0.009	0.12	0.046	0.44
2	42	0.33	0.004	0.33	0.076	0.48

1

^a The IC₅₀ values were determined in duplicate.

^b NT, not tested.

Table 2

Syk and ZAP-70 inhibitory activities of imidazo[1,2-c]pyrimidines

Compound	R	IC ₅₀	$IC_{50}^{a}(\mu M)$	
		Syk	ZAP-70	
8a	NH ₂	7.1	10.0	
8b	NHCH ₂ CH ₂ OH	4.3	1.9	
8c	NHCH ₂ CH ₂ NH ₂	0.23	3.5	
8d	NHCH ₂ CH ₂ CH ₂ NH ₂	1.5	12.4	
8e	HN	1.0	3.3	
8f	HN OH	0.72	1.8	
8g	HN NH2	1.2	>10	
9f	HN	0.006	0.23	

^a The IC₅₀ values were determined in duplicate.

Finally, we evaluated the in vivo effects of optimized Syk family kinase inhibitor **9f** on both the PCA reaction and ConA-induced IL-2 production in mice. Compound **9f** was administered orally to mice and showed a dose-dependent inhibitory effect on the anaphylaxis reaction, as shown in Figure 4. Moreover, compound **9f**, which was administered orally to mice, suppressed IL-2 production in a dose-dependent manner, as shown in Figure 5. These results indicate that compound **9f**, which strongly inhibits Syk and moderately inhibits ZAP-70, could improve diseases that involve both Syk and ZAP-70. The triazolopyrimidine derivative **1** did not suppress IL-2 production in mouse model (data not shown). We investigated the physicochemical properties and plasma concentrations of compounds **1**

Table 3

Syk and ZAP-70 inhibitory activities of imidazo[1,2-c]pyrimidines

Compound	Ar	IC_{50}^{a} (μ M)		
		Syk	ZAP-70	
9a	2-MeOC ₆ H ₄	>10	>10	
9b	3-MeOC ₆ H ₄	0.030	1.7	
9c	4-MeOC ₆ H ₄	0.092	4.1	
9d	3,5-Di-FC ₆ H ₃	0.030	0.73	
9e	3,5-Di-MeC ₆ H ₃	0.006	0.48	
9f	3,5-Di-MeOC ₆ H ₃	0.006	0.23	

^a The IC₅₀ values were determined in duplicate.

Table 4

Syk and ZAP-70 kinase inhibitory activities of 2-phenylimidazolo[1,2-c]pyrimidine derivatives

Compound	R1	IC ₅₀ ^a (μM)	
		Syk	ZAP-70
15a		0.38	0.60
15b	HN NH ₂	0.028	0.041
15c	$NHCH_2C(Me)_2NH_2$	0.84	0.16

^a The IC₅₀ values were determined in duplicate.

Table 5

Syk and ZAP-70 kinase inhibitory activities and the suppression of IL-2 production in PBMCs and a WB assay

Compound	IC ₅₀ ^a (μM)				
	Syk	ZAP-70	РВМС	WB	
Staurosporine	0.003	0.053	0.016	0.10	
9d	0.030	0.73	0.15	3.0	
9e	0.006	0.48	0.20	1.0	
9f	0.006	0.23	0.058	0.28	
15b	0.028	0.041	0.20	2.0	

^a The IC₅₀ values were determined in duplicate.

and **9f**, as summarized in Tables 6 and 7. Triazolopyrimidine derivative **1** showed low Caco-2 permeability and poor solubility in water. In contrast, imidazopyrimidine derivative **9f** showed higher Caco-2 permeability and better solubility in water than compound **1**. Furthermore, the PSA value for compound **9f** was lower than that for compound **1** (Table 6). With regard to their pharmacokinetic profiles, the plasma concentration of compound **9f** increased in a dose-dependent manner, while compound **1** was scarcely detected in the plasma after oral administration (Table 7). These results are

Figure 2. Docking mode of compound 9f with ZAP-70.

in accordance with our initial hypothesis that Caco-2 permeability, PSA, and solubility in water affect oral efficacy. Therefore, we consider that improvements in its physicochemical properties contribute to the in vivo efficacy of compound **9f**.

5. Conclusions

We demonstrate that novel imidazo[1,2-*c*]pyrimidine derivatives are highly potent and orally effective Syk family kinase inhibitors. Among these agents, optimized compound **9f** is superior to 1,2,4-triazolo[4,3-*c*]pyrimidine derivative **1** with regard to physicochemical profile. Compound **9f** showed not only excellent in vitro kinase inhibitory activity, but also effectively suppressed both the PCA reaction and IL-2 production in a mouse model. We anticipate that the discovery of orally active inhibitors of Syk family kinases will contribute to the treatment of various allergic and immunologic disorders. We intend to continue the optimization and evaluation of these derivatives and will report further developments in due course.

6. Experimental

6.1. Chemistry

Melting points were taken on a Yanako MP-3S Micromelting point apparatus and were uncorrected. Infrared spectra were measured on a Nicolet 510 FT-IR spectrophotometer and were reported in reciprocal centimeters. Proton NMR spectra were recorded at 400 or 500 MHz with a Brucker AMX 400 or DRX 500 instrument, and chemical shifts were reported in parts per million (δ) downfield from tetramethylsilane as internal standard. The peak patterns were shown as the following abbreviations: br, broad; d, doublet; m, multiplet; s, singlet; t, triplet; q, quartet. The mass spectra (MS) were carried out with Thermo Quest FINNIGAN AQA electrospray ionization mass spectrometer. Elemental analyses were performed on an Elementar Vario EL analyzer (C, H, and N). Silica gel 60 F₂₅₄ precoated plates on glass from Merck KgaA or aminopropyl silica gel (APS) precoated NH plates from Fuji Silysia Chemical Ltd were used for thin-layer chromatography (TLC). Flash or medium-pressure liquid chromatography (MPLC) was performed on silica gel BW-350 from Fuji Silysia Chemical Ltd or APS Daisogel IR-60 (particle size 25-40 µM) from Daiso Co., Ltd. All reagents and solvents were commercially available unless otherwise indicated.

Figure 3. Docking mode of compound 15b with ZAP-70.

Figure 4. Suppressive effect of compound **9f** on the passive cutaneous anaphylaxis (PCA) reaction.

6.1.1. 4-Chloro-6-(2-methoxyphenylamino)-2-methylsulfanylpyrimidine-5-carbonitrile (4a)

To a mixture of 4,6-dichloro-2-methylsulfanylpyrimidine-5carbonitrile **3** (0.660 g, 3.00 mmol) and o-anisidine (0.377 g, 3.06 mmol) in THF (10 mL) was added diisopropylethylamine (0.549 mL, 3.15 mmol) at 0 °C and the mixture was stirred overnight at room temperature. Water was added to the mixture and resulting precipitates were collected by suction filtration. The precipitates were washed with water and dried in vacuo to give **4a** (0.920 g, quant.) as white solid: mp 190–192 °C (MeOH–THF); IR (KBr) 2214, 1615, 1549, 1463, 1423, 1355, 1261, 1116 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.32 (3H, s), 3.79 (3H, s), 6.95–7.05 (1H, m), 7.11 (1H, d, *J* = 7.5 Hz), 7.27–7.32 (1H, m), 7.42 (1H, d, *J* = 7.5 Hz), 9.76 (1H, br s); MS *m/z*: 307 (M+H)⁺. Anal. Calcd for C₁₃H₁₁ClN₄OS: C, 50.90; H, 3.61; N, 18.26. Found: C, 50.71; H, 3.56; N, 18.11.

Figure 5. Suppressive effect of compound 9f on ConA-induced IL-2 production in mice.

6.1.2. 4-Chloro-6-(3-methoxyphenylamino)-2-methylsulfanylpyrimidine-5-carbonitrile (4b)

The title compound was prepared from **3** and *m*-anisidine in the same manner as described for **4a**, and was obtained as white solid (92%): mp 234–235 °C (MeOH–THF); IR (KBr) 2223, 1616, 1555, 1464, 1404, 1261 cm⁻¹; ¹H NMR (DMSO- d_6) δ : 2.42 (3H, s), 3.75 (3H, s), 6.78 (1H, dd, *J* = 7.0, 1.0 Hz), 7.14–7.19 (2H, m), 7.28 (1H, t, *J* = 8.0 Hz), 10.13 (1H, br s); MS *m/z*: 307 (M+H)⁺. Anal. Calcd for C₁₃H₁₁ClN₄OS: C, 50.90; H, 3.61; N, 18.26. Found: C, 50.80; H, 3.58; N, 18.21.

6.1.3. 4-Chloro-6-(4-methoxyphenylamino)-2-methylsulfanylpyrimidine-5-carbonitrile (4c)

The title compound was prepared from **3** and *p*-anisidine in the same manner as described for **4a**, and was obtained as white solid (94%): mp 195–197 °C (MeOH–THF); IR (KBr) 2219, 1617, 1561,

Table 6

Physicochemical properties and cellular potencies of compounds 1 and 9f

Compound	Solubility in water (µg/mL)	PSA	Caco2/Papp (10 ⁻⁶ cm/s) Syk	_	$IC_{50}^{a}(\mu M)$		
				Syk	ZAP-70	PBMC	WB
1	351	141	0.01	0.009	0.12	0.046	0.44
9f	930	128	3.33	0.006	0.23	0.058	0.28

^a The IC₅₀ values were determined in duplicate.

Table 7

Plasma concentrations of compounds **1** and **9f** after oral administration

Applied dose (mg/kg)	Plasma concentration (ng/mL)	
	1	9f
3	ND ^a	40
10	28.4	191
30	26.5	770
100	45.2	4031

^a ND, not detected.

1512, 1466, 1437, 1250 cm⁻¹; ¹H NMR (DMSO- d_6) δ: 2.38 (3H, s), 3.76 (3H, s), 6.94 (2H, d, *J* = 9.0 Hz), 7.41 (2H, d, *J* = 9.0 Hz), 10.08 (1H, br s); MS *m/z*: 307 (M+H)⁺. Anal. Calcd for C₁₃H₁₁ClN₄OS: C, 50.90; H, 3.61; N, 18.26. Found: C, 50.92; H, 3.63; N, 18.26.

6.1.4. 4-Chloro-6-(3,5-difluorophenylamino)-2-methylsulfanylpyrimidine-5-carbonitrile (4d)

The title compound was prepared from **3** and 3,5-difluoroaniline in the same manner as described for **4a**, and was obtained as white solid (92%): mp 203–204 °C (MeOH–THF); IR (KBr) 2221, 1630, 1562, 1410, 1123 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.47 (3H, s), 7.02–7.10 (1H, m), 7.41 (2H, dd, *J* = 8.5 Hz, 2.0 Hz), 10.38 (1H, br s); MS *m/z*: 313 (M+H)⁺. Anal. Calcd for C₁₂H₇ClF₂N₄S·0.2H₂O: C, 45.56; H, 2.36; N, 17.71. Found: C, 45.60; H, 2.26; N, 17.68.

6.1.5. 4-Chloro-6-(3,5-dimethylphenylamino)-2-methylsulfanylpyrimidine-5-carbonitrile (4e)

The title compound was prepared from **3** and 3,5-dimethylaniline in the same manner as described for **4a**, and was obtained as white solid (98%): mp 180–182 °C (MeOH–THF); IR (KBr) 2223, 1589, 1559,1540,1405 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.26 (6H, s), 2.41 (3H, s), 6.84 (1H, br s), 7.18 (2H, br s), 10.07 (1H, br s); MS *m/z*: 305 (M+H)⁺. Anal. Calcd for C₁₄H₁₃ClN₄S: C, 55.17; H, 4.30; N, 18.38. Found: C, 54.95; H, 4.26; N, 18.24.

6.1.6. 4-Chloro-6-(3,5-dimethoxylphenylamino)-2-methylsulfanylpyrimidine-5-carbonitrile (4f)

The title compound was prepared from **3** and 3,5-dimethoxyaniline in the same manner as described for **4a**, and was obtained as white solid (91%): mp 214–216 °C (MeOH–THF); IR (KBr) 2225, 1584, 1540, 1481, 1404, 1158 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.45 (3H, s), 3.73 (6H, s), 6.35 (1H, t, *J* = 2.0 Hz), 6.83 (2H, d, *J* = 2.0 Hz), 10.05 (1H, br s); MS *m/z*: 355 (M+H)⁺. Anal. Calcd for C₁₄H₁₃ClN₄O₂S: C, 49.93; H, 3.89; N, 16.64. Found: C, 49.93; H, 3.99; N, 16.49.

6.1.7. 4-Amino-6-(2-methoxyphenylamino)-2-methylsulfanylpyrimidine-5-carboxamide (6a)

To a stirred suspension of **4a** (0.337 g, 1.10 mmol) in DMF (2.4 mL) was added 28% ammonia solution (0.6 mL) and the mixture was heated for 4 h at 60 °C. The mixture was poured into water and resulting residue was collected by suction filtration to give **5a** as white solid. To a suspension of crude **5a** in DMSO (2.5 mL) and EtOH (2.5 mL) were added 5 M NaOH solution (1.10 mL, 5.50 mmol) and 30% H₂O₂ solution (0.625 mL, 5.50 mmol) at 0 °C and the mixture was stirred for 30 min at room temperature. The mixture was poured into water (ca. 100 mL) and resulting precipitates were collected by suction filtration. The precipitates were washed with water and were suspended in EtOAc. The mixture was heated at 110 °C for 1 h and resulted precipitates were collected by glass filter to give **6a** (0.105 g, 31%) as white solid: mp 285–287 °C (MeOH–THF); IR (KBr) 1653, 1589, 1575, 1539, 1533, 1375, 1298, 1272 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.44 (3H, s), 3.84 (3H, s), 6.76 (2H, br s), 6.87–7.04 (3H, m), 7.55 (2H, br s), 8.09 (1H, d, *J* = 8.0 Hz), 10.16 (1H, s); MS *m/z*: 306 (M+H)⁺. Anal. Calcd for C₁₃H₁₅N₅O₂S·0.2-CH₄O: C, 50.85; H, 5.11; N, 22.46. Found: C, 50.85; H, 4.90; N, 22.11.

6.1.8. 4-Amino-6-(3-methoxyphenylamino)-2-methylsulfanylpyrimidine-5-carboxamide (6b)

The title compound was prepared from **4b** in the same manner as described for **6a**, and was obtained as white solid (48%): mp 219–221 °C (MeOH–THF); IR (KBr) 1576, 1539, 1517, 1300 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.43 (3H, s), 3.73 (3H, s), 6.52–6.60 (1H, m), 6.85 (2H, br s), 7.00–7.06 (1H, m), 7.14–7.21 (1H, m), 7.31– 7.36 (1H, m), 7.55 (2H, br s), 9.88 (1H, br s); MS *m/z*: 306 (M+H)⁺. Anal. Calcd for C₁₃H₁₅N₅O₂S·0.3H₂O: C, 50.24; H, 5.06; N, 22.54. Found: C, 50.34; H, 4.77; N, 22.35.

6.1.9. 4-Amino-6-(4-methoxyphenylamino)-2-methylsulfanylpyrimidine-5-carboxamide (6c)

The title compound was prepared from **4c** in the same manner as described for **6a**, and was obtained as white solid (46%): mp 246–248 °C (MeOH–THF); IR (KBr) 1576, 1521, 1506, 1300, 1250 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.37 (3H, s), 3.72 (3H, s), 6.65–6.90 (4H, m), 7.30–7.55 (4H, m), 9.69 (1H, br s); MS *m/z*: 306 (M+H)⁺. Anal. Calcd for C₁₃H₁₅N₅O₂S-0.42CH₄O: C, 50.52; H, 5.27; N, 21.97. Found: C, 50.12; H, 4.88; N, 21.82.

6.1.10. 4-Amino-6-(3,5-difluorophenylamino)-2-methylsulfanylpyrimidine-5-carboxamide (6d)

The title compound was prepared from **4d** in the same manner as described for **6a**, and was obtained as white solid (50%): mp 274–276 °C (MeOH–THF); IR (KBr) 1586, 1576, 1538, 1525, 1477, 1297, 1182 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.42 (3H, s), 6.60–7.18 (3H, m), 7.20–7.90 (4H, m), 9.90 (1H, br s); MS *m/z*: 312 (M+H)⁺. Anal. Calcd for C₁₂H₁₁F₂N₅OS·0.72H₂O 0.1CH₄O: C, 44.37; H, 3.95; N, 21.38. Found: C, 44.77; H, 3.55; N, 20.98.

6.1.11. 4-Amino-6-(3,5-dimethylphenylamino)-2-methylsulfanylpyrimidine-5-carboxamide (6e)

The title compound was prepared from **4e** in the same manner as described for **6a**, and was obtained as white solid (40%): mp 260–262 °C (MeOH–THF); IR (KBr) 1575, 1538, 1520, 1293 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.23 (6H, s), 2.43 (3H, s), 6.64 (1H, br s), 6.81 (2H, br s), 7.24 (2H, br s), 7.54 (2H, br s), 9.88 (1H, s); MS *m/z*: 304 (M+H)⁺. Anal. Calcd for C₁₄H₁₇N₅OS·0.3H₂O: C, 54.46; H, 5.74; N, 22.68. Found: C, 54.73; H, 5.51; N, 22.69.

6.1.12. 4-Amino-6-(3,5-dimethoxyphenylamino)-2-methylsulfanylpyrimidine-5-carboxamide (6f)

The title compound was prepared from **4f** in the same manner as described for **6a**, and was obtained as white solid (46%): mp 232–234 °C (MeOH–THF); IR (KBr) 1583, 1529, 1482, 1471, 1151 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.44 (3H, s), 3.72 (6H, s), 6.15 (1H, t, *J* = 2.0 Hz), 6.83 (2H, d, *J* = 2.0 Hz), 6.85 (2H, s), 7.56 (2H, s), 9.87 (1H, s); MS *m/z*: 336 (M+H)⁺. Anal. Calcd for C₁₄H₁₇N₅O₃S·0.5H₂O: C, 48.83; H, 5.27; N, 20.34. Found: C, 48.63; H, 4.95; N, 20.31.

6.1.13. 7-(2-Methoxyphenylamino)-5-methylsulfanylimidazo-[1,2-c]pyrimidine-8-carboxamide (7a)

To a solution of **6a** (0.095 g, 0.311 mmol) in DMF (1 mL) was added 40% chloroacetaldehyde solution (0.183 mL, 0.933 mmol) and the mixture was heated for 6 h at 60 °C. Resulting precipitates were collected by glass filter and washed with water to give **7a** (0.050 g, 49%) as yellowish solid. mp 244–246 °C (MeOH–THF); IR (KBr) 1659, 1610, 1572, 1480, 1312, 1233 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.77 (3H, s), 3.87 (3H, s), 6.94–6.99 (1H, m), 7.02–7.09 (2H, m), 7.49 (1H, d, *J* = 2.0 Hz), 7.67–7.72 (1H, br), 7.70 (1H, d, *J* = 2.0 Hz), 8.22 (1H, dd, *J* = 8.0, 2.0 Hz), 9.56 (1H, d, *J* = 2.5 Hz), 12.24 (1H, s); MS *m/z*: 330 (M+H)⁺. Anal. Calcd for C₁₅H₁₅N₅O₂S·0.2H₂O: C, 54.10; H, 4.66; N, 21.03. Found: C, 54.21; H, 4.60; N, 20.93.

6.1.14. 7-(3-Methoxyphenylamino)-5-methylsulfanylimidazo-[1,2-c]pyrimidine-8-carboxamide (7b)

The title compound was prepared from **6b** in the same manner as described for **7a**, and was obtained as white solid (66%): mp 190–192 °C (MeOH–THF); IR (KBr) 1657, 1595, 1573, 1480, 1465, 1310, 1237, 1158 cm⁻¹; ¹H NMR (DMSO- d_6) δ : 2.78 (3H, s), 3.77 (3H, s), 6.66 (1H, dd, *J* = 8.0, 2.0 Hz), 7.11 (1H, d, *J* = 8.0 Hz), 7.20–7.30 (2H, m), 7.51 (1H, d, *J* = 1.5 Hz), 7.73 (1H, d, *J* = 1.5 Hz), 7.88 (1H, br s), 9.61 (1H, br s), 12.29 (1H, s); MS *m/z*: 330 (M+H)⁺. Anal. Calcd for C₁₅H₁₅N₅O₂S: C, 54.70; H, 4.59; N, 21.26. Found: C, 54.63; H, 4.56; N, 21.07.

6.1.15. 7-(4-Methoxyphenylamino)-5-methylsulfanylimidazo-[1,2-c]pyrimidine-8-carboxamide (7c)

The title compound was prepared from **6c** in the same manner as described for **7a**, and was obtained as white solid (70%): mp 221–223 °C (MeOH–THF); IR (KBr) 1607, 1576, 1508, 1487, 1363, 1261 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.65–2.71 (3H, m), 3.70–3.77 (3H, m), 6.90–6.98 (2H, m), 7.46–7.53 (3H, m), 7.68–7.71 (1H, m), 7.80 (1H, br s), 9.55 (1H, br s), 11.95–12.05 (1H, m); MS *m/z*: 330 (M+H)⁺. Anal. Calcd for C₁₅H₁₅N₅O₂S: C, 54.70; H, 4.59; N, 21.26. Found: C, 54.57; H, 4.56; N, 21.16.

6.1.16. 7-(3,5-Difluorophenylamino)-5-methylsulfanylimidazo-[1,2-c]pyrimidine-8-carboxamide (7d)

The title compound was prepared from **6d** in the same manner as described for **7a**, and was obtained as white solid (80%): mp 295–297 °C (MeOH–THF); IR (KBr) 1657, 1608, 1587, 1476, 1363, 1285, 1235, 1146 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 2.81 (3H, s), 6.87– 6.92 (1H, m), 7.40–7.45 (2H, m), 7.56 (1H, d, *J* = 1.5 Hz), 7.80 (1H, d, *J* = 1.5 Hz), 8.03 (1H, d, *J* = 3.0 Hz), 9.63 (1H, d, *J* = 3.0 Hz), 12.50 (1H, s); MS *m/z*: 336 (M+H)⁺. Anal. Calcd for C₁₄H₁₁F₂N₅OS: C, 50.14; H, 3.31; N, 20.88. Found: C, 49.79; H, 3.28; N, 20.68.

6.1.17. 7-(3,5-Dimethylphenylamino)-5-methylsulfanylimidazo-[1,2-c]pyrimidine-8-carboxamide (7e)

The title compound was prepared from **6e** in the same manner as described for **7a**, and was obtained as white solid (65%): mp 252–254 °C (MeOH–THF); IR (KBr) 1652, 1613, 1582, 1480, 1324, 1236, 1096 cm⁻¹; ¹H NMR (DMSO- d_6) δ : 2.27 (6H, s), 2.79 (3H, s), 6.72 (1H, s), 7.27 (2H, s), 7.49 (1H, d, J = 2.0 Hz), 7.72 (1H, d, J = 2.0 Hz), 7.86 (1H, d, J = 3.0 Hz), 9.60 (1H, d, J = 3.0 Hz), 12.20 (1H, s); MS m/z: 328 (M+H)⁺. Anal. Calcd for C₁₆H₁₇N₅OS: C, 58.70; H, 5.23; N, 21.39. Found: C, 58.65; H, 5.21; N, 21.30.

6.1.18. 7-(3,5-Dimethoxylphenylamino)-5-methylsulfanylimidazo[1,2-c]pyrimidine-8-carboxamide (7f)

The title compound was prepared from **6f** in the same manner as described for **7a**, and was obtained as white solid (65%): mp

232–233 °C (MeOH–THF); IR (KBr) 1658, 1578, 1480, 1236, 1157 cm⁻¹; ¹H NMR (DMSO- d_6) δ : 2.80 (3H, s), 3.76 (6H, s), 6.25 (1H, t, *J* = 2.0 Hz), 6.80 (2H, d, *J* = 2.0 Hz), 7.51 (1H, d, *J* = 1.5 Hz), 7.74 (1H, d, *J* = 1.5 Hz), 7.90 (1H, d, *J* = 3.0 Hz), 9.63 (1H, d, *J* = 3.0 Hz), 12.32 (1H, s); MS *m/z*: 360 (M+H)⁺. Anal. Calcd for C₁₆H₁₇N₅O₃S: C, 53.47; H, 4.77; N, 19.49. Found: C, 53.45; H, 4.82; N, 19.54.

6.1.19. 5-Amino-7-(3,5-dimethoxyphenylamino)imidazo[1,2c]pyrimidine-8-carboxamide (8a)

A mixture of **7f** (0.150 g, 0.417 mmol) and 28% ammonia solution (0.5 mL) in NMP (1 mL) was heated overnight at 100 °C. The mixture was poured into water and extracted with EtOAc. Organic phase was washed with water and brine, sequentially, dried over anhydrous MgSO₄, and evaporated in vacuo. Resulting residue was purified by column chromatography on silica gel with hexane/EtOAc = 1:2 to give **8a** (0.049 g, 38%) as pale green crystal: mp 274–276 °C (MeOH–THF); IR (KBr) 1595, 1508, 1481, 1150 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 3.76 (6H, s), 6.17 (1H, t, *J* = 2.0 Hz), 6.86 (2H, d, *J* = 2.0 Hz), 7.33 (1H, d, *J* = 2.0 Hz), 7.39 (1H, d, *J* = 3.5 Hz), 7.80 (1H, d, *J* = 2.0 Hz), 8.17 (2H, br s), 9.52 (1H, d, *J* = 3.5 Hz), 12.40 (1H, s); MS *m/z*: 329 (M+H)⁺. Anal. Calcd for C₁₅H₁₆N₆O₃: C, 54.87; H, 4.91; N, 25.60. Found: C, 54.88; H, 5.09; N, 25.21.

6.1.20. 7-(3,5-Dimethoxyphenylamino)-5-(2-hydroxyethylamino)imidazo[1,2-c]pyrimidine-8-carboxamide (8b)

The title compound was prepared from **7f** and 2-hydroxyethylamine in the same manner as described for **8a**, and was obtained as white solid (13%): mp 261–263 °C (MeOH–THF); IR (KBr) 1616, 1593, 1550, 1507 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 3.61–3.70 (4H, m), 3.75 (6H, s), 4.90 (1H, t, *J* = 5.0 Hz), 6.16 (1H, t, *J* = 2.0 Hz), 6.86 (2H, d, *J* = 2.0 Hz), 7.34 (1H, d, *J* = 1.5 Hz), 7.41 (1H, d, *J* = 3.0 Hz), 7.93 (1H, d, *J* = 1.5 Hz), 8.46 (1H, s), 9.55 (1H, d, *J* = 3.0 Hz), 12.52 (1H, s); MS *m/z*: 373 (M+H)⁺. Anal. Calcd for C₁₇H₂₀N₆O₄: C, 54.83; H, 5.41; N, 22.57. Found: C, 54.56; H, 5.43; N, 22.43.

6.1.21. 5-(2-Aminoethylamino)-7-(3,5-dimethoxyphenylamino)imidazo[1,2-c]pyrimidine-8-carboxamide (8c)

The title compound was prepared from **7f** and 2-aminoethylamine in the same manner as described for **8a**, and was obtained as white solid (46%): mp 221–223 °C (MeOH–THF); IR (KBr) 1668, 1595, 1502, 1478, 1372 cm⁻¹; ¹H NMR (DMSO- d_6) δ : 2.85 (2H, t, *J* = 6.0 Hz), 3.25–3.45 (3H, br), 3.56 (2H, t, *J* = 6.0 Hz), 3.76 (6H, s), 6.17 (1H, t, *J* = 2.0 Hz), 6.89 (2H, d, *J* = 2.0 Hz), 7.34 (1H, d, *J* = 1.5 Hz), 7.41 (1H, d, *J* = 3.0 Hz), 7.90 (1H, d, *J* = 1.5 Hz), 9.54 (1H, d, *J* = 3.0 Hz), 12.51 (1H, s); MS *m/z*: 372 (M+H)⁺. Anal. Calcd for C₁₇H₂₁N₇O₃·1.0C₅H₉NO: C, 56.16; H, 6.43; N, 23.81. Found: C, 55.57; H, 6.35; N, 23.66.

6.1.22. 5-(3-Aminopropylamino)-7-(3,5-dimethoxyphenylamino)imidazo[1,2-c]pyrimidine-8-carboxamide (8d)

The title compound was prepared from **7f** and 1,3-diaminopropane in the same manner as described for **8a**, and was obtained as white solid (24%): mp 241–242 °C (MeOH–THF); IR (KBr) 3390, 3282, 1691, 1594, 1553, 1503, 1480, 1458, 1239, 1149 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 1.82–1.86 (2H, m), 3.20 (2H, q, *J* = 7.5 Hz), 3.50–3.70 (2H, m), 3.75 (6H, s), 6.18 (1H, t, *J* = 2.0 Hz), 6.86 (2H, d, *J* = 2.0 Hz), 7.34 (1H, d, *J* = 2.0 Hz), 7.40 (1H, d, *J* = 4.5 Hz), 7.85 (1H, d, *J* = 2.0 Hz), 7.95–8.05 (2H, m), 8.31 (1H, br s), 9.53 (1H, d, *J* = 4.5 Hz), 12.49 (1H, s); MS *m/z*: 386 (M+H)⁺. Anal. Calcd for C₁₈H₂₃N₇O₃·1.0CH₄O: C, 54.66; H, 5.52; N, 23.49. Found: C, 54.79; H, 5.69; N, 23.31.

6.1.23. 7-(3,5-Dimethoxyphenylamino)-5-(2-methylcyclohexylamino)imidazo[1,2-c]pyrimidine-8-carboxamide (8e)

The title compound was prepared from **7f** and 2-methylcyclohexylamine in the same manner as described for **8a**, and was obtained as white solid (22%): mp 187–188 °C (MeOH–THF); IR (KBr) 3404, 2931, 1595, 1497, 1480, 1378, 1291, 1239, 1203, 1151, 1067 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 0.92 (3H, d, *J* = 8.0 Hz), 1.08–2.01 (9H, m), 3.74–3.84 (1H, m), 3.76 (6H, s), 6.21 (1H, t, *J* = 2.0 Hz), 6.83 (2H, d, *J* = 2.0 Hz), 7.34 (1H, d, *J* = 1.5 Hz), 7.36 (1H, d, *J* = 4.5 Hz), 7.60–8.17 (2H, m), 9.52 (1H, d, *J* = 4.5 Hz), 12.41 (1H, s); MS *m/z*: 425 (M+H)⁺. Anal. Calcd for C₂₂H₂₈N₆O₃: C, 62.25; H, 6.65; N, 19.80. Found: C, 61.87; H, 6.61; N, 19.65.

6.1.24. *cis*-7-(3,5-Dimethoxyphenylamino)-5-(2-hydroxycyclohexylamino)imidazo[1,2-*c*]pyrimidine-8-carboxamide (8f)

The title compound was prepared from **7f** and *cis*-2-hydroxycyclohexylamine in the same manner as described for **8a**, and was obtained as white solid (22%): mp 261–262 °C (MeOH–THF); IR (KBr) 3405, 2935, 1594, 1544, 1502, 1476, 1378, 1240, 1150 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ :1.25–2.00 (8 H, m), 3.75 (6H, s), 4.03–4.15 (2H, m), 4.80 (1H, d, *J* = 5.5 Hz), 6.16 (1H, t, *J* = 2.0 Hz), 6.79 (2H, d, *J* = 2.0 Hz), 7.31 (1H, d, *J* = 2.0 Hz), 7.37 (1H, d, *J* = 4.5 Hz), 7.85 (1H, d, *J* = 9.5 Hz), 8.14 (1H, d, *J* = 2.0 Hz), 9.54 (1H, d, *J* = 4.5 Hz), 12.37 (1H, s); MS *m/z*: 427 (M+H)⁺. Anal. Calcd for C₂₁H₂₆N₆O₄·0.2H₂O: C, 58.64; H, 6.19; N, 19.54. Found: C, 58.96; H, 6.23; N, 19.19.

6.1.25. *trans*-5-(2-Aminocyclohexylamino)-7-(3,5-dimethoxyphenylamino)imidazo[1,2-c]pyrimidine-8-carboxamide (8g)

The title compound was prepared from **7f** and *trans*-cyclohexyldiamine in the same manner as described for **8a**, and was obtained as white solid (37%): mp 213–215 °C (MeOH–THF); IR (KBr) 1598, 1499, 1457, 1240, 1147 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 1.05–1.41 (4H, m), 1.65–2.10 (4H, m), 2.71–2.78 (1H, m), 3.30–3.35 (3H, br), 3.75–3.83 (1H, m), 3.76 (6H, s), 6.20 (1H, t, *J* = 2.0 Hz), 6.84 (2H, d, *J* = 2.0 Hz), 7.33 (1H, d, *J* = 1.5 Hz), 7.38 (1H, d, *J* = 3.5 Hz), 7.96 (1H, d, *J* = 1.5 Hz), 9.54 (1H, d, *J* = 3.5 Hz), 12.41 (1H, s); MS *m/z*: 426 (M+H)⁺. Anal. Calcd for C₂₁H₂₇N₇O₃·0.8H₂O: C, 57.34; H, 6.55; N, 22.29. Found: C, 57.34; H, 6.25; N, 21.92.

6.1.26. *cis*-5-(2-Aminocyclohexylamino)-7-(2-methoxyphenylamino)imidazo[1,2-*c*]pyrimidine-8-carboxamide (9a)

The title compound was prepared from **7a** in the same manner as described for **8a**, and was obtained as white solid (16%): mp 212–214 °C (MeOH–THF); IR (KBr) 1608, 1502, 1480, 1382, 1233 cm⁻¹; ¹H NMR (DMSO- d_6) δ : 1.30–1.95 (8H, m), 3.26–3.34 (3H, br), 3.35–3.38 (1H, m), 3.85 (3H, s), 4.06–4.13 (1H, m), 6.90 (1H, dt, *J* = 8.0, 1.5 Hz), 7.19 (1H, dt, *J* = 8.0, 1.5 Hz), 7.30 (1H, dd, *J* = 8.0, 1.5 Hz), 7.19 (1H, d, *J* = 3.5 Hz), 7.32 (1H, d, *J* = 2.0 Hz), 8.07 (1H, d, *J* = 2.0 Hz), 8.38 (1H, dd, *J* = 8.0, 1.5 Hz), 9.49 (1H, d, *J* = 3.5 Hz), 12.35 (1H, s); MS *m/z*: 396 (M+H)⁺. Anal. Calcd for C₂₀H₂₅N₇O₂·0.7H₂O: 58.87; H, 6.52; N, 24.03. Found: C, 59.16; H, 6.40; N, 23.63.

6.1.27. *cis*-5-(2-Aminocyclohexylamino)-7-(3-methoxyphenylamino)imidazo[1,2-c]pyrimidine-8-carboxamide (9b)

The title compound was prepared from **7b** in the same manner as described **8a**, and obtained as white solid (26%): mp 188–190 °C (MeOH–THF); IR (KBr) 1598, 1497, 1374, 1238, 1150 cm⁻¹; ¹H NMR (DMSO- d_6) δ : 1.26–1.97 (8H, m), 3.25–3.38 (4H, m), 3.77 (3H, s), 4.07–4.15 (1H, m), 6.61 (1H, d, *J* = 8.0 Hz), 7.15 (1H, d, *J* = 7.5 Hz), 7.21 (1H, t, *J* = 7.5 Hz), 7.26 (1H, s), 7.32 (1H, br s), 7.39 (1H, br s), 8.10 (1H, s), 9.53 (1H, s), 12.39 (1H, s); MS *m/z*: 396 (M+H)⁺. Anal. Calcd for C₂₀H₂₅N₇O₂ 0.7H₂O: C, 58.87; H, 6.52; N, 24.03. Found: C, 59.19; H, 6.42; N, 23.65.

6.1.28. *cis*-5-(2-Aminocyclohexylamino)-7-(4-methoxyphenyl-amino)imidazo[1,2-c]pyrimidine-8-carboxamide (9c)

The title compound was prepared from **7c** in the same manner as described **8a**, and obtained as white solid (8.3%): mp 213–214 °C (MeOH–THF); IR (KBr) 1601, 1549, 1506, 1387, 1294, 1237 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.25–1.93 (8H, m), 3.26–3.38 (4H, m), 3.74 (3H, s), 3.98–4.05 (1H, m), 6.89 (2H, d, *J* = 9.0 Hz), 7.29 (1H, d, *J* = 1.5 Hz), 7.32 (1H, d, *J* = 3.5 Hz), 7.50 (2H, d, *J* = 9.0 Hz), 8.06 (1H, d, *J* = 1.5 Hz), 9.47 (1H, d, *J* = 3.5 Hz), 12.14 (1H, s); MS *m/z*: 396 (M+H)⁺. Anal. Calcd for C₂₀H₂₅N₇O₂ 0.3H₂O: C, 59.92; H, 6.44; N, 24.46. Found: C, 60.21; H, 6.41; N, 24.13.

6.1.29. *cis*-5-(2-Aminocyclohexylamino)-7-(3,5-difluorophenylamino)imidazo[1,2-*c*]pyrimidine-8-carboxamide (9d)

The title compound was prepared from **7d** in the same manner as described for **8a**, and was obtained as white solid (21%): mp 240–241 °C (MeOH–THF); IR (KBr) 1601, 1501, 1475, 1449, 1377, 1238, 1145 cm⁻¹; ¹H NMR (DMSO- d_6) δ : 1.28–1.98 (8H, m), 3.20–3.45 (3H, br), 3.36–3.41 (1H, m), 4.05–4.11 (1H, m), 6.75– 6.84 (1H, m), 7.36 (1H, d, *J* = 1.5 Hz), 7.37–7.41 (2H, m), 7.54 (1H, d, *J* = 3.0 Hz), 8.15 (1H, d, *J* = 1.5 Hz), 9.56 (1H, d, *J* = 3.0 Hz), 12.74 (1H, s); MS *m/z*: 402 (M+H)^{*}. Anal. Calcd for C₁₉H₂₁F₂N₇O·0.2CH₄O: C, 56.55; H, 5.39; N, 24.04. Found: C, 56.53; H, 5.30; N, 23.66.

6.1.30. *cis*-5-(2-Aminocyclohexylamino)-7-(3,5-dimethylphenylamino)imidazo[1,2-*c*]pyrimidine-8-carboxamide (9e)

The title compound was prepared from **7e** in the same manner as described for **8a**, and was obtained as white solid (16%): mp 188–189 °C (MeOH–THF); IR (KBr) 1616, 1558, 1539, 1499, 1375 cm⁻¹; ¹H NMR (DMSO- d_6) δ : 1.22–1.94 (8H, m), 2.28 (6H, s), 3.26–3.38 (4H, m), 4.11–4.16 (1H, m), 6.66 (1H, s), 7.23 (2H, s), 7.31 (1H, s), 7.37 (1H, d, *J* = 3.0 Hz), 8.10 (1H, s), 9.54 (1H, d, *J* = 3.0 Hz), 12.35 (1H, s); MS *m/z*: 394 (M+H)⁺. Anal. Calcd for C₂₁H₂₇N₇O·0.3CH₄O: C, 63.47; H, 7.05; N, 24.32. Found: C, 63.64; H, 6.91; N, 24.05.

6.1.31. *cis*-5-(2-Aminocyclohexylamino)-7-(3,5-dimethoxyl-phenylamino)imidazo[1,2-c]pyrimidine-8-carboxamide (9f)

The title compound was prepared from **7f** in the same manner as described for **8a**, and was obtained as white solid (37%): mp 198–200 °C (MeOH–THF); IR (KBr) 1596, 1540, 1497, 1240, 1154 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 1.26–1.96 (8H, m), 3.26–3.40 (4H, m), 3.75 (6H, s), 4.11–4.18 (1H, m), 6.21 (1H, s), 6.80 (2H, d, *J* = 2.0 Hz), 7.33 (1H, s), 7.40 (1H, s), 8.11 (1H, s), 9.54 (1H, s), 12.38 (1H, s); MS *m/z*: 426 (M+H)⁺. Anal. Calcd for C₂₁H₂₇N₇O₃·1.0H₂O: C, 56.87; H, 6.59; N, 22.11. Found: C, 56.76; H, 6.30; N, 21.87.

6.1.32. 4-(3,5-Dimethoxyphenylamino)-6-((*R*)-2-hydroxy-1-phenylethylamino)-2-methylsulfanylpyrimidine-5-carbonitrile (10)

A mixture of compound **4f** (0.914 g, 2.71 mmol), (*R*)-(-)-2amino-2-phenylethanol (0.391 g, 2.85 mmol) and diisopropylethylamine (0.520 mL, 2.99 mmol) in DMF (10 mL) was stirred at 50 °C for 3 h. Water was added to the mixture and extracted with EtOAc. The organic phase was washed with water and brine, sequentially, dried over anhydrous MgSO₄, and evaporated in vacuo. Resulting residue was purified by column chromatography on silica gel with hexane/EtOAc = 1:1 to give 10 (0.876 g, 74%) as yellowish solid: mp 141–144 °C (MeOH); α_D^{28} –34.78° (c 0.23, MeOH); IR (KBr) 2195, 1591, 1560, 1487, 1437, 1155 cm⁻¹; ¹H NMR (DMSO-d₆) δ: 2.31 (3H, s), 3.65-3.84 (2H, m), 3.70 (6H, s), 5.04 (1H, t, J = 6.0 Hz), 5.21–5.28 (1H, m), 6.21 (1H, t, J = 2.0 Hz), 6.82 (2H, d, J=2.0 Hz), 7.20-7.40 (5H, m), 7.70 (1H, d, I = 7.0 Hz), 9.14 (1H, s); MS m/z: 438 (M+H)⁺. Anal. Calcd for C₂₂H₂₃N₅O₃S·0.1H₂O: C, 60.14; H, 5.32; N, 15.94. Found: C, 59.92; H, 5.26; N, 15.91.

6.1.33. (*R*)-7-(3,5-Dimethoxyphenylamino)-5-methylsulfanyl-2-phenyl-2,3-dihydroimidazo[1,2-c]pyrimidine-8-carbonitrile (11)

A solution of compound **10** (0.697 g, 1.59 mmol) in phosphorus oxychloride (6 mL) was stirred at 60 °C for 3 h. The mixture was poured into ice-cold water and neutralized with NaHCO₃ powder. The mixture was extracted with EtOAc. The organic phase was wished with water and brine, sequentially, dried over anhydrous MgSO₄, and evaporated in vacuo. The residue was triturated from Et₂O and resulting precipitates were collected by suction filtration to give **11** (0.622 g, 93%) as yellowish solid: mp 207–209 °C (MeOH–THF); α_D^{28} –76.30° (*c* 0.54, MeOH); IR (KBr) 2195, 1645, 1588, 1489, 1405, 1205, 1154 cm⁻¹; ¹H NMR (DMSO-d₆) δ : 2.47 (3H, s), 3.55–3.62 (1H, m), 3.71 (6H, s), 4.36 (1H, t, *J* = 10.0 Hz), 5.26 (1H, dd, *J* = 10.0 Hz, 2.5 Hz), 6.26 (1H, t, *J* = 2.0 Hz), 6.70 (2H, d, *J* = 2.0 Hz), 7.25–7.39 (5H, m), 9.43 (1H, s); MS *m/z*: 420 (M+H)⁺. Anal. Calcd for C₂₂H₂₁N₅O₂S-0.15CH₄O: C, 62.70; H, 5.13; N, 16.50. Found: C, 63.06; H, 5.20; N, 16.14.

6.1.34. *tert*-Butyl {(1*S*,2*R*)-2-[(*R*)-8-cyano-7-(3,5-dimethoxyphenylamino)-2-phenyl-2,3-dihydroimidazo[1,2-*c*]pyrimidin-5-ylamino]-cyclohexyl}carbamate (12a) and *tert*-butyl {(1*R*,2*S*)-2-[(*R*)-8-cyano-7-(3,5-dimethoxyphenylamino)-2-phenyl-2,3dihydroimidazo[1,2-*c*]pyrimidin-5ylamino]cyclohexyl}carbamate (12b)

To a suspension of compound **11** (1.260 g, 3.00 mmol) in DMF (12 mL) was added *cis*-1,2-diaminocyclohexane (1.80 mL, 15.00 mmol) and the mixture was stirred for 5 h at 50 °C. The mixture was poured into water and extracted with EtOAc. The organic layer was washed with water and brine, sequentially, dried over Na₂SO₄, and evaporated in vacuo. The residue was dissolved in CH₂Cl₂ (10 mL) and added di-*tert*-butyldicarbonate (0.655 g, 3.00 mmol), then stirred overnight at room temperature. The mixture was purified by column chromatography on silica gel with hexane/EtOAc = 1:4 \rightarrow MeOH/EtOAc = 1:50 \rightarrow 1:30 to give **12a** (0.454 g, 26%) as white solid and **12b** (0.580 g, 33%) as white solid.

Physicochemical data of **12a**: mp 163–164 °C (MeOH–THF); α_D^{28} –65.22° (*c* 0.23, MeOH); IR (KBr) 2196, 1591, 1538, 1506, 1457, 1204, 1155 cm⁻¹; ¹H NMR (CDCl₃) δ: 1.18–1.39 (2H, m), 1.40 (9H, s), 1.41–1.83 (6H, m), 2.08–2.18 (1H, m), 3.45 (1H, dd, *J* = 10.0, 2.0 Hz), 3.77 (6H, s), 3.78–3.82 (1H, m), 3.96–4.02 (1H, m), 4.23 (1H, t, *J* = 10.0 Hz), 4.83 (1H, d, *J* = 5.5 Hz), 5.43 (1H, dd, *J* = 10.0 Hz, 2.0 Hz), 6.22 (1H, t, *J* = 2.0 Hz), 6.68 (2H, d, *J* = 2.0 Hz), 6.92 (1H, s), 7.20-7.25 (1H, m), 7.31–7.36 (4H, m); MS *m/z*: 586 (M+H)⁺. Anal. Calcd for C₃₂H₃₉N₇O₄: C, 65.62; H, 6.71; N, 16.74. Found: C, 65.39; H, 6.72; N, 16.84.

Physicochemical data of **12b**: mp 202–203 °C (MeOH–THF); α_D^{28} –127.41° (*c* 0.27, MeOH); IR (KBr) 2195, 1591, 1528, 1506, 1457, 1204, 1153 cm⁻¹; ¹H NMR (CDCl₃) δ: 1.42 (9H, s), 1.43–1.82 (8H, m), 2.10–2.18 (1H, m), 3.64–3.69 (1H, m), 3.77 (6H, s), 3.78–3.82 (1H, m), 3.91–3.96 (1H, m), 4.00 (1H, t, *J* = 10.5 Hz), 4.81 (1H, d, *J* = 5.0 Hz), 5.38 (1H, dd, *J* = 10.5 Hz, 2.0 Hz), 6.22 (1H, t, *J* = 2.0 Hz), 6.69 (2H, d, *J* = 2.0 Hz), 6.92 (1H, s), 7.27–7.38 (5H, m); MS *m/z*: 586 (M+H)⁺. Anal. Calcd for C₃₂H₃₉N₇O₄·0.8H₂O: C, 64.04; H, 6.82; N, 16.34. Found: C, 64.13; H, 6.82; N, 16.26.

6.1.35. *tert*-Butyl {(1*S*,2*R*)-2-[(*R*)-8-carbamoyl-7-(3,5dimethoxyphenylamino)-2-phenyl-2,3-dihydroimidazo[1,2*c*]pyrimidin-5-ylamino]cyclohexyl}carbamate (13a)

To a solution of compound **12a** (0.454 g, 0.755 mmol) in DMSO (6 mL) and EtOH (3 mL) was added 5 M NaOH solution (1.09 mL, 5.43 mmol) and 30% H_2O_2 solution (0.615 mL, 5.43 mmol), then the mixture was stirred overnight at room temperature. Water (1 mL) was added and the mixture was adjusted at pH 11 with 1 M HCl solution. The obtained pale yellow precipitate was collected by filtration and washed with H_2O . The solid was dried at

50 °C and was purified by column chromatography on APS with EtOAc to give **13a** (0.332 g, 71%) as white solid: mp 210–211 °C (EtOAc); α_D^{28} –83.08° (*c* 0.13, MeOH); IR (KBr) 1692, 1630, 1595, 1529, 1497, 1456, 1202, 1154 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.20–1.42 (2H, m), 1.41 (9H, s), 1.52–1.82 (6H, m), 2.18–2.26 (1H, m), 3.44 (1H, dd, *J* = 9.5, 2.0 Hz), 3.76 (6H, s), 3.84–3.92 (1H, m), 3.98–4.04 (1H, m), 4.25 (1H, t, *J* = 10.5 Hz), 4.85 (1H, d, *J* = 5.5 Hz), 5.20–5.40 (1H, br), 5.43 (1H, dd, *J* = 10.5, 2.0 Hz), 6.17 (1H, t, *J* = 2.0 Hz), 6.85 (2H, d, *J* = 2.0 Hz), 6.84–6.93 (1H, br), 7.26–7.36 (5H, m), 12.56 (1H, s); MS *m/z*: 604 (M+H)⁺. Anal. Calcd for C₃₂H₄₁N₇O₅: C, 63.29; H, 6.87; N, 16.14. Found: C, 63.04; H, 6.80; N, 16.14.

6.1.36. *tert*-Butyl {(1*R*,2*S*)-2-[(*R*)-8-carbamoyl-7-(3,5dimethoxyphenylamino)-2-phenyl-2,3-dihydroimidazo[1,2*c*]pyrimidin-5-ylamino]cyclohexyl}carbamate (13b)

The title compound was prepared from **12b** in the same manner as described for **13a**, and was obtained as white solid (64%): mp 248–249 °C (EtOAc); α_D^{28} –98.67° (*c* 0.15, MeOH); IR (KBr) 1715, 1623, 1597, 1524, 1496, 1457, 1163 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.20–1.41 (2H, m), 1.42 (9H, s), 1.52–1.81 (6H, m), 2.18–2.25 (1H, m), 3.61–3.68 (1H, m), 3.76 (6H, s), 3.86–3.98 (2H, m), 4.02 (1H, t, *J* = 10.5 Hz), 4.79–4.85 (1H, m), 5.23–5.28 (1H, m), 5.38 (1H, dd, *J* = 10.5 Hz, 2.0 Hz), 6.17 (1H, t, *J* = 2.0 Hz), 6.85 (2H, d, *J* = 2.0 Hz), 7.26–7.36 (5H, m), 10.03 (1H, s), 12.58 (1H, s); MS *m/z*: 604 (M+H)⁺. Anal. Calcd for C₃₂H₄₁N₇O₅·0.5C₄H₈O₂: C, 63.04; H, 7.00; N, 15.13. Found: C, 62.72; H, 6.99; N, 14.90.

6.1.37. *tert*-Butyl {(1*S*,2*R*)-2-[8-carbamoyl-7-(3,5-dimethoxy-phenylamino)-2-phenylimidazo[1,2-*c*]pyrimidin-5-ylamino]-cyclohexyl}carbamate (14a)

To a mixture of compound 13a (0.170 g, 0.282 mmol) and 10% Pd-C (56.5% water containing reagent, 0.040 g) in DMSO (1 mL) and EtOH (1 mL) was added cyclohexene (0.086 mL, 0.845 mmol) and was stirred overnight at 100 °C under oxygen atmosphere. Catalyst was removed by filtration through Celite and the filtrate was dissolved in EtOAc. The mixture was washed with water and brine, sequentially, dried over anhydrous MgSO₄, and evaporated in vacuo. Resulting residue was purified by column chromatography on silica gel with hexane/EtOAc = 1:1 to give 14a (0.060 g, 35%) as white solid: mp 224-225 °C (EtOAc); $\alpha_{\rm D}^{28}$ +12.17° (*c* 0.23, MeOH); IR (KBr) 1685, 1602, 1498, 1458, 1236, 1202, 1153 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.30–1.55 (2H, m), 1.58 (9H, s), 1.60-1.92 (6H, m), 3.79 (6H, s), 4.01-4.17 (2H, m), 4.98 (1H, d, J = 6.0 Hz), 5.55 (1H, s), 6.18 (1H, t, J = 2.0 Hz), 6.92 (2H, d, J = 2.0 Hz), 7.28–7.34 (1H, m), 7.41 (2H, t, J = 8.0 Hz), 7.55 (1H, s), 7.87 (2H, d, J = 8.0 Hz), 8.19 (1H, s), 10.10 (1H, s), 12.18 (1H, s); MS m/z: 602 (M+H)⁺. Anal. Calcd for C₃₂H₃₉N₇O₅: C, 63.88; H, 6.53; N, 16.30. Found: C, 63.58; H, 6.54; N, 16.02.

6.1.38. *tert*-Butyl {(1R,2S)-2-[8-carbamoyl-7-(3,5-dimethoxy-phenylamino)-2-phenylimidazo[1,2-c]pyrimidin-5-ylamino]-cyclohexyl}carbamate (14b)

The title compound was prepared from **13b** in the same manner as described for **14a**, and was obtained **14b** as white solid (33%): mp 222–224 °C (EtOAc); α_D^{28} –25.00° (*c* 0.20, MeOH); IR (KBr) 1685, 1599, 1497, 1458, 1380, 1235, 1202, 1152 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.29–1.55 (2H, m), 1.58 (9H, s), 1.61–1.92 (6H, m), 3.79 (6H, s), 4.01–4.17 (2H, m), 4.79–4.85 (1H, m), 5.55 (1H, s), 6.18 (1H, t, *J* = 2.0 Hz), 6.92 (2H, d, *J* = 2.0 Hz), 7.28–7.34 (1H, m), 7.41 (2H, t, *J* = 8.0 Hz), 7.55 (1H, s), 7.87 (2H, d, *J* = 8.0 Hz), 8.17 (1H, s), 10.10 (1H, s), 12.18 (1H, s); MS *m/z*: 602 (M+H)⁺. Anal. Calcd for C₃₂H₃₉N₇O₅·0.2H₂O: C, 63.49; H, 6.56; N, 16.19. Found: C, 63.24; H, 6.47; N, 16.03.

6.1.39. *tert*-Butyl {2-[8-Carbamoyl-7-(3,5-dimethoxyphenyl-amino)-2-phenylimidazo[1,2-c]pyrimidin-5-ylamino]-1,1-dimethyl-ethyl}-carbamate (14c)

A suspension of compound 11 (0.126 g, 0.300 mmol) and 2methylpropane-1,2-diamine (0.157 mL, 1.500 mmol) in DMF (4 mL) was stirred for 4 h at 60 °C. The mixture was poured into H₂O and extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated in vacuo. The residue was dissolved in CH₂Cl₂ (8 mL) and added di-tertbutyldicarbonate (0.066 g, 0.300 mmol) and stirred overnight at room temperature. The mixture was purified by column chromatography on APS with EtOAc \rightarrow MeOH/EtOAc = 1:10 to give **12c** (0.094 g, 56%) as yellowish amorphous. The title compound was prepared from 12c in the same manner as described for 13a and **14a**, and was obtained **14c** as white solid (15%, three steps yield): mp 210–212 °C (EtOAc); IR (KBr) 1617, 1596, 1559, 1457, 1204, 1151 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.45 (6H, s), 1.51 (9H, s), 2.98 (2H, s), 3.77 (1H, d, J = 5.0 Hz), 3.79 (6H, s), 4.87 (1H, s), 5.58 (1H, s), 6.18 (1H, t, J=2.0 Hz), 6.97 (1H, d, *I* = 2.0 Hz), 7.31–7.35 (1H, m), 7.43 (2H, t, *I* = 8.0 Hz), 7.61 (1H, s), 7.90 (2H, d, J = 8.0 Hz), 8.17 (1H, s), 10.10 (1H, s), 12.24 (1H, s); MS m/z: 576 (M+H)⁺. Anal. Calcd for C₃₀H₃₇N₇O₅: C, 62.59; H, 6.48; N, 17.03. Found: C, 62.29; H, 6.46; N, 16.88.

6.1.40. 5-((1*R*,2*S*)-2-Aminocyclohexylamino)-7-(3,5-dimethoxyphenylamino)-2-phenylimidazo[1,2-*c*]pyrimidine-8-carboxamide (15a)

To a mixture of compound **14a** (0.035 mg, 0.0582 mmol) in MeOH (1 mL) was added 4 M HCl–EtOAc (2 mL). After being stirred for 1 h at room temperature, volatiles were evaporated in vacuo and to the residue was added EtOAc. Resulting precipitates were collected by suction filtration and dried under reduced pressure to give **15a** (0.027 mg, 86%) as yellowish solid: mp 279–280 °C (EtOAc); α_D^{28} +1.90° (*c* 0.21, DMSO); IR (KBr) 1599, 1500, 1375, 1238, 1203, 1155 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 1.38–2.06 (8H, m), 3.77 (6H, s), 3.79–3.92 (2H, m), 4.31–4.39 (1H, m), 6.25 (1H, t, *J* = 2.0 Hz), 6.78 (1H, d, *J* = 2.0 Hz), 7.36 (1H, t, *J* = 8.0 Hz), 7.49 (2H, t, *J* = 8.0 Hz), 7.55 (1H, s), 7.88 (2H, d, *J* = 8.0 Hz), 8.02 (4H, br s), 8.70 (1H, s), 9.67 (1H, br s), 12.42 (1H, s); MS *m/z*: 502 (M+H)⁺. Anal. Calcd for C₂₇H₃₁N₇O₃·2.0HCl: C, 56.45; H, 5.79; N, 17.07. Found: C, 56.57; H, 5.98; N, 16.80.

6.1.41. 5-((1*S*,2*R*)-2-Aminocyclohexylamino)-7-(3,5-dimethoxyphenylamino)-2-phenylimidazo[1,2-c]pyrimidine-8-carboxamide (15b)

The title compound was prepared from **14b** in the same manner as described for **15a**, and was obtained **15b** as yellowish solid (54%): mp 280–281 °C (EtOAc); α_D^{28} +5.22° (*c* 0.23, DMSO); IR (KBr) 1653, 1600, 1560, 1507, 1155 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ : 1.38–2.06 (8H, m), 3.77 (6H, s), 3.78–3.86 (2H, m), 4.34 (1H, br s), 4.35 (1H, br s), 6.25 (1H, t, *J* = 2.0 Hz), 6.78 (1H, d, *J* = 2.0 Hz), 7.36 (1H, t, *J* = 8.0 Hz), 7.49 (2H, t, *J* = 8.0 Hz), 7.55 (1H, s), 7.88 (2H, d, *J* = 8.0 Hz), 8.01 (4H, br s), 8.70 (1H, s), 9.65 (1H, br s), 12.42 (1H, s); MS *m/z*: 502 (M+H)⁺. Anal. Calcd for C₂₇H₃₁N₇O₃·2.0HCl: C, 56.45; H, 5.79; N, 17.07. Found: C, 56.34; H, 5.88; N, 16.83.

6.1.42. 5-(2-Amino-2-methylpropylamino)-7-(3,5-dimethoxyphenylamino)-2-phenylimidazo[1,2-c]pyrimidine-8-carboxamide (15c)

To a mixture of compound **14c** (0.016 g, 0.028 mmol) in CH_2CI_2 (0.5 mL) was added TFA (0.2 mL) and the mixture was stirred for 1 h at room temperature. Volatiles were evaporated in vacuo and to the residue was added EtOAc. Resulting precipitates were collected by suction filtration and dried under reduced pressure to

give **15c** (0.012 g, 73%) as yellowish solid: mp 252–254 °C (EtOAc); IR (KBr) 1599, 1559, 1507, 1203, 1154 cm⁻¹; ¹H NMR (DMSO- d_6) δ : 1.34 (6H, s), 3.77 (6H, s), 3.78–3.84 (2H, m), 6.24 (1H, s), 6.84 (2H, s), 7.37 (1H, t, *J* = 8.0 Hz), 7.49 (2H, t, *J* = 8.0 Hz), 7.56 (1H, s), 7.87 (2H, d, *J* = 8.0 Hz), 8.02 (3H, br s), 8.53 (1H, s), 8.61 (1H, br s), 9.63 (1H, br s), 12.46 (1H, s); MS *m/z*: 476 (M+H)⁺. Anal. Calcd for C₂₅H₂₉N₇O₃·C₂HF₃O₂·0.1H₂O: C, 54.83; H, 5.15; N, 16.58. Found: C, 54.55; H, 5.39; N, 16.91.

6.2. Molecular modeling

The 3D coordinates of the ZAP-70 receptor model were constructed based on the published crystal structure of an activated Lck kinase domain^{16,17} (PDB code: 1QPD) using the program FAMS.¹⁷ The structure of staurosporine was extracted from the X-ray structure of LCK (PDB code: 1QPD) and manually docked into the ATP-binding site of the ZAP-70 receptor model using QUAN-TA2000²⁴ (Accelrys Inc., San Diego, CA, USA). All docking calculations were performed using the program ADAM.¹⁸

6.3. Biology

6.3.1. Intracellular ZAP-70 kinase inhibition assay

The kinase domain of human ZAP-70 kinase (Leu325-Ala619) was cloned to Ndel and Xhol sites of pET-19b expression vector (Novagen Inc.) by PCR amplification from human thymus Marathon-Ready[™] cDNA (Clontech Inc.). The ZAP-70 kinase domain binding with pET-19b His-tag gene at 5' region was integrated into pFASTBAC1 vector of the BAC-TO-BAC[™] (Gibco-BRL Inc.) baculovirus expression system. The transfected virus was obtained by transfecting Sf-9 cell (Invitrogen Inc.) with pFASTBAC1 containing His-tag-fused ZAP kinase domain described above. High Five[™] baculocells, which was infected with this transfected virus, were recovered and these cells were dissolved by ultrasonication. After soluble fraction being separated by centrifuge, the supernatant was added to TALON[™] metal affinity resin (Clontech Inc.) and to this resin was adsorbed His-tag-fused protein of ZAP-70 kinase domain. The resin was washed several times and extracted Histag-fused protein of ZAP-70 kinase domain by imidazole containing a buffer. A coupled spectrophotometric assay was used wherein ADP generated by ZAP-70 kinase was converted to ATP by pyruvate kinase (PK), with concomitant production of pyruvate from phosphoenolpyruvate (PEP). LDH reduces pyruvate to lactate by oxidizing NADH. NADH depletion was monitored at 340 nm using a microplate reader (Spectra Max 250, Molecular Device) at 30 °C for 20 min. Reactions were performed at 30 °C in 100 mM Hepes buffer (pH 7.6), containing 20 mM MgCl₂, and 10% glycerol, and started by adding ATP. PK (150 µg/mL), LDH (500 μ g/mL), PEP (2.5 mM), and NADH (150 μ M) were added in large excess. Addition of 100 µM ZAP-70 optimal peptide substrate (peptide sequence: AEEEIYGEFEAKKKK, Sawady, Tokyo), allowed measurement of kinase activity.

6.3.2. Intracellular Syk kinase inhibition assay

The kinase domain of human Syk kinase (Met343–Asn635) was cloned to Ndel and Xhol sites of pET-19b expression vector (Novagen Inc.) by PCR amplification from human thymus Marathon-Ready™ cDNA (Clontech Inc.). The Syk kinase domain binding with pET-19b His-tag gene at 5' region was integrated to pFASTBAC1 vector of the BAC-TO-BAC[™] baculovirus expression system (Gibco-BRL Inc.). The transfected virus was obtained by transfecting Sf-9 cell (Invitrogen Inc.) with pFASTBAC vector containing His-tag-fused Syk kinase domain described above. High Five[™] baculocells, which was infected with this transfected virus, were recovered and dissolved by ultrasonication. After soluble fraction being separated by centrifuge, the supernatant was

mixed with TALON[™] metal affinity resin (Clontech Inc.) and to this resin was adsorbed His-tag fused protein of Syk kinase domain. The resin was washed several times and extracted His-tag fused protein of Syk kinase domain by imidazole containing a buffer. A coupled spectrophotometric assay was used wherein ADP generated by Syk kinase was converted to ATP by pyruvate kinase (PK), with concomitant production of pyruvate from phosphoenolpyruvate (PEP). LDH reduces pyruvate to lactate by oxidizing NADH. NADH depletion was monitored at 340 nm using a microplate reader (Spectra Max 250, Molecular Device) at 30 °C for 20 min. Reactions were performed at 37 °C in 100 mM Hepes buffer (pH 7.6), containing 40 mM MgCl₂ and 10% glycerol, and started by adding ATP. PK (150 µg/mL), LDH (50 µg/mL), PEP (2.5 mM), and NADH (200 µM) were added in large excess. Addition of 100 µM Syk optimal peptide (peptide sequence: AEEEIY-GEFEAKKKK. Sawady. Tokyo) allowed measurement of kinase activity.

6.3.3. Peripheral blood mononuclear cells (PBMCs) and whole blood (WB)

6.3.3.1. Preparation of PBMCs. Heparinized human peripheral blood was obtained from healthy donors. PBMCs were isolated by the Ficoll-Hypaque gradient density method as described previously. Blood cells were diluted with PBS buffer, and then centrifuged in a Ficoll-Hypaque discontinuous gradient at 1500 rpm for 30 min. The PBMC layers were collected and washed with cold distilled water and $10 \times$ Hanks' buffer saline solution (HBSS) to remove red blood cells. The cells were resuspended to a concentration of 2×10^6 cells/mL inAIM-V medium (Invitrogen) containing100 U/mL penicillin and 100 µg/mL streptomycin.

6.3.3.2. Determination of IL-2 production by PBMCs and WB. PBMCs or WB were cultured with 10 µg/mL PHA alone or in combination with varying concentrations of compounds in 5% CO₂-air humidified atmosphere at 37 °C for 24 h. The cell supernatants were then collected and assayed for IL-2 concentrations by the enzyme-linked immunoassay (ELISA). The ELISA used here are not reported to exhibit detectable cross-reactivity with the other cytokines.

6.3.4. Passive cutaneous anaphylaxis (PCA) assays

ICR mice were passively sensitized by subcutaneously injecting anti-dinitrophenyl (DNP)-coupled IgE under the right ear pinna, while lightly anesthetizing with ether. After 48 h, each mouse was challenged by injecting a mixture of DNP-conjugated bovine serum albumin and 250 µL of 0.5% Evans blue solution via the tail vein to induce passive cutaneous anaphylaxis. Thirty minutes after the challenge, the mice were sacrificed to take ears and the amount of dye from the blueing region was measured. Test compounds or vehicle alone as a control were orally administered to the mice 1 h before the antigen challenge. The dye in the tissues was extracted with acetone and colorimetrically determined at 620 nm. The PCA reaction (% of vehicle) by the test compound was calculated based on the following equation. In the formula, A: amount of dye leaked into the sensitized ear at the time of administration of the vehicle alone; B: amount of dye leaked into the unsensitized ear at the time of administration of vehicle alone; C: amount of dye leaked into the sensitized ear at the time of administration of the compound to be tested. Amount of dye leaked (% of vehicle) = {(A - B) - (C - B)} × 100/(A - B).

6.3.5. ConA-induced IL-2 levels in vivo

In initial experiments, the kinetics of IL-2 production following intravenous injection of ConA (20 mg/kg) was analyzed, and the time point with maximum plasma IL-2 concentration was chosen to study the effect of compounds. One hour after oral or subcutane-

ous administration of compounds, ConA (20 mg/kg) was intravenously injected. Groups of mice (n = 4) were euthanized at 2 h following ConA treatment. Plasma was collected and analyzed for IL-2 levels by ELISA. The ELISA used here are not reported to exhibit detectable cross-reactivity with the other cytokines.

6.3.6. Single-crystal X-ray diffraction analysis of compound 13a

A colorless prismatic crystal of compound [13a], [13a $C_{32}H_{41}N_7O_5$ (FW = [603.71]) having approximate dimensions of $0.5 \times 0.2 \times 0.2$ mm was mounted on a nylon loop (Hampton Research, Aliso Viejo, CA, USA). All measurements were made on an R-AXIS V imaging plate detector (Rigaku, Tokyo, Japan) with synchrotron radiation at SPring-8 BL32B2 beam line (Hyogo, Japan). Cell constants and an orientation matrix for data collection, obtained from a least-squares refinement using the setting angles of 25 carefullv centered reflections in the range $58.26 < 2h < 60.17^{\circ}$, corresponded to a primitive triclinic cell (P1. for Z = 1) with dimensions: a = 17.772(3) Å, b = 10.812(3) Å, c = 10.286(3) Å, V = 1976.2(7) Å 3, the calculated density: 1.22 g/ cm³. The data were collected at a temperature of -170 ± 1.0 °C at a maximum resolution of 0.86 Å (λ = 0.71 Å). The low-temperature experiment was performed using Paratone-N-coated rapidly cooled crystals on the tip of a copper pin. Of the 32,817 reflections that were collected, 32,452 were unique (Rint = 0.032). Data were collected and processed using the CrystalClear program (Version. 1.3.5; Rigaku). The structure was solved by direct methods²⁵ and expanded using Fourier techniques.²⁶ The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were detected using difference Fourier techniques, and their positions were fixed in the course of refinement. The final cycle of full-matrix leastsquares refinement²⁷ was based on 3087 independent reflections and 440 variable parameters, and converged (largest parameter shift was 1.69 times its esd) with unweighted and weighted agreement factors of R = 0.066 and $R_w = 0.111$, respectively. The goodness of fit²⁸ was 1.34. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.30 and $-0.27 e^{-1}$ Å³, respectively. Neutral atoms scattering factors were taken from Cromer and Weber.²⁹ and the values for the mass attenuation coefficients are those of Creagh and Hubbel.³⁰ All calculations were performed using the teXsan³¹ crystallographic software package of the Molecular Structure Corporation (The Woodlands, TX, USA).

Acknowledgments

We are grateful to Dr. K. Hasegawa and the staff of SPring-8 BL32B2 for assistance with X-ray data collection. We thank Dr. Y. Terao for assistance with the syntheses and helpful discussions, and Dr. N. Tanaka for valuable suggestions during the preparation of this manuscript.

References and notes

- (a) Schlessinger, J.; Ullrich, A. Neuron 1992, 9, 383; (b) Van der Geer, P.; Hunter, T.; Lindberg, R. A. Annu. Rev. Cell. Biol. 1994, 10, 251; (c) Liu, X.; Pawson, T. Recent Prog. Horm. Res. 1994, 49, 149; (d) Levitzki, A.; Gazit, A. Science 1995, 267, 1782.
- Taniguchi, T.; Kobayashi, T.; Kondo, J.; Takahashi, K.; Nakamura, H.; Suzuki, J.; Nagai, K.; Yamada, T.; Nakamura, S.; Yamamura, H. J. Biol. Chem. 1991, 266, 15790.
- 3. Chan, A. C.; Iwashima, M.; Turck, C. W.; Weiss, A. Cell 1992, 71, 649.
- Wong, B. R.; Grossbard, E. B.; Payan, D. G.; Masuda, E. S. Expert Opin. Investig. Drugs 2004, 13, 743.
- 5. Singh, R.; Masuda, E. S. Annu. Rep. Med. Chem. 2007, 42, 379.
- 6. Faruki, S.; Geahlen, R. L.; Asai, D. J. J. Cell. Sci. 2000, 113, 2557.
- Braselmann, S.; Taylor, V.; Zhao, H.; Wang, S.; Sylvain, C.; Baluom, M.; Qu, K.; Herlaar, E.; Lau, A.; Young, C.; Wong, B. R.; Lovell, S.; Sun, T.; Park, G.; Argade, A.; Jurcevic, S.; Pine, P.; Singh, R.; Grossbard, E. B.; Payan, D. G.; Masuda, E. S. J. Pharmacol. Exp. Ther. 2006, 319, 998.
- 8. Zhu, Y.; Herlaar, E.; Masuda, E. S.; Burleson, G. R.; Nelson, A. J.; Grossbard, E. B.; Clemens, G. R. Toxicol. Appl. Pharmacol. 2007, 221, 268.

- Matsubara, S.; Koya, T.; Takeda, K.; Joetham, A.; Miyahara, N.; Pine, P.; Masuda, E. S.; Swasey, C. H.; Gelfand, E. W. Am. J. Respir. Cell Mol. Biol. 2006, 34, 426.
- Hisamichi, H.; Naito, R.; Toyoshima, A.; Kawano, N.; Ichikawa, A.; Orita, A.; Orita, M.; Hamada, N.; Takeuchi, M.; Ohta, M.; Tsukamoto, S. *Bioorg. Med. Chem.* 2005, 13, 4936.
- Yamamoto, N.; Takeshita, K.; Shichijo, M.; Kokubo, T.; Sato, M.; Nakashima, K.; Ishimori, M.; Nagai, H.; Li, Y.; Yura, T.; Bacon, K. B. J. Pharmacol. Exp. Ther. 2003, 306, 1174.
- (a) Hirabayashi, A.; Shiohara, H.; Kobayashi, H.; Terao, Y.; Miyazawa, K.; Misawa, K. Jpn. Kokai Tokkyo Koho JP 2004238296.; (b) Hirabayashi, A.; Mukaiyama, H.; Kobayashi, H.; Shiohara, H.; Nakayama, S.; Ozawa, M.; Miyazawa, K.; Misawa, K.; Ohnota, H.; Isaji, M. Bioorg. Med. Chem. 2008, 16, 7347.
- 13. Ren, S.; Lien, E. J. Prog. Drug Res. 2000, 54, 1.
- 14. Kinoshita, M.; Baba, K.; Nagayasu, A.; Yamabe, K.; Shimooka, T.; Takeichi, Y.; Azuma, M.; Houchi, H.; Minakuchi, K. J. Pharm. Sci. **2002**, *91*, 362.
- 15. Santilli, A. A.; Kim, D. H.; Wanser, S. V. J. Heterocycl. Chem. 1971, 8, 445.
- 16. Yamaguchi, H.; Hendrickson, W. A. Nature 1996, 384, 484.
- Zhu, X.; Kim, J. L.; Newcomb, J. R.; Rose, P. E.; Stover, D. R.; Toledo, L. M.; Zhao, H.; Morgenstern, K. A. *Structure* **1999**, *7*, 651.
- (a) Ogata, K.; Umeyama, H. Struct. Funct. Genet. 1998, 31, 355; (b) Ogata, K.; Umeyama, H. J. Mol. Graph. Model. 2000, 18, 258.
- 19. Yamada Mizutani, M.; Tomioka, N.; Itai, A. J. Mol. Biol. 1994, 243, 310.
- (a) Palm, K.; Luthman, K.; Ungell, A.; Strandlund, G.; Artursson, P. J. Pharm. Sci. 1996, 85, 32; (b) Remko, M.; Swart, M.; Bickelhaupt, F. M. Bioorg. Med. Chem. 2006, 14, 1715.
- Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615.

- Jin, L.; Pluskey, S.; Petrella, E. C.; Cantin, S. M.; Gorga, J. C.; Rynkiewicz, M. J.; Pandey, P.; Strikler, J. E.; Babine, R. E.; Weaver, D. T.; Seidl, K. J. *J. Biol. Chem.* 2004, 279, 42818.
- (a) Snow, R. J.; Cardozo, M. G.; Morwick, T. M.; Busacca, C. A.; Dong, Y.; Eckner, R. J.; Jacober, S.; Jakes, S.; Kapadia, S.; Lukas, S.; Panzenbeck, M.; Peet, G. W.; Peterson, J. D.; Prokopowicz, A. S., III; Sellati, R.; Tolbert, R. M.; Tschantz, M. A.; Moss, N. J. Med. Chem. 2002, 45, 3394; (b) Mukaiyama, H.; Nishimura, T.; Kobayashi, S.; Ozawa, T.; Kamada, N.; Komatsu, Y.; Kikuchi, S.; Oonota, H.; Kusama, H. Bioorg. Med. Chem. 2007, 15, 868.
- Adams, J. L.; Veal, J.; Shewchuk, L. In Protein Crystallography in Drug Discovery; Babine, R. E., Abdel-Meguid, S. S., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 20, p 47.
- Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435.
- Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. *The DIRDIF-94 Program System*. Technical Report of the Crystallography Laboratory University of Nijmegen, The Netherlands, 1994.
- Crystallography Laboratory University of Nijmegen, The Netherlands, 1994. 27. Least-squares: function minimized: $\sum w(F_o^2 - F_c^2)^2$, where $w = 1/\sigma^2(F_o^2) = [\sigma_c^2(F_o)^2 + (p(Max(F_o^2) + 2F_c^2)/3)^2]^{-1}$, $\sigma_c(F_o^2) = esd$ based on counting statistics, P = p-factor (0.05).
- 28. Standard deviation of an observation of full weight: $[\sum w(|F_0| |F_c|)^2/(N_o N_v)]^{1/2}$, where N_o , number of observations; N_v , number of variables.
- Cromer, D. T.; Waber, J. T.. In In International Tables for X-ray Crystallography; Kynoch Press: Birmingham, UK, 1974; Vol. IV. Table 2.2A.
- Creagh, D. C.; Hubbell, J. H.. In *In International Tables for Crystallography*; Wilson, A. J. C., Ed.; Kluwer Academic: Boston, MA, 1992; Vol. C, pp 200–206. Table 4.2.4.3.
- 31. teXsan: Crystal Structure Analysis Package. Molecular Structure Corporation (1995 and 2004).