Tetrahedron Letters 56 (2015) 350-352

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A simple one-pot preparation of *N*-allenyl amides, ureas, carbamates and sulfonamides using a DMSO/^tBuOK protocol

Thomas W. Bousfield[†], Marc C. Kimber^{*}

Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, UK

ARTICLE INFO

ABSTRACT

Article history: Received 1 October 2014 Revised 17 October 2014 Accepted 20 November 2014 Available online 27 November 2014

Keywords: Amide Allenamide Propargyl bromide One-pot Lactam nyl analogues using a 'BuOK/DMSO protocol is reported. The procedure is experimentally simple and robust, and provides *N*-allenyl analogues, commonly used within the literature, in yields comparable to the benchmark two-step approach. © 2014 Elsevier Ltd. All rights reserved.

A one-pot transformation of amides, ureas, carbamates and sulfonamides into synthetically useful N-alle-

N-Allenyl amides (allenamides), of the general structure **4**, have become an increasingly widespread and valuable synthon, with the number of reports of their use increasing yearly (Scheme 1).¹ While synthetic approaches to these substrates have been well documented, ^{1a} it is the base-catalysed rearrangement of propargyl amides that has presented itself as the stand-alone method of choice for their synthesis.^{2,3} However, one of the drawbacks of this method is the reliance on the formation and isolation of the propargyl amide (**3**), which is in turn derived from an amide (**1**) and propargyl bromide (**2**) under basic conditions.

To date, there have been two reports of the direct conversion of amides into allenamides of the type **4** using this base-mediated approach. In 2004, Pellón⁴ demonstrated that acridone (**5**) could be transformed into the *N*-allenyl analogue (**6**) by heating propargyl bromide (**2**) in an aqueous KOH/butanone solution in the presence of a phase-transfer catalyst, while in 2005, Plumet⁵ demonstrated that lactams (**7**) could be transformed into their *N*-allenyl analogues (**8**) using THF/KOH at room temperature.

In continuation of our interest in allenamides⁶ in Au-catalysed transformations,^{7–12} we present a technically simple, yet robust 'one-pot' approach to synthesizing these valuable building blocks using an adapted protocol of Heaney and Ley.¹³ We reported in 2010^{6c} that treatment of 2-oxazolidinone (**9**) and excess propargyl bromide (**2**) with a mixture of DMSO/^{*l*}BuOK was sufficient for full

conversion into the *N*-allenyl carbamate **10** in an isolated yield of 68% (Scheme 2).

Herein, we demonstrate the generality of this procedure for the synthesis of a selection of *N*-allenyl amides, ureas, carbamates and sulfonamides that have been used extensively in the literature, and importantly, on an appreciable scale (20 mmol) (Table 1).¹⁴⁻¹⁷

Firstly, the synthesis of 10 could be confidently scaled up to 20 mmol with no discernable decrease in the isolated yield (entry 1). Using this procedure,¹⁴ the cyclic lactams **11a–c** were converted in moderate to good yields under these DMSO/^tBuOK conditions (entries 2-4), however, unlike the work of Plumet, the larger ring size did not result in diminished isolated yields of the allenamide, as highlighted by **12c** (entry 4). Imidazolin-2-ones **13a** and **b** were smoothly converted into their respective N-allenyl ureas, with 14b being the first reported example of a bis-N-allenvl urea, to our knowledge (entries 5 and 6). All three chiral oxazolidinones 15a-c could be cleanly converted into N-allenyl carbamates 16a-c (entries 7–9), and pleasingly *N*-methyl *p*-toluenesulfonamide (**17**) could be transformed into N-allenyl sulfonamide 18 in a good yield of 68% (entry 10). The previous route to this commonly used N-allenyl sulfonamide 18 relied on sulfonamide formation on *N*-methylpropargyl amine, and as such, this new approach represents a significantly cheaper and technically easier method for its synthesis.^{7e} Acridone (5) could be transformed into its *N*-allenyl analogue **19**, but its purification proved difficult and this is reflected in a poor overall isolated yield of only 12% (entry 11). Finally, imidazole (20) gave the desired *N*-allenyl analogue 21¹⁸ in a good yield of 54% (entry 12).

^{*} Corresponding author. Tel.: +44 (0) 01509 22 2570.

E-mail address: M.C.Kimber@lboro.ac.uk (M.C. Kimber).

[†] Tel.: +44 (0) 01509 22 2570.

Scheme 1. Base-facilitated synthesis of *N*-allenyl analogues.

Scheme 2. One-pot synthesis of 10 from 9 and 2.

Table 1Scope of the 'one-pot' synthesis of *N*-allenyl analogues^a

Entry	Amide	N-Allenyl analogue	Yield ^b (%)
1	о // NH 9	10 ^{3a}	65
2	O NH 11a: <i>n</i> = 1	12a^{3a}: <i>n</i> = 1	48
3	11b : <i>n</i> = 2	12b ^{3a} : <i>n</i> = 2	53
4	11c : <i>n</i> = 3	12c ^{3a} : <i>n</i> = 3	53
5	R NH NH 13a: R = Me	R_N_N- 14a ^{3a} : R = Me	63
6	13b : R = H	0 N 14b ¹⁶	23
7	NH Ř	Ř	66
_	15a: R = [/] Pr	16a ¹⁷ : R = ^{<i>i</i>} Pr	
8	15b : R = Bn	16b ^{3a} : R = Bn	71
9	15c: R = OMe	16c: R = OMe	72
10	Me Ts ^{-NH} 17	Me Ts ^Ń 18 ^{7e}	68
11		0 19 ^{3a}	12
12	N≂NH 20	N≂N 21 ¹⁸	54

^a See Ref. 14 for a general method.

^b Isolated yields.

Some technical observations on this procedure deserve comment; (a) we found the use of dry DMSO to be vital to this 'onepot' approach; (b) the quality of the ^tBuOK did effect conversion into the *N*-allenyl product, and that a fresh bottle of solid ^tBuOK gave superior yields; and (c) slow dropwise addition of propargyl bromide is necessary for adequate temperature control of the reaction mixture. In conclusion, we have developed a convenient, scalable (20 mmol) and robust 'one-pot' method for the synthesis of N-allenyl amides, ureas, carbamates and sulfonamides. The isolated yields for the synthesized N-allenyl analogues shown in Table 1 are on par with the benchmark procedure of Hsung,³ and furthermore, this procedure is experimentally simple. We therefore envisage this 'one-pot' approach being attractive in instances when synthesizing these building blocks on large scale is required.

Acknowledgment

We gratefully acknowledge financial support from the Department of Chemistry at Loughborough University.

References and notes

- For reviews on allenamides, see: (a) Lu, T.; Lu, Z.; Ma, Z.-X.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2013, 113, 4862; (b) Wei, L.-L.; Xiong, H.; Hsung, R. P. Acc. Chem. Res. 2003, 36, 773; (c) Standen, P. E.; Kimber, M. C. Curr. Opin. Drug Discovery Dev. 2010, 13, 645; (d) De Agostino, A.; Prandi, C.; Tabasso, S.; Venturello, P. Molecules 2010, 15, 2667.
- (a) Padwa, A.; Caruso, T.; Nahm, S.; Rodríguez, A. J. Am. Chem. Soc. 1982, 104, 2865; (b) Galons, H.; Bergerat, I.; Combet-Farnoux, C.; Miocque, M.; Decodts, G.; Bram, G. J. Chem. Soc., Chem. Commun. 1985, 1730; (c) Radl, S.; Kovarova, L.; Holubek, J. Collect. Czech. Chem. Commun. 1991, 56, 439; (d) Phadtare, S.; Zemlicka, J. J. Am. Chem. Soc. 1989, 111, 5925; (e) Phadtare, S.; Zemlicka, J. J. Am. Chem. Soc. 1989, 111, 5925; (e) Phadtare, S.; Zemlicka, J. J. Am. Chem. Soc. 1989, 54, 3675; (f) Jones, B. C. N. M.; Silverton, J. V.; Simons, C.; Megati, S.; Nishimura, H.; Maeda, Y.; Mitsuya, H.; Zemlicka, J. J. Med. Chem. 1995, 38, 1397.
- For the current benchmark 'two-step' procedure, see: (a) Wei, L.-L.; Xiong, H.; Douglas, C. J.; Hsung, R. P. Tetrahedron Lett. **1999**, 40, 6903; (b) Wei, L.-L.; Mulder, J. A.; Xiong, H.; Zificsak, C. A.; Douglas, C. J.; Hsung, R. P. Tetrahedron **2001**, 57, 459; (c) Wei, L.-L.; Xiong, H.; Douglas, C. J.; Hsung, R. P. Tetrahedron Lett. **1999**, 40, 6903; (d) Xiong, H.; Tracey, M. R.; Grebe, T. P.; Mulder, J. A.; Hsung, R. P.; Wipf, P.; Smotryski, J. Org. Synth. **2004**, 81, 147.
- Xuárez, L.; Pellón, R. F.; Fascio, M.; Montesano, V.; D'Accorso, N. Heterocycles 2004, 63, 23.
- Fenández, I.; Monterde, M. I.; Plumet, J. Tetrahedron Lett. 2005, 46, 6029.
- (a) Slater, N. H.; Brown, N. J.; Elsegood, M. R. J.; Kimber, M. C. Org. Lett. 2014, 16, 4606; (b) Singh, S.; Elsegood, M. R. J.; Kimber, M. C. Synlett 2012, 565; (c) Hill, A. W.; Elsegood, M. R. J.; Kimber, M. C. J. Org. Chem. 2010, 75, 5406; (d) Kimber, M. C. Org. Lett. 2010, 12, 1128.
- For a review of Au(1)-catalysed [2+2]- and [4+2]-cycloadditions, see: (a) Lopez, F.; Mascareñas, J. L. Chem. Soc. Rev. 2014, 43, 2904; for selected examples, see: (b) Lohse, A. G.; Hsung, R. P. Org. Lett. 2009, 11, 3430; (c) Li, X.-X.; Zhu, L.-L.; Zhou, W.; Chen, Z. Org. Lett. 2012, 14, 436; (d) Faustino, H.; Bernal, P.; Castedo, L.; López, F.; Mascareñas, J. L. Adv. Synth. Catal. 2012, 354, 1658; (e) Suárez-Pantiga, S.; Hernández-Díaz, C.; Piedrafita, M.; Rubio, E.; Gonzáleza, J. M. Adv. Synth. Catal. 2012, 354, 1651; (f) Faustino, H.; López, F.; Castedo, L.; Mascareñas, J. L. Chem. Sci. 2011, 2, 633; (g) Francos, J.; Grande-Carmona, F.; Faustino, H.; Iglesias-Sigüenza, J.; Díez, E.; Alonso, I.; Fernández, R.; Lassaletta, J. M.; López, F.; Mascareñas, J. L. J. Am. Chem. Soc. 2012, 134, 14322; (h) Montserrat, S.; Faustino, H.; Liedos, A.; Mascareñas, J. L.; Lopez, F.; Ujaque, G. Chem. Eur. J. 2013, 19, 15248; (i) Faustino, H.; Alonso, I.; Mascareñas, J. L.; Lopez, F. Angew. Chem., Int. Ed. 2013, 52, 6526.
- For Au(I) hydroaminations, see: (a) Manzo, A. M.; Perboni, A. D.; Broggini, G.; Rigamonti, M. Tetrahedron Lett. 2009, 50, 4696; (b) Broggini, G.; Borsini, E.; Fasana, A.; Poli, G.; Liron, F. Eur. J. Org. Chem. 2012, 3617.
- For Au(I) hydroarylations, see: (a) Watanabe, T.; Oishi, S.; Fuji, N.; Ohno, H. Org. Lett. 2007, 9, 4821; (b) Pirovano, V.; Decataldo, L.; Rossi, E.; Vicente, R. Chem. Commun. 2013, 3594; (c) Jia, M.; Cera, G.; Perrotta, D.; Monari, M.; Bandini, M. Chem. Eur. J. 2014, 20, 9875.
- For Au(I) hydroalkoxylations, see: (a) Horino, Y.; Takata, Y.; Hashimoto, K.; Kuroda, S.; Kimurab, M.; Tamaru, Y. Org. Biomol. Chem. 2008, 6, 4105;

(b) González-Gómez, A.; Domínguez, G.; Pérez-Castells, J. Eur. J. Org. Chem. 2009, 5057.

- 11. For Au(1) Nazarov type cyclisations, see: Ma, Z.-X.; He, S.; Song, W.; Hsung, R. P. Org. Lett. **2012**, *14*, 5736.
- For Au(I) cyclopropanations, see: Sabbatani, J.; Huang, X.; Veiros, L. F.; Maulide, N. Chem. Eur. J. 2014, 20, 10636.
- 13. Heaney, H.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1973, 499.
- 14. *Representative procedure*: To a solution of *N*-methyl *p*-toluenesulfonamide (17) (3.70 g, 20.00 mmol) in dry DMSO (40 mL) under an N₂ or Ar atmosphere was added 'BuOK (3.36 g, 30.00 mmol) and the resulting solution stirred for 1 h. To this solution was added propargyl bromide (2) (2.50 ml, 80% soln in toluene, 22.00 mmol) dropwise over 40 min with care! After the addition was complete, the mixture was stirred at room temperature overnight under N₂ or Ar. The mixture was then diluted with H₂O (100 mL) and the organic layer extracted with EtOAc (2 × 100 mL). The combined organic extracts were dried over Na₂SO₄, filtered and the solvent removed under vacuum. The crude reaction product was then purified by filtration through a pad of silica (EtOAc:/ petroleum ether, 1:1) to yield a pale yellow solid which was recrystallised from CH₂Cl₂/petroleum ether giving the desired *N*-allenyl sulfonamide 18^{7e} as colourless plates (3.01 g, 68%); mp 82.0–82.5 °C; IR (CH₂Cl₂) v_{max} 3030, 1598,

1448, 1357, 1157 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67–7.64 (m, 2H), 7.31–7.28 (m, 2H), 6.87 (t, *J* = 6.4 Hz, 1H), 5.27 (d, *J* = 6.4 Hz, 2H), 2.69 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.5, 143.9, 133.7, 129.6, 127.5, 101.8, 87.8, 33.3, 21.7; MS-ESI found, C₁₁H₁₃NO₂SNa found 246.0578, [MNa]⁺ requires 246.0565.

- The physical data for each known *N*-allenyl analogue 10, 12a-c, 14a, 16b, 16c, 18, 19 and 21 were in agreement with those previously reported. ^{3a,6c,7e,16}
- Bis-N-allenyl urea 14b; IR (CH₂Cl₂) v_{max} 3025, 1755, 1520, 1145 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.00 (t, J = 8.6 Hz, 2H), 5.39 (d, J = 6.8 Hz, 4H), 3.45 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 153.6, 97.6, 87.6, 40.6; MS-ESI found, C₉H₁₀N₂ONa found 185.0685, [MNa]^{*} requires 185.0691.
 N-Allenyl carbamate 16a; [α]²⁵ = 16.0 (c 1.00, CHCl₃) β (CH₂Cl₂) v_{max} 3019, 1750, 1516, 1408, 1140 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (t, J = 6.4 Hz, 110, 526 (dHz, 6.4 Hz, 6.4 Hz).
- 17. *N*-Allenyl carbamate **16a**; $[\alpha]_{6}^{55} = 16.0 (c 1.00, CHCl_3); IR (CH₂Cl₂) <math>v_{max}$ 3019, 1750, 1516, 1408, 1140 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.86 (t, *J* = 6.4 Hz, 1H), 5.45 (dd, *J* = 6.4, 10.0 Hz, 1H), 5.39 (dd, *J* = 6.4, 10.0 Hz, 1H), 4.30 (t, *J* = 8.8 Hz, 1H), 4.22 (dd, *J* = 4.4, 9.2 Hz, 1H), 3.87 (dt, *J* = 4.0, 8.8 Hz, 1H), 2.31 (m, 1H), 0.90 (d, *J* = 7.2 Hz, 3H), 0.88 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 155.5, 95.7, 87.6, 63.0, 58.9, 26.9, 17.6, 13.8; MS-ESI found, C₉H₁₃NO₂Na found 190.0854, [MNa]⁺ requires 190.0844.
- 18. Hubert, A. J.; Reimlinger, H. J. Chem. Soc. C 1968, 606.