Synthesis of Novel Structurally Simplified Estrogen Analogues with Electron-Donating Groups in Ring A

Lutz F. Tietze,* Carsten A. Vock, Ilga K. Krimmelbein, Linda Nacke

Institute of Organic and Biomolecular Chemistry, University of Goettingen, Tammannstr. 2, 37077 Goettingen, Germany Fax +49(551)399476; E-mail: ltietze@gwdg.de

Received 18 November 2008; revised 17 February 2009

Abstract: A library of 25 novel estrogen analogues were prepared in five to eight steps from mostly commercially available substituted anisoles via bromination, formylation, Corey–Fuchs reaction, elimination, and Sonogashira reaction.

Key words: alkynes, estrogens, Corey–Fuchs reaction, Sonogashira reaction, steroids

Recently, we have developed a new class of novel simplified estrogen analogues, which consist of a rigid alkyne moiety as surrogate for ring B and C connected to the aromatic ring A and a methylcyclopentenone or a methylcyclohexenone for ring D.¹ Some of these analogues 2 and 3 show biological activity close to that of estradiol (1) itself (Figure 1).² The development of simple SERMs (selective estrogen receptor modulators) with as few stereogenic centers as possible is an important task in drug development.³ Thus, estradiol has a positive effect on blood vessels and the coronary heart system lowering the risk of arteriosclerotic diseases.^{4,5} Although many elegant and efficient methods for the synthesis of estrogens⁶ have been developed like the multiple palladium-catalyzed cyclization reaction, which was used by us for the synthesis of estradiol,⁷ homo- and norestradiol, spiro-analogues and estrogen hybrids⁸ as well as the contraceptive desogestrel,⁹ there is still a great need to develop simplified analogues with high biological activity. For the successful synthesis of a library of estradiol analogues we used two palladium-catalyzed Sonogashira reactions.¹

Figure 1 Estradiol 1 and simplified analogues 2 and 3

However, by using this method there is some limitation in structural diversity since compounds of type 2 and 3 containing electron-donating groups cannot be obtained em-

SYNTHESIS 2009, No. 12, pp 2040–2060 Advanced online publication: 14.05.2009 DOI: 10.1055/s-0029-1216810; Art ID: T20108SS © Georg Thieme Verlag Stuttgart · New York ploying this procedure. Moreover, the necessary iodides have to be prepared via a diazonium salt, which is less appropriate, especially in industrial synthesis. Here we describe an alternative process towards 2 and 3 based on a Corey-Fuchs reaction of substituted aromatic aldehydes starting from the corresponding bromides obtained easily in most cases by direct bromination of anisoles 4. The anisoles were either commercially available or prepared by different procedures.¹⁰ Bromination of compounds 4 in the para-position to the OR¹ group was carried out by a very fast and efficient method published by Andersh et al.,¹¹ using *N*-bromosuccinimide (NBS) in the presence of catalytic amounts of concentrated HCl. Without purification, the crude products were directly treated with a slight excess of *n*-BuLi or *t*-BuLi in THF at -78 °C. Quenching with DMF and aqueous workup led to the desired aromatic aldehydes 6. In a few cases – with increasing steric hindrance of the *para*-position to the OR^1 group – an unwanted ortho-bromination as side reaction took place leading finally to the formation of an inseparable mixture of the isomeric aldehydes 6 and 9 (Scheme 1).

Scheme 1 Synthesis of the aldehydes 6. *Reagents and conditions*: a) NBS, cat. concd HCl, acetone, r.t.; b) *n*-BuLi or *t*-BuLi, THF, -78 °C, then DMF, THF, -78 °C to r.t.

However, the procedure allowed us to prepare the aldehydes **6a–n** from the anisoles **4a–l** and **4n** via **5a–k** and **5n**. In the case of 2,6-dichloroanisole, the undesired *ortho*-bromination became dominant. Therefore, the 2,6-dichloro-substituted aldehyde **6l** was synthesized by an alternative three-step procedure published by Karl et al.¹² Aromatic aldehyde **6m** was prepared via a four-step synthetic sequence (Scheme 2).

Starting from 3-hydroxybenzaldehyde (10), bromination with Br_2 in AcOH led to bromophenol 11, which could be isolated as single regioisomer after recrystallization from EtOH-toluene in 35% yield. Reduction of the aldehyde moiety with NaBH₄ in EtOH, TIPS-protection of both the phenolic and the benzylic hydroxy groups, halogen-metal exchange with *t*-BuLi in THF, and quenching with DMF

Scheme 2 Synthesis of aromatic aldehyde **6m**. *Reagents and conditions*: a) Br₂, AcOH, r.t., 2 h, 35%; b) NaBH₄, EtOH, r.t., 2 h; c) TIPSCl, imidazole, DMF, r.t., 39 h; d) *t*-BuLi, THF–*n*-pentane, -78 °C, 30 min; DMF, -78 °C to r.t., 3 h, 43% over three steps.

finally gave the desired aldehyde **6m** in 15% yield over four steps based on **10**.

The aldehydes 6 (pure or as mixtures with 9) were treated with CBr₄, Zn powder, and Ph₃P to give the gem-dibromostyrene derivatives 7 in excellent yields.¹³ At this stage we had to exchange the OMe group in the case of compounds 6a–l for a THP group since the cleavage of a methyl ether moiety in the final product containing a triple bond led to severe problems. In contrast, the Corey-Fuchs products are rather stable and the methyl ether moiety in these compounds could easily be cleaved using BBr₃ in CH₂Cl₂, and the free phenol was then immediately converted into the corresponding THP-acetal 7 using dihydropyran (DHP) and catalytic amounts of pyridinium ptoluenesulfonate (PPTS) in CH₂Cl₂ with overall good yields in most cases (Table 1). The gem-dibromostyrenes 7m,n were synthesized directly from the aldehydes without exchange of the protecting group (Table 1).

Finally, all dibromo compounds **7a–n** were converted into the corresponding arylacetylenes **8a–n** by treatment with *n*-BuLi in THF at -78 °C in good to excellent yields (Table 1).¹³ The only exception is **8k**, which surprisingly turned out to be unstable under the reaction conditions. Thus, after an additional reprotection step with dihydropyran in the presence of PPTS only 10% of the desired compound **8k** was obtained. Due to the problems in the synthesis of **8k**, acetylenes **8j** and **8l** were prepared from **7j** and **7l**, respectively, using LDA for the elimination step. Although this procedure worked fine, it should be noted that in the case of **8l** the reaction had to be quenched with water at -78 °C since warming to room temperature led to decomposition.

The synthesis of the desired estrogen analogues 2 and 3 was accomplished employing a palladium-catalyzed Sonogashira coupling reaction of arylacetylenes 8 and the cyclic vinyl iodides 12 and 13 to give the protected estrogen analogues 14 and 15. Due to the sensitivity of the iodides 12 and 13 under Sonogashira conditions¹⁴ use of secondary amines like Et_2NH should be avoided. We therefore followed a procedure by Tamura et al.¹⁵ using an excess of Et_3N in DMF at room temperature after initial heating to 60 °C.

Best yields were obtained using $Pd(PPh)_3Cl_2$ (1.0– 2.5 mol%) and CuI (2.5–5.0 mol%) as catalyst system. The final step in the synthesis of **2** and **3**, respectively, was the removal of the protecting group under standard conditions. As procedures for the cleavage of the methyl ethers, BBr₃ in CH_2Cl_2 (alone and with addition of K_2CO_3 as acid scavenger),¹² [NMe₄]⁺[Al₂Cl₇]⁻ in CH₂Cl₂ under microwave irradiation¹⁶ and BF₃·OEt₂ in Me₂S¹⁷ were employed leading in all cases to complex mixtures, which could not be separated. THP acetals were cleaved by stirring at room temperature in a solution of CH₂Cl₂ containing 10-30% of CF₃CO₂H to give the desired estrogen analogues 2a-f and 3a-o in high yields (Table 2). The TIPS protecting group was removed with n-Bu₄NF·3H₂O in THF to give the estrogen analogues 2g and 3p again in good yields (Table 2). The analogues 14a and 15a without a free oxygen functionality were synthesized by a Sonogashira coupling of the phenylacetylene 8n and the cyclic vinyl iodides 12 and 13 (Table 2). A comparison of the used protecting groups revealed that the THP acetals showed by far the best properties concerning synthesis, stability, and removal.

Summarizing, a library of 25 novel estrogen analogues with a large variety of substitution patterns were synthesized from arylacetylenes **8** and cyclic vinyl iodides **12** or **13** by palladium-catalyzed Sonogashira reaction. The necessary alkynes **8** were prepared via a Corey–Fuchs reaction of the corresponding aldehydes **6**. Different protecting groups for the phenolic hydroxy group were investigated revealing that the THP group is most suitable. Finally, two steroid analogues **14a** and **15a** without a free phenolic hydroxy group at the A-ring were prepared starting from commercially available materials in five to eight steps. The obtained estrogen analogues **2** and **3** are highly stable solids.

All reactions were performed under argon in flame-dried flasks. THF and Et₂O were dried and distilled prior to use by usual laboratory methods; all other solvents were used from commercial sources and stored over molecular sieves. All reagents obtained from commercial sources were used without further purification. TLC was performed on precoated silica gel SIL G/UV254 plates (Macherey-Nagel GmbH & Co. KG) and silica gel 60 (0.032-0.063 mm, Merck) was used for column chromatography. Phosphomolybdic acid in MeOH (PMA) or vanillin in methanolic H₂SO₄ was used as the staining reagent for TLC. UV spectra were taken in MeCN or MeOH with a PerkinElmer Lambda 2 spectrometer. IR spectra were recorded as KBr pellets or as films between NaCl plates with a Bruker IFS 25 spectrometer. ¹H and ¹³C NMR spectra were recorded with Mercury-200, VXR-200, Unity-300, Inova-500, Unity Inova-600 (Varian), or AMX 300 (Bruker) spectrometer. Chemical shifts are reported in ppm with TMS as internal standard. Multiplicities of ¹³C NMR peaks were determined with the APT pulse sequence. Mass spectra were measured with a Finnigan MAT 95, TSQ 7000, or LCQ instrument. Elemental analysis: Mikroanalytisches Labor, Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen.

Anisoles 4 from Phenols; General Procedure

To a solution of the appropriate phenol (24.4–81.9 mmol) in dimethyl carbonate (1.2–1.5 mL/mmol) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (1.00 equiv) and the mixture heated to 90 °C. After cooling to r.t., the mixture was diluted with H₂O (3.0 mL/mmol), acidified with concd HCl (0.50 mL/mmol) and extracted with Et₂O (3×2.0 mL/mmol). The combined organic extracts were washed with aq 2 N NaOH (2×1.0 mL/mmol), dried (Na₂SO₄), and the solvent evaporated under reduced pressure.

Table 1 Arylacetylenes 8a-n Prepared^a

R ¹ 0	R^3 R^2 R^10	Br b R ²		$H \xrightarrow{c} R^{1}O$	R^3 H R^2 H		R ²
	4	5	6		7	8	
R ¹ for 7 , 8	R ²	R ³	4 ($\mathbf{R}^1 = \mathbf{M}\mathbf{e}$)	6 ($\mathbf{R}^1 = \mathbf{M}\mathbf{e}$)		7	8
				Yield (%) (2 steps)	Ratio of 6/9	Yield (%) (3 steps)	Yield (%)
THP ^b	Me	Н	a	75	-	79	94
THP	Et	Н	b	82	-	43	95
THP	<i>i</i> -Pr	Н	c	60	11:1	69	92
THP	<i>t</i> -Bu	Н	d	65	1:1	26	62
THP	<i>n</i> -Pr	Н	e	78	_	62	73
THP	<i>n</i> -Bu	Н	f	79	12:1	67	97
THP	$n-C_9H_{19}$	Н	g	72	11:1	65	96
THP	Me	Me	h	63	_	59	95
THP	Ph	Н	i	63	8:1	62 ^c	92 ^d
THP	CF ₃	Н	j	28 ^e	_	55	78
THP	F	Н	k	_f	-	17 ^g	10 (2 steps) ^h
THP	Cl	Cl	1	86 ⁱ	-	72	96 ^j
$TIPS^k$	CH ₂ OTIPS	Н	m	43 ¹ (3 steps)	-	80 ^m	quant
	R ² / <i>o</i> -H						
Me	the second secon	Н	n	81	-	84 ^m	97

^a Reagents and conditions: a) NBS, cat. concd HCl, acetone, r.t.; b) *n*-BuLi or *t*-BuLi, THF, -78 °C, then DMF, THF, -78 °C to r.t.; c) i. CBr₄, Zn powder, Ph₃P, CH₂Cl₂, r.t., ii. BBr₃, CH₂Cl₂, -78 °C to r.t., iii. DHP, PPTS, CH₂Cl₂, r.t.; d) *n*-BuLi or LDA, THF, -78 °C to r.t. ^b Tetrahydropyranyl.

^c The phenyl-substituted derivative 7i could not be separated from its regioisomer derived from 9i.

^d Starting material and product contained 11% of the regioisomer derived from **9i**.

^e After halogen–lithium exchange, the reaction was quenched with *N*-formylpiperidine instead of DMF.

^f Yield was determined after Corey–Fuchs reaction (cf. 7k).

^g The yield was calculated over the five-step sequence starting from 3-fluoroanisole.

^h The crude product was treated with DHP and PPTS in CH_2Cl_2 at r.t. to avoid loss of material.

ⁱ The aldehyde **6** was synthesized from the corresponding benzyl alcohol by heating to 100 °C in toluene with activated MnO₂ (5.24 equiv).

^j The reaction was quenched with H_2O at -78 °C.

^k Triisopropylsilyl.

¹ For the synthesis of **6m**, see Scheme 2.

^m Conditions in these two cases were: CBr₄, Zn powder, Ph₃P, CH₂Cl₂, r.t.

14 R = PG, n = 1

15 R = PG, n = 2

3 R = H, n = 2

	8 12 13	n = 1 n = 2			
R ²	R ³	R ⁴	n	Product	Yield (%) (2 steps)
Me	Н	Me	1	2a	45
Et	Н	Me	1	2b	57
<i>n</i> -Pr	Н	Me	1	2c	71
<i>n</i> -Bu	Н	Me	1	2d	55
CF ₃	Н	Me	1	2e	76
Cl	Cl	Me	1	2f	82
CH ₂ OTIPS	Н	Me	1	2g	60
$R^2/o-H$					
	Н	Me	1	14a	91
Me	Н	Me	2	3a	50
Et	Н	Me	2	3b	45
Et	Н	Et	2	3c	42
<i>i</i> -Pr	Н	Me	2	3d	59
<i>t</i> -Bu	Н	Me	2	3e	41
<i>n</i> -Pr	Н	Me	2	3f	56
<i>n</i> -Bu	Н	Me	2	3g	57
$n - C_9 H_{19}$	Н	Me	2	3h	60
Ph	Н	Me	2	3i	23
CF ₃	Н	Me	2	3j	82
CF ₃	Н	<i>i</i> -Pr	2	3k	42
Me	Me	Me	2	31	46
F	Н	Me	2	3m	40
Cl	Cl	Me	2	3n	51
Cl	Cl	Et	2	30	64
CH ₂ OTIPS	Н	Me	2	3р	45
$R^2/o-H$					
the second secon	Н	Me	2	15a	85

^a Reagents and conditions: a) PdCl₂(PPh₃)₂, CuI, Et₃N, DMF, r.t.; b) CF₃CO₂H, CH₂Cl₂, r.t. for **2a-g** and **3a-l**; *n*-Bu₄NF·3H₂O, THF, 0 °C to r.t. for 2g and 3p.

3-Ethylanisole (4b)

Yield: 96%.

IR (film): 2965, 2835, 1602, 1491, 1456, 1263, 1192, 1153, 1041, 877, 779, 695 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 1.25 (t, *J* = 7.6 Hz, 3 H, 3-CH₂CH₃), 2.64 (q, *J* = 7.6 Hz, 2 H, 3-CH₂CH₃), 3.81 (s, 3 H, 1-OCH₃), 6.70–6.86 (m, 3 H, 2-H, 4-H, 6-H), 7.16–7.27 (m, 1 H, 5-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 15.5 (3-CH₂CH₃), 28.9 (3-CH₂CH₃), 55.1 (1-OCH₃), 110.8, 113.6 (C-2, C-6), 120.3 (C-4), 129.2 (C-5), 145.9 (C-3), 159.6 (C-1).

MS (EI, 70 eV): m/z (%) = 136.1 (76, [M]⁺), 121.0 (100, [M – CH₃]⁺).

UV (MeCN): λ_{max} (log ϵ) = 196.0 (4.6516), 217.0 (3.8124), 272.0 (3.1935), 278.5 nm (3.1673).

3-Isopropylanisole (4c)

Yield: 98%.

IR (film): 2961, 2835, 1486, 1455, 1383, 1363, 1316, 1258, 1198, 1177, 1136, 1045, 920, 851, 778, 700 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 1.25 [d, *J* = 6.9 Hz, 6 H, 3-CH(CH₃)₂], 2.88 [sept, *J* = 6.9 Hz, 1 H, 3-CH(CH₃)₂], 3.80 (s, 3 H, 1-OCH₃), 6.69–6.86 (m, 3 H, 2-H, 4-H, 6-H), 7.17–7.26 (m, 1 H, 5-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 23.9 [3-CH(*C*H₃)₂], 34.2 [3-CH(CH₃)₂], 55.1 (1-OCH₃), 110.7 (C-2), 112.4 (C-6), 118.9 (C-4), 129.2 (C-5), 150.6 (C-3), 159.6 (C-1).

MS (EI, 70 eV): m/z (%) = 150.1 (50, [M]⁺), 135.1 (100, [M – CH₃]⁺), 77.0 [C₆H₅]⁺.

UV (MeCN): λ_{max} (log ϵ) = 197 (4.5762), 216.5 (3.8381), 271.5 (3.2265), 278.0 nm (3.1931).

3-tert-Butylanisole (4d)

Yield: quant.

IR (film): 2963, 1583, 1487, 1364, 1318, 1276, 1231, 1054, 874, 777, 701 $\rm cm^{-1}.$

¹H NMR (200 MHz, CDCl₃): δ = 1.32 [s, 9 H, 3-C(CH₃)₃], 3.82 (s, 3 H, 1-OCH₃), 6.73 (ddd, *J* = 8.0, 2.5, 0.9 Hz, 1 H, 6-H), 6.93–7.03 (m, 2 H, 2-H, 4-H), 7.24 (t, *J* = 8.0 Hz, 1 H, 5-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 31.3 [3-C(CH₃)₃], 34.7 [3-C(CH₃)₃], 55.1 (1-OCH₃), 109.9 (C-2), 112.0 (C-6), 117.8 (C-4), 128.9 (C-5), 152.9 (C-3), 159.3 (C-1).

MS (EI, 70 eV): m/z (%) = 164.2 (28, [M]⁺), 149.2 (100, [M – CH₃]⁺).

UV (MeCN): λ_{max} (log ϵ) = 196.0 (4.6443), 216.0 (3.8377), 271.5 (3.2260), 270.0 nm (3.1864).

3-n-Propylanisole (4e)

To a suspension of ethyltriphenylphosphonium bromide (12.0 g, 32.3 mmol, 1.10 equiv) in THF (100 mL) was added NaHMDS (1.00 M in THF, 32.3 mL, 32.3 mmol, 1.10 equiv) at r.t. and the mixture was stirred for 10 min. After cooling to -78 °C, a solution of 3-methoxybenzaldehyde (4.00 g, 3.57 mL, 29.4 mmol, 1.00 equiv) in THF (10 mL) was added dropwise. After stirring for 20 min at -78 °C, the mixture was allowed to reach r.t., stirred for 1 h, and H₂O (200 mL) was added. The aqueous layer was extracted with Et₂O (3 × 100 mL). The combined organic layers were washed with brine (50 mL), dried (Na₂SO₄), and the solvent was evaporated

under reduced pressure. The crude product was dissolved in MeOH–EtOAc (1:1, 150 mL), Pd/C (10% Pd, 310 mg, 291 μ mol, 0.990 mol%) was added, and the mixture was stirred for 46 h at r.t. in the presence of H₂. The resulting mixture was filtered over Celite and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (*n*-pentane–EtOAc, 100:1); yield: 4.36 g (88%, over two steps).

IR (film): 2959, 1602, 1489, 1455, 1259, 1152, 1045, 873, 775, 695 cm⁻¹.

¹H NMR (200 MHz, $CDCl_3$): $\delta = 0.95$ (t, J = 7.5 Hz, 3 H, 3-CH₂CH₂CH₃), 1.65 (sext, J = 7.5 Hz, 2 H, 3-CH₂CH₂CH₃), 2.57 (t, J = 7.5 Hz, 2 H, 3-CH₂CH₂CH₃), 3.81 (s, 3 H, 1-OCH₃), 6.70–6.83 (m, 3 H, 2-H, 4-H, 6-H), 7.15–7.26 (m, 1 H, 5-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 13.8 (3-CH₂CH₂CH₃), 24.5 (3-CH₂CH₂CH₃), 38.1 (3-CH₂CH₂CH₃), 55.0 (1-OCH₃), 110.8, 114.2 (C-2, C-6), 120.9 (C-4), 129.1 (C-5), 144.3 (C-3), 159.5 (C-1).

MS (EI, 70 eV): m/z (%) = 150.1 (64, [M]⁺), 135.1 (15, [M – CH₃]⁺), 121.0 (100, [M – C₂H₅]⁺).

UV (MeCN): λ_{max} (log ϵ) = 197.0 (4.6272), 217.0 (3.8337), 278.5 (3.2038), 272.0 nm (3.2329).

3-n-Butylanisole (4f)

To a suspension of n-propyltriphenylphosphonium bromide (12.5 g, 32.3 mmol, 1.10 equiv) in THF (100 mL) was added NaHMDS (1.00 M in THF, 32.3 mL, 32.3 mmol, 1.10 equiv) at r.t. and the mixture was stirred for 10 min. After cooling to -78 °C a solution of 3-methoxybenzaldehyde (4.00 g, 3.57 mL, 29.4 mmol, 1.00 equiv) in THF (10 mL) was added dropwise. After stirring for 20 min at -78 °C, the mixture was heated to r.t., stirred for 1 h, and diluted with H₂O (200 mL). The aqueous layer was extracted with Et_2O (3 × 100 mL) and the combined organic layers were washed with brine (50 mL) and dried (Na2SO4). The solvent was evaporated under reduced pressure and the residue was subjected to column chromatography (pentane). A solution of the resulting anisole (4.25 g, 26.2 mmol, 1.00 equiv) in MeOH-EtOAc (1:1, 130 mL) was stirred with Pd/C (10% Pd, 277 mg, 260 µmol, 0.993 mol%) in the presence of H₂ for 39 h at r.t. After filtration over Celite, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (n-pentane-EtOAc, 98:2); yield: 4.15 g (92%, over two steps).

¹H NMR (200 MHz, CDCl₃): δ = 0.95 (t, *J* = 7.2 Hz, 3 H, 4'-CH₃), 1.27–1.48 (m, 2 H, 3'-CH₂), 1.52–1.71 (m, 2 H, 2'-CH₂), 2.61 (t, *J* = 7.6 Hz, 2 H, 1'-CH₂), 3.81 (s, 3 H, 1-OCH₃), 6.70–6.84 (m, 3 H, 2-H, 4-H, 6-H), 7.16–7.27 (m, 1 H, 5-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 13.9 (C-4′), 22.4 (C-3′), 33.5 (C-2′), 35.7 (C-1′), 55.1 (1-OCH₃), 110.8 (C-6), 114.2 (C-2), 120.8 (C-4), 129.1 (C-5), 144.6 (C-3), 159.5 (C-1).

MS (EI, 70 eV): m/z (%) = 164.1 (37, [M]⁺), 122.1 (100, [M - C₃H₆]⁺).

EI-HRMS: m/z calcd for $C_{11}H_{16}O$ (164.244): 164.1201; found: 164.1201.

3-*n*-Nonylanisole (4g)

To a suspension of *n*-octyltriphenylphosphonium bromide (12.2 g, 24.2 mmol, 1.10 equiv) in THF (100 mL) NaHMDS (1.00 M in THF, 24.2 mL, 24.2 mmol, 1.10 equiv) was added at r.t. and the mixture was stirred for 10 min. After cooling to -78 °C, a solution of 3-methoxybenzaldehyde (3.00 g, 2.68 mL, 22.0 mmol, 1.00 equiv) in THF (10 mL) was added dropwise. After stirring for 20 min at -78 °C, the mixture was heated to r.t., stirred for 2 h, and diluted with H₂O (200 mL). The aqueous layer was extracted with

Et₂O (3 × 100 mL) and the combined organic layers were washed with brine (50 mL) and dried (Na₂SO₄). The solvent was evaporated under reduced pressure and the residue was subjected to column chromatography (*n*-pentane). A solution of the resulting anisole (3.83 g, 16.5 mmol, 1.00 equiv) in MeOH–EtOAc (1:1, 80 mL) was stirred with Pd/C (10% Pd, 179 mg, 168 µmol, 1.02 mol%) in the presence of H₂ for 23 h at r.t. After filtration over Celite, the solvent was evaporated under reduced pressure; yield: 3.93 g (79%, over two steps).

IR (film): 2926, 2854, 1602, 1489, 1466, 1261, 1152, 1047, 873, 775, 695 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.7 Hz, 3 H, 9'-CH₃), 1.11–1.43 (m, 12 H, 3'-CH₂, 4'-CH₂, 5'-CH₂, 6'-CH₂, 7'-CH₂, 8'-CH₂), 1.50–1.72 (m, 2 H, 2'-CH₂), 2.58 (t, J = 7.7 Hz, 2 H, 1'-CH₂), 3.80 (s, 3 H, 1-OCH₃), 6.69–6.82 (m, 3 H, 2-H, 4-H, 6-H), 7.14–7.25 (m, 1 H, 5-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 14.1 (C-9'), 22.7 (C-8'), 29.3, 29.5, 29.5 (C-4', C-5', C-6', C-7'), 31.4 (C-3'), 31.9 (C-2'), 36.0 (C-1'), 55.1 (1-OCH₃), 110.8 (C-6), 114.2 (C-2), 120.8 (C-4), 129.1 (C-5), 144.6 (C-3), 159.5 (C-1).

MS (EI, 70 eV): m/z (%) = 234.2 (39, [M]⁺).

EI-HRMS: m/z calcd for $C_{16}H_{26}O$ (234.377): 234.1984; found: 234.1984.

UV (MeCN): λ_{max} (log ε) = 197.0 (4.6603), 217.0 (3.8749), 272.0 (3.2691), 278.5 nm (3.2383).

3-Phenylanisole (4i)

To a solution of 3-bromoanisole (11.8 g, 63.2 mmol, 1.00 equiv) and phenylboronic acid (10.0 g, 81.9 mmol, 1.30 equiv) in THF (125 mL) was added aq K₂CO₃ (2.00 M, 125 mL, 250 mmol, 3.96 equiv) and the mixture was degassed. Pd(PPh₃)₄ (2.18 g, 1.88 mmol, 3.00 mol%) was added and the mixture was refluxed for 6.5 h. After cooling to r.t., H₂O (300 mL) was added and the aqueous layer was extracted with Et₂O (3×200 mL). The combined organic layers were washed with aq 2 M NaOH (200 mL) and brine (200 mL), dried (Na₂SO₄), and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (*n*-pentane–EtOAc, 100:1); yield: 8.77 g (75%).

¹H NMR (200 MHz, CDCl₃): δ = 3.88 (s, 3 H, 1-OCH₃), 6.91 (ddd, J = 8.2, 2.6, 1.0 Hz, 1 H, 6-H), 7.14 (t, J = 2.1 Hz, 1 H, 2-H), 7.16–7.23 (m, 1 H, 4-H), 7.30–7.50 (m, 4 H, 3'-H, 4'-H, 5-H, 5'-H), 7.56–7.64 (m, 2 H, 2'-H, 6'-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 55.2 (1-OCH₃), 112.6, 112.8 (C-2, C-6), 119.6 (C-4), 127.2 (C-2', C-6'), 127.4 (C-4'), 128.7 (C-3', C-5'), 129.7 (C-5), 141.1, 142.7 (C-1', C-3), 159.9 (C-1).

MS (EI, 70 eV): m/z (%) = 184.2 (100, [M]⁺), 154.2 (33, [M – CH₂O]⁺), 141.1 (48, [M – CH₃ – CO]⁺).

3,5-Dichloranisole (41)

Yield: quant.

¹H NMR (200 MHz, CDCl₃): δ = 3.79 (s, 3 H, 1-OCH₃), 6.80 (d, J = 1.8 Hz, 2 H, 2-H, 6-H), 6.95 (t, J = 1.8 Hz, 1 H, 4-H).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 55.7 (1-OCH₃), 113.1 (C-2, C-6), 121.0 (C-4), 135.3 (C-3, C-5), 160.6 (C-1).

MS (EI, 70 eV): m/z (%) = 176.0/178.0 (100/61, [M]⁺), 145.9/148.0 (59/45, [M - CH₂O]⁺), 132.9/134.9 (27/26, [M - CH₃ - CO]⁺).

Bromides 5 by Bromination of Anisoles 4; General Procedure

To a solution of the respective anisole (15.7-78.6 mmol) in acetone (2.0-3.3 mL/mmol) were added NBS (1.00 equiv) and a catalytic amount of HCl $(10.0 \mu\text{L/mmol})$ at r.t. After stirring at r.t. for 5 min, the solvent was evaporated under reduced pressure and the residue

dissolved in n-pentane. The insoluble components were filtered off. The anisoles **5** were obtained by evaporation of the solvent under reduced pressure.

1-Bromo-4-methoxy-2-methylbenzene (5a)

Yield: quant.

¹H NMR (200 MHz, $CDCl_3$): $\delta = 2.37$ (s, 3 H, 2- CH_3), 3.77 (s, 3 H, 4- OCH_3), 6.61 (dd, J = 8.8, 3.0 Hz, 1 H, 5-H), 6.79 (d, J = 3.0 Hz, 1 H, 3-H), 7.40 (d, J = 8.8 Hz, 1 H, 6-H).

¹³C NMR (50.3 MHz, $CDCl_3$): $\delta = 23.2$ (2-CH₃), 55.4 (4-OCH₃), 112.9 (C-5), 115.4 (C-1), 116.5 (C-3), 132.8 (C-6), 138.8 (C-2), 158.8 (C-4).

4-Bromo-3-ethylanisole (5b)

Yield: 95% (10:1 mixture with regioisomer).

IR (film): 2968, 2835, 1594, 1572, 1470, 1263, 1240, 1163, 1138, 1047, 1014, 870, 852, 800, 600 $\rm cm^{-1}.$

¹H NMR (200 MHz, CDCl₃): δ = 1.22 (t, *J* = 7.5 Hz, 3 H, 3-CH₂CH₃), 2.71 (q, *J* = 7.5 Hz, 2 H, 3-CH₂CH₃), 3.79 (s, 3 H, 1-OCH₃), 6.62 (dd, *J* = 8.7, 3.0 Hz, 1 H, 6-H), 6.79 (d, *J* = 3.0 Hz, 1 H, 2-H), 7.41 (d, *J* = 8.7 Hz, 1 H, 5-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 14.1 (3-CH₂CH₃), 29.5 (3-CH₂CH₃), 55.4 (1-OCH₃), 112.7, 115.3 (C-2, C-6), 114.7 (C-4), 133.1 (C-5), 144.3 (C-3), 159.0 (C-1).

MS (EI, 70 eV): m/z (%) = 214.0/216.0 (99/100, [M]⁺), 199.0/201.0 (77/67, [M - CH₃]⁺), 135.1 (52, [M - Br]⁺).

UV (MeCN): λ_{max} (log ϵ) = 199.5 (4.5995), 227.5 (3.9754), 279.5 nm (3.2232).

4-Bromo-3-isopropylanisole (5c)

Yield: 96% (9.2:1 mixture with regioisomer).

IR (film): 2936, 2835, 1593, 1572, 1471, 1414, 1364, 1341, 1289, 1231, 1199, 1177, 1099, 1043, 1016, 924, 871, 800, 602 cm⁻¹.

Downloaded by: Universite Laval. Copyrighted material

¹H NMR (200 MHz, CDCl₃): $\delta = 1.24$ [d, J = 6.9 Hz, 6 H, 3-CH(CH₃)₂], 3.33 [sept, J = 6.9 Hz, 1 H, 3-CH(CH₃)₂], 3.80 (s, 3 H, 1-OCH₃), 6.62 (dd, J = 8.8, 3.0 Hz, 1 H, 6-H), 6.85 (d, J = 3.0 Hz, 1 H, 2-H), 7.43 (d, J = 8.8 Hz, 1 H, 5-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 22.7 [3-CH(CH₃)₂], 32.9 [3-CH(CH₃)₂], 55.4 (1-OCH₃), 112.3 (C-2), 113.0 (C-6), 114.7 (C-4), 133.2 (C-5), 148.4 (C-3), 159.2 (C-1).

MS (EI, 70 eV): m/z (%) = 228.0 (90, [M]⁺), 213.0 (100, [M – CH₃]⁺), 134.1 (72, [M – Br – CH₃]⁺), 77.0 [C₆H₅]⁺.

UV (MeCN): λ_{max} (log ϵ) = 199.5 (4.6189), 227.0 (3.9743), 279.5 nm (3.2371).

4-Bromo-3-n-propylanisole (5e)

Yield: 89% (8.8:1 mixture with regioisomer).

IR (film): 2960, 2870, 1572, 1471, 1288, 1241, 1162, 1138, 1052, 1014, 847, 800 $\rm cm^{-1}.$

¹H NMR (200 MHz, CDCl₃): $\delta = 0.98$ (t, J = 7.4 Hz, 3 H, 3-CH₂CH₂CH₃), 1.54–1.74 (m, 2 H, 3-CH₂CH₂CH₃), 2.60–2.72 (m, 2 H, 3-CH₂CH₂CH₃), 3.78 (s, 3 H, 1-OCH₃), 6.62 (dd, J = 8.7, 3.1 Hz, 1 H, 6-H), 6.77 (d, J = 3.1 Hz, 1 H, 2-H), 7.40 (d, J = 8.7 Hz, 1 H, 5-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 13.8 (3-CH₂CH₂CH₂), 23.0 (3-CH₂CH₂CH₃), 38.3 (3-CH₂CH₂CH₃), 55.3 (1-OCH₃), 112.8 (C-6), 114.9 (C-4), 116.0 (C-2), 133.1 (C-5), 142.6 (C-3), 158.8 (C-1).

MS (EI, 70 eV): m/z (%) = 228.0/230.0 (100/87, [M]⁺), 199.0/201.0 (83/90, [M - C₂H₅]⁺), 149.1 (7, [M - Br]⁺), 121.1 (72, [M - Br - C₂H₄]⁺).

UV (MeCN): λ_{max} (log ϵ) = 200.0 (4.6164), 227.5 (3.9658), 280.0 nm (3.2228).

4-Bromo-3-n-butylanisole (5f)

Yield: 94% (6.1:1 mixture with regioisomer).

¹H NMR (200 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.3 Hz, 3 H, 4'-CH₃), 1.29–1.48 (m, 2 H, 3'-CH₂), 1.68–1.48 (m, 2 H, 2'-CH₂), 2.68 (t, J = 7.7 Hz, 2 H, 1'-CH₂), 3.78 (s, 3 H, 1-OCH₃), 6.61 (dd, J = 8.7, 3.0 Hz, 1 H, 6-H), 6.77 (d, J = 3.0 Hz, 1 H, 2-H), 7.40 (d, J = 8.7Hz, 1 H, 5-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 13.9 (C-1′), 22.5 (C-2′), 32.0 (C-3′), 36.1 (C-4′), 55.4 (1-OCH₃), 112.8 (C-6), 114.9 (C-4), 116.0 (C-2), 133.1 (C-5), 143.1 (C-3), 158.8 (C-1).

MS (EI, 70 eV): m/z (%) = 242.1/244.2 (38/38, [M]⁺), 199.0/201.0 (24/25, [M - C₃H₇]⁺).

4-Bromo-3-n-nonylanisole (5g)

Yield: 95% (9.8:1 mixture with regioisomer).

IR (film): 2926, 2854, 1573, 1470, 1240, 1162, 1052, 1015, 798 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 0.88 (t, *J* = 6.7 Hz, 3 H, 9'-CH₃), 1.16–1.46 (m, 12 H, 3'-CH₂, 4'-CH₂, 5'-CH₂, 6'-CH₂, 7'-CH₂, 8'-CH₂), 1.50–1.69 (m, 2 H, 2'-CH₂), 2.67 (t, *J* = 7.7 Hz, 2 H, 1'-CH₂), 3.78 (s, 3 H, 1-OCH₃), 6.61 (dd, *J* = 8.7, 3.0 Hz, 1 H, 6-H), 6.76 (d, *J* = 3.0 Hz, 1 H, 2-H), 7.40 (d, *J* = 8.7 Hz, 1 H, 5-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 14.1 (C-9'), 22.7 (C-8'), 29.3 (C-7'), 29.4 (C-6'), 29.5 (C-5'), 29.5 (C-4'), 29.9 (C-3'), 31.9 (C-2'), 36.4 (C-1'), 55.4 (1-OCH₃), 112.8 (C-6), 114.9 (C-4), 115.9 (C-2), 133.1 (C-5), 143.1 (C-3), 158.8 (C-1).

MS (EI, 70 eV): m/z (%) = 312.1/314.1 (27/27, [M]⁺), 121.1 (100, $[M - Br - C_8H_{16}]^+$).

UV (MeCN): λ_{max} (log ε) = 199.5 (4.6451), 227.0 (3.9597), 279.5 nm (3.2428).

2-Bromo-5-hydroxybenzaldehyde (11)

To a solution of 3-hydroxybenzaldehyde (**10**; 18.32 g, 150 mmol) in glacial AcOH (72 mL) was added Br_2 (7.80 mL, 152 mmol, 1.01 equiv) at 10 °C. After the addition of about 1 mL of Br_2 some of the substrate precipitated and was dissolved again by slight heating. The rest of the Br_2 was added over 40 min at r.t. with occasional cooling in an ice bath. The reaction mixture was stirred for 2 h at r.t., then diluted with *n*-hexane (72 mL). The solution was poured onto H_2O (350 mL) and extracted with Et_2O (3 × 200 mL). The combined organic layers were washed with aq sat. NaHCO₃ (100 mL), aq Na₂S₂O₃ (10%, 100 mL) and brine (100 mL), and dried (MgSO₄). The solvent was removed by co-evaporation with toluene. Recrystallization from a mixture of EtOH and toluene gave the product (10.70 g, 53.2 mmol, 35%) as a light brown solid.

¹H NMR (200 MHz, acetone- d_6): δ = 7.09 (dd, J = 8.7, 3.2 Hz, 1 H, 4-H), 7.33 (d, J = 3.2 Hz, 1 H, 6-H), 7.57 (d, J = 8.7 Hz, 1 H, 3-H), 9.09 (s, 1 H, 5-OH), 10.23 (s, 1 H, 1-CHO).

¹³C NMR (50.3 MHz, acetone-*d*₆): δ = 116.1 (C-2), 116.3 (C-6), 124.1 (C-4), 135.1 (C-1), 135.7 (C-3), 158.2 (C-5), 191.8 (1-CHO).

MS (EI, 70 eV): m/z (%) = 202.0 (99, [M]⁺), 201.0 (89, [M – H]⁺), 200.0 (100, [M]⁺), 199.0 (69, [M – H]⁺), 92.1 (33, [M – Br – CO – H]⁺), 63.1 (56, [C₅H₃]⁺).

1-Bromo-4-methoxynaphthalene (5n)

Yield: 96% (over two steps).

¹H NMR (300 MHz, CDCl₃): δ = 3.99 (s, 3 H, 4-OCH₃), 6.68 (d, *J* = 8.3 Hz, 1 H, 3-H), 7.52 (ddd, *J* = 8.3, 7.0, 1.4 Hz, 1 H, 6-H), 7.61 (ddd, *J* = 8.3, 7.0, 1.4 Hz, 1 H, 7-H), 7.65 (d, *J* = 8.3 Hz, 1 H, 2-H), 8.16 (d, *J* = 8.3 Hz, 1 H, 5-H), 8.27 (d, *J* = 8.3 Hz, 1 H, 8-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 55.7 (4-OCH₃), 104.5 (C-3), 113.2 (C-1), 122.4 (C-5), 125.9 (C-6), 126.8 (C-4a), 126.8 (C-8), 127.7 (C-7), 129.4 (C-2), 132.4 (C-8a), 155.2 (C-4).

 $\begin{array}{l} \text{MS (EI, 70 eV): } m/z \ (\%) = 238.0 \ (100), \ 236.0 \ (91, \ [M]^+), \ 223.0 \\ (42), \ 221.0 \ (35, \ [M-CH_3]^+), \ 195.0 \ (72), \ 193.0 \ (75, \ [M-CH_3-CO]^+), \ 126.1 \ (26, \ [M-CH_2O-HBr]^+), \ 114.1 \ (96, \ [M-CH_3-CO-Br]^+), \ 88.0 \ (30, \ [C_7H_4]^+), \ 63.0 \ (33, \ [C_5H_3]^+). \end{array}$

EI-HRMS: m/z calcd for $C_{11}H_9BrO$ (237.09): 235.9837; found: 235.9837.

Aldehydes 6 from Brominated Anisoles 5; General Procedure

To a solution of **5** (4.22–61.7 mmol) in THF (4.7–7.4 mL/mmol) was added *t*-BuLi (1.50–1.70 M in pentane, 1.09 equiv) at –78 °C and the resulting mixture stirred for 30 min at –78 °C. DMF (5.00 equiv) was then added, and after stirring for 15 min at –78 °C, the mixture was warmed up to r.t. Upon completion of the reaction, the mixture was diluted with H₂O (10 mL/mmol) and extracted with Et₂O (3×5 mL/mmol). The combined organic extracts were washed with brine (5 mL/mmol), dried (Na₂SO₄) and the solvent was evaporated under reduced pressure. The aldehydes **6** (pure or as mixtures with their corresponding regioisomer **9**) were isolated by column chromatography.

4-Methoxy-2-methylbenzaldehyde (6a)

Yield: 75% (over two steps).

¹H NMR (300 MHz, CDCl₃): δ = 2.65 (s, 3 H, 2-CH₃), 3.87 (s, 3 H, 4-OCH₃), 6.75 (d, *J* = 2.4 Hz, 1 H, 3-H), 6.85 (dd, *J* = 8.6, 2.4 Hz, 1 H, 5-H), 7.76 (d, *J* = 8.6 Hz, 1 H, 6-H), 10.12 (s, 1 H, 1-CHO).

¹³C NMR (50.3 MHz, CDCl₃): δ = 19.9 (2-CH₃), 55.4 (4-OCH₃), 111.5 (C-5), 117.0 (C-3), 127.9 (C-1), 134.7 (C-6), 143.3 (C-2), 163.6 (C-4), 191.2 (1-CHO).

MS (EI, 70 eV): m/z (%) = 150.2 (71, [M]⁺), 149.2 (100, [M – H]⁺), 121.1 (13, [M – CO – H]⁺), 91.1 (7, [C₇H₇]⁺).

2-Ethyl-4-methoxybenzaldehyde (6b)

Yield: 82% (over two steps).

¹H NMR (200 MHz, CDCl₃): δ = 1.27 (t, *J* = 7.5 Hz, 3 H, 2-CH₂CH₃), 3.05 (q, *J* = 7.5 Hz, 2 H, 2-CH₂CH₃), 3.88 (s, 3 H, 4-OCH₃), 6.77 (d, *J* = 2.6 Hz, 1 H, 3-H), 6.84 (dd, *J* = 8.5, 2.6 Hz, 1 H, 5-H), 7.79 (d, *J* = 8.5 Hz, 1 H, 6-H), 10.13 (s, 1 H, 1-CHO).

¹³C NMR (50.3 MHz, CDCl₃): δ = 15.9 (2-*C*H₂CH₃), 25.8 (2-*C*H₂CH₃), 55.3 (4-OCH₃), 111.3, 115.3 (C-3, C-5), 127.0 (C-1), 134.6 (C-6), 149.6 (C-2), 163.8 (C-4), 190.7 (1-CHO).

MS (EI, 70 eV): m/z (%) = 164.0 (86, [M]⁺), 163.0 (100, [M – H]⁺), 147.0 (34, [M – H –CH₃]⁺).

2-Isopropyl-4-methoxybenzaldehyde (6c)

Yield: 60% (over two steps).

IR (film): 2966, 1686, 1602, 1565, 1493, 1462, 1290, 1241, 1202, 1175, 1114, 1070, 1030, 930, 867, 809 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 1.28 [d, *J* = 6.9 Hz, 6 H, 2-CH(*CH*₃)₂], 3.88 (s, 3 H, 4-OCH₃), 3.99 [sept, *J* = 6.9 Hz, 1 H, 2-CH(CH₃)₂], 6.83 (dd, *J* = 8.6, 2.5 Hz, 1 H, 5-H), 6.92 (d, *J* = 2.5 Hz, 1 H, 3-H), 7.80 (d, *J* = 8.6 Hz, 1 H, 6-H), 10.18 (s, 1 H, 1-CHO).

¹³C NMR (75.5 MHz, CDCl₃): δ = 23.7 [2-CH(CH₃)₂], 27.7 [2-CH(CH₃)₂], 55.4 (4-OCH₃), 110.7 (C-3), 112.1 (C-5), 126.7 (C-1), 134.8 (C-6), 154.1 (C-2), 164.1 (C-4), 190.8 (1-CHO).

MS (EI, 70 eV): m/z (%) = 178.1 (100, [M]⁺), 163.1 (32, [M – CH₃]⁺), 91.0 [C₇H₇]⁺, 77.0 [C₆H₃]⁺.

UV (MeCN): λ_{max} (log ϵ) = 201.0 (4.1899), 222.5 (4.1299), 274.0 nm (4.1041).

2-tert-Butyl-4-methoxybenzaldehyde (6d)

Yield: 65% (over two steps).

¹H NMR (200 MHz, CDCl₃): δ = 1.50 [s, 9 H, 2-C(CH₃)₃], 3.87 (s, 3 H, 4-OCH₃), 6.82 (dd, *J* = 8.7, 2.5 Hz, 5-H), 6.97 (d, *J* = 2.5 Hz, 1 H, 3-H), 8.00 (d, *J* = 8.7 Hz, 1 H, 6-H), 10.66 (s, 1 H, 1-CHO).

¹³C NMR (50.3 MHz, CDCl₃): δ = 32.5 [2-C(*C*H₃)₃], 35.5 [2-*C*(CH₃)₃], 55.2 (4-OCH₃), 110.0 (C-3), 113.6 (C-5), 128.6 (C-1), 133.8 (C-6), 155.0 (C-2), 161.9 (C-4), 191.3 (1-CHO).

2-*n*-Propyl-4-methoxybenzaldehyde (6e)

Yield: 78% (over two steps).

IR (film): 2961, 2871, 2726, 1688, 1600, 1496, 1463, 1258, 1128, 1029, 944, 852, 812 $\rm cm^{-1}.$

¹H NMR (200 MHz, CDCl₃): $\delta = 0.99$ (t, J = 7.4 Hz, 3 H, 2-CH₂CH₂CH₃), 1.55–1.75 (m, 2 H, 2-CH₂CH₂CH₃), 2.92–3.03 (m, 2 H, 2-CH₂CH₂CH₂CH₃), 3.87 (s, 3 H, 4-OCH₃), 6.75 (d, J = 2.5 Hz, 1 H, 3-H), 6.84 (dd, J = 8.6, 2.5 Hz, 1 H, 5-H), 7.80 (d, J = 8.6 Hz, 1 H, 6-H), 10.13 (s, 1 H, 1-CHO).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 13.9 (2-CH₂CH₂CH₃), 25.2 (2-CH₂CH₂CH₃), 34.6 (2-CH₂CH₂CH₃), 55.4 (4-OCH₃), 111.5, 116.1 (C-3, C-5), 127.4 (C-1), 134.2 (C-6), 148.1 (C-2), 163.7 (C-4), 190.7 (1-CHO).

MS (EI, 70 eV): m/z (%) = 178.1 (38, [M]⁺), 163.1 (19, [M – CH₃]⁺), 43.0 (100, [C₃H₇]⁺).

UV (MeCN): λ_{max} (log ϵ) = 202.0 (4.1948), 223.5 (4.1526), 275.0 nm (4.1740).

2-n-Butyl-4-methoxybenzaldehyde (6f)

Yield: 79% (over two steps).

IR (film): 2958, 1686, 1601, 1496, 1463, 1253, 1207, 1128, 1031, 813 $\rm cm^{-1}$

¹H NMR (200 MHz, CDCl₃): $\delta = 0.94$ (t, J = 7.2 Hz, 3 H, 4'-CH₃), 1.30–1.50 (m, 2 H, 3'-CH₂), 1.50–1.69 (m, 2 H, 2'-CH₂), 3.00 (t, J = 7.7 Hz, 2 H, 1'-CH₂), 3.87 (s, 3 H, 4-OCH₃), 6.74 (d, J = 2.5 Hz, 1 H, 3-H), 6.84 (dd, J = 8.6, 2.5 Hz, 1 H, 5-H), 7.80 (d, J = 8.6 Hz, 1 H, 6-H), 10.13 (s, 1 H, 1-CHO).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 13.9 (C-4'), 22.6 (C-3'), 32.4 (C-2'), 34.2 (C-1'), 55.4 (4-OCH₃), 111.5 (C-5), 116.0 (C-3), 127.3 (C-1), 134.1 (C-6), 148.4 (C-2), 163.7 (C-4), 190.7 (1-CHO).

MS (EI, 70 eV): m/z (%) = 192.1 (79, [M]⁺), 163.1 (100, [M - C₂H₅]⁺).

MS UV (MeCN): λ_{max} (log ϵ) = 201.0 (4.3432), 203.5 (4.3457), 223.5 (4.1348), 274.5 nm (4.1141).

4-Methoxy-2-*n*-nonylbenzaldehyde (6g)

Yield: 72% (over two steps).

IR (film): 2926, 2854, 1688, 1601, 1568, 1496, 1464, 1249, 1206, 1163, 1128, 1032, 875, 811, 722 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.6 Hz, 3 H, 9'-CH₃), 1.18–1.46 (m, 12 H, 3'-CH₂, 4'-CH₂, 5'-CH₂, 6'-CH₂, 7'-CH₂, 8'-CH₂), 1.51–1.71 (m, 2 H, 2'-CH₂), 2.99 (t, J = 7.7 Hz, 2 H, 1'-CH₂), 3.87 (s, 3 H, 4-OCH₃), 6.74 (d, J = 2.4 Hz, 1 H, 3-H), 6.84 (dd, J = 8.6, 2.4 Hz, 1 H, 5-H), 7.80 (d, J = 8.6 Hz, 1 H, 6-H), 10.13 (s, 1 H, 1-CHO).

¹³C NMR (50.3 MHz, CDCl₃): δ = 14.1 (C-9'), 22.6 (C-8'), 29.3 (C-7'), 29.5 (C-6'), 29.5 (C-5'), 29.5 (C-4'), 31.8 (C-3'), 32.2 (C-2'),

32.7 (C-1'), 55.4 (4-OCH₃), 111.5 (C-5), 116.0 (C-3), 127.3 (C-1), 134.1 (C-6), 148.5 (C-2), 163.7 (C-4), 190.6 (1-CHO).

MS (EI, 70 eV): m/z (%) = 262.2 (95, [M]⁺), 163.1 (100, [M - C₇H₁₅]⁺).

EI-HRMS: m/z calcd for $C_{17}H_{26}O_2$ (262.387): 262.1933; found: 262.1933.

UV (MeCN): λ_{max} (log ϵ) = 200.0 (4.2447), 223.5 (4.1786), 274.5 nm (4.1594).

4-Methoxy-2,6-dimethylbenzaldehyde (6h)

Yield: 63% (over two steps).

¹H NMR (300 MHz, CDCl₃): δ = 2.61 (s, 6 H, 2-CH₃, 6-CH₃), 3.84 (s, 3 H, 4-OCH₃), 6.59 (s, 2 H, 3-H, 5-H), 10.47 (s, 1 H, 1-CHO).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 21.1 (2-CH₃, 6-CH₃), 55.2 (4-OCH₃), 114.8 (C-3, C-5), 125.9 (C-1), 144.4 (C-2, C-6), 162.7 (C-4), 191.6 (1-CHO).

MS (EI, 70 eV): m/z (%) = 164.1 (32, [M]⁺), 163.1 (100, [M – H]⁺), 91.1 (23, [C₇H₇]⁺), 71.1 (36, [C₄H₇O]⁺), 57.0 (58, [C₃H₅O]⁺).

4-Methoxy-2-phenylbenzaldehyde (6i)

Yield: 63% (over two steps).

¹H NMR (200 MHz, CDCl₃): δ = 3.90 (s, 4-OCH₃), 6.88 (d, *J* = 2.5 Hz, 1 H, 3-H), 7.00 (ddd, *J* = 8.7, 2.5, 0.9 Hz, 1 H, 5-H), 7.33–7.51 (m, 5 H, 2'-H, 3'-H, 4'-H, 5'-H), 8.03 (d, *J* = 8.7 Hz, 1 H, 6-H), 9.84 (d, *J* = 0.9 Hz, 1 H, 1-CHO).

 13 C NMR (50.3 MHz, CDCl₃): δ = 55.6 (4-OCH₃), 113.9 (C-5), 115.1 (C-3), 127.3 (C-1), 128.1 (C-4'), 128.3 (C-2', C-6'), 129.9 (C-3, C-3', C-5'), 137.7 (C-1'), 148.5 (C-2), 163.5 (C-4), 191.0 (1-CHO).

MS (EI, 70 eV): m/z (%) = 211.1 (100, [M – H]⁺).

2-Trifluoromethyl-4-methoxybenzaldehyde (6j)

After halogen–lithium exchange, the reaction was quenched with *N*-formylpiperidine instead of DMF; yield: 28% (over two steps).

¹H NMR (200 MHz, CDCl₃): δ = 3.93 (s, 3 H, 4-OCH₃), 7.14 (dd, J = 8.8, 2.6 Hz, 1 H, 5-H), 7.25 (d, J = 2.6 Hz, 1 H, 3-H), 8.13 (d, J = 8.8 Hz, 1 H, 6-H), 10.26 (q, J = 2.1 Hz, 1 H, 1-CHO).

¹³C NMR (75.5 MHz, CDCl₃): δ = 55.9 (4-OCH₃), 112.3 (q, J = 6.0 Hz, C-3), 116.5 (C-5), 123.4 (q, J = 274 Hz, 2-CF₃), 126.6 (C-1), 131.7 (C-6), 133.0 (q, J = 33 Hz, C-2), 163.6 (C-4), 187.7 (q, J = 3.0 Hz, 1-CHO).

MS (EI, 70 eV): m/z (%) = 203.0 (100, [M – H]⁺), 189.1 (19, [M – CH₃]⁺).

2-Fluoro-4-methoxybenzaldehyde (6k)

Yield: the yield was calculated after the Corey–Fuchs reaction (cf. **7k**).

¹H NMR (300 MHz, CDCl₃): δ = 3.89 (s, 3 H, 4-OCH₃), 6.64 (dd, J = 2.3 Hz, $J_{\text{H-F}}$ = 12.4 Hz, 1 H, 3-H), 6.79 (dd, J = 8.7, 2.3 Hz, 1 H, 5-H), 7.82 (t, J = $J_{\text{H-F}}$ = 8.7 Hz, 1 H, 6-H), 10.21 (s, 1 H, 1-CHO).

¹³C NMR (75.5 MHz, CDCl₃): $\delta = 55.9$ (4-OCH₃), 101.4 (d, J = 24.2 Hz, C-3), 111.2 (d, J = 2.7 Hz, C-5), 117.8 (d, J = 8.3 Hz, C-1), 130.1 (d, J = 3.8 Hz, C-6), 166.1 (d, J = 11.9 Hz, C-4), 166.2 (d, J = 258 Hz, C-2), 186.1 (d, J = 16.0 Hz, 1-CHO).

MS (EI, 70 eV): m/z (%) = 154.1 (68, [M]⁺), 153.1 (100, [M – H]⁺), 110.0 (11, [M – CH₃ – CO – H]⁺).

2,6-Dichloro-4-methoxybenzaldehyde (6l)

To a solution of the anisole **4l** (17.2 g, 97.4 mmol, 1.00 equiv) in concd HCl (260 mL) and concd H_2SO_4 (2.6 mL) was added paraformaldehyde (5.23 g, 174 mmol, 1.79 equiv) and the resulting mixture was stirred for 7 h at 70 °C. After cooling, the mixture was

Synthesis 2009, No. 12, 2040-2060 © Thieme Stuttgart · New York

extracted with CH₂Cl₂ (3×150 mL). The combined organic layers were washed with H₂O (200 mL), dried (Na₂SO₄) and the solvent was evaporated under reduced pressure. The crude product was dissolved in a mixture of dioxane (90 mL) and aq 1 N NaOH (180 mL) and refluxed for 7 h. The aqueous phase was extracted with Et₂O (2×100 mL), the combined organic layers were dried (Na₂SO₄) and the solvent was evaporated under reduced pressure. Column chromatography (*n*-pentane–Et₂O, 50:50) gave the benzyl alcohol, 3,5dichloro-4-hydroxymethyl-1-methoxybenzene (7.90 g, 38.2 mmol) and its regioisomer (3.74 g, 18.1 mmol). The benzyl alcohol (7.30 g, 38.2 mmol, 1.00 equiv) was dissolved in toluene (150 mL), then MnO₂ (17.4 g, 200 mmol, 5.24 equiv) was added. The resulting suspension was heated for 6.5 h in a Dean–Stark apparatus. The mixture was filtered over Celite and washed with EtOAc (3×100 mL). The solvent was evaporated; yield: 17.2 g (86%, over two steps).

¹H NMR (200 MHz, CDCl₃): δ = 3.88 (s, 3 H, 4-OCH₃), 6.91 (s, 2 H, 3-H, 5-H), 10.42 (s, 1 H, 1-CHO).

¹³C NMR (75.5 MHz, CDCl₃): δ = 56.1 (4-OCH₃), 115.7 (C-3, C-5), 122.8 (C-1), 139.0 (C-2, C-6), 162.7 (C-4), 187.6 (1-CHO). MS (EI, 70 eV): m/z (%) = 203.0/204.9 (100/69, [M]⁺).

4-Triisopropylsilyloxy-2-triisopropylsilyloxymethylbenzaldehyde (6m)

To a solution of 11 (4.02 g, 20.0 mmol) in EtOH (100 mL) was added NaBH₄ (3.79 g, 100 mmol, 5.00 equiv) in three portions at r.t. within 22 min. The mixture was stirred for 2 h at r.t., diluted with aq sat. NH₄Cl (50 mL) and H₂O (100 mL), and extracted with EtOAc $(3 \times 150 \text{ mL})$. The combined organic layers were washed with aq 1 M HCl (2×50 mL) and brine (50 mL), dried (MgSO₄), and the solvent was evaporated under reduced pressure. To a solution of the crude product in DMF (100 mL) were added imidazole (5.45 g, 80.1 mmol, 4.00 equiv) and TIPSCI (9.40 mL, 8.46 g, 43.9 mmol, 2.19 equiv). After 39 h at r.t., the reaction mixture was poured into H_2O (350 mL) and extracted with Et_2O (4 × 150 mL). The combined organic layers were washed with brine $(3 \times 50 \text{ mL})$, dried $(MgSO_4)$, and the solvent was evaporated under reduced pressure. To a solution of the crude product in THF (75 mL) was added a solution of t-BuLi (1.5 M in pentane, 20 mL, 30 mmol, 1.5 equiv) at -78 °C within 17 min. The reaction mixture was stirred for 30 min at -78 °C. DMF (7.80 mL, 7.36 g, 101 mmol, 5.0 equiv) was added at -78 °C within 4 min. After stirring for 5 min at -78 °C and 3 h at r.t., the mixture was poured into H₂O (250 mL) and extracted with Et_2O (4 × 100 mL). The combined organic layers were washed with brine $(3 \times 50 \text{ mL})$, dried (MgSO₄), and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (*n*-pentane–EtOAc, $50:1 \rightarrow n$ -pentane–EtOAc, 30:1); yield: 3.95 g (43%, over three steps).

IR (film): 2945, 2867, 2726, 1691, 1601, 1564, 1495, 1464, 1390, 1369, 1296, 1230, 1204, 1166, 1121, 1066, 986, 919, 883, 825, 781, 684 $\rm cm^{-1}$.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.11$ [d, J = 7.2 Hz, 36 H, 6×SiCH(CH₃)₂], 1.15–1.39 [m, 6 H, 6×SiCH(CH₃)₂], 5.22 (s, 2 H, 1'-CH₂), 6.88 (dd, J = 8.3, 2.3 Hz, 1 H, 5-H), 7.42 (d, J = 2.3 Hz, 1 H, 3-H), 7.68 (d, J = 8.3 Hz, 1 H, 6-H), 9.96 (s, 1 H, 1-CHO).

¹³C NMR (75.5 MHz, CDCl₃): δ = 12.0 [4-OSi[CH(CH₃)₂]₃], 12.7 (1'-OSi[CH(CH₃)₂]₃), 17.8, 18.0 [4-OSi[CH(CH₃)₂]₂), 1'-OSi[CH(CH₃)₂]₃], 63.0 (C-1'), 117.5, 117.9 (C-3, C-5), 126.1 (C-1), 136.8 (C-6), 147.4 (C-2), 161.6 (C-4), 191.8 (1-CHO).

MS (EI, 70 eV): m/z (%) = 464.5 (0.06, [M]⁺), 421.4 (100, [M - C₃H₇]⁺).

EI-HRMS: m/z calcd for $C_{26}H_{48}O_3Si_2$ (464.83): 464.3142; found: 464.3142.

UV (MeCN): λ_{max} (log ϵ) = 201.0 (4.221), 221.5 (4.161), 274.0 nm (4.208).

Synthesis 2009, No. 12, 2040–2060 © Thieme Stuttgart · New York

4-Methoxynaphthalene-1-carbaldehyde (6n) Yield: 81% (over two steps).

¹H NMR (300 MHz, CDCl₃): $\delta = 4.09$ (s, 3 H, 4-OCH₃), 6.91 (d, J = 8.2 Hz, 1 H, 3-H), 7.57 (ddd, J = 8.5, 7.1, 1.2 Hz, 1 H, 6-H), 7.69 (ddd, J = 8.5, 7.1, 1.5 Hz, 1 H, 7-H), 7.91 (d, J = 8.2 Hz, 1 H, 2-H), 8.32 (d, J = 8.5 Hz, 1 H, 5-H), 9.30 (d, J = 8.5 Hz, 1 H, 8-H), 10.19 (s, 1 H, 1-CHO).

¹³C NMR (50.3 MHz, CDCl₃): δ = 55.9 (4-OCH₃), 102.9 (C-3), 122.3 (C-5), 124.8 (C-8), 124.9 (C-1), 125.4 (C-4a), 126.4 (C-6), 129.5 (C-7), 131.8 (C-8a), 139.7 (C-2), 160.8 (C-4), 192.3 (1-CHO).

MS (EI, 70 eV): m/z (%) = 186.1 (62, [M]⁺), 185.1 (59, [M – H]⁺), 115.1 (100, [M – CH₃ – 2 CO]⁺), 89.0 (15, [C₇H₅]⁺), 63.0 (22, [C₅H₃]⁺).

EI-HRMS: m/z calcd for $C_{12}H_{10}O_2$ (186.21): 186.0681; found: 186.0681.

Dibromovinyl Compounds 7 from Aldehydes 6 Using the Corey–Fuchs Method with Subsequent Cleavage of the Methyl Ether Moiety and THP-Protection of the Resulting Phenols; General Procedure

Step 1: To a solution of CBr_4 (2.01 equiv) in CH_2Cl_2 (5.3–6.7 mL/ mmol) was added Zn powder (2.02 equiv) and the mixture stirred for 5 min at r.t. A solution of Ph₃P (2.00 equiv) in CH_2Cl_2 (1.0–1.5 mL/mmol) was slowly added and the mixture was stirred for another 30 min. Then, a solution of the aldehyde **6** (5.05–63.8 mmol) in CH_2Cl_2 (1.0–1.5 mL/mmol) was slowly added and the mixture stirred at r.t. for 17 h. For the termination of the reaction, the mixture was diluted with *n*-pentane (10 mL/mmol) and stirred vigorously for 5 min. The solution was then decanted from a brown oil, which was extracted two more times with pentane (10 mL/mmol). The combined solutions were evaporated under reduced pressure and the residue purified by column chromatography.

Steps 2 and 3: To a solution of the above methyl ether in CH_2Cl_2 (10 mL/mmol) was added a solution of BBr₃ (1.00 M in CH_2Cl_2 , 1.50– 3.00 equiv) dropwise at –78 °C and the resulting mixture stirred for 30 min at –78 °C and then at r.t. for about 6 h (TLC). After completion of the reaction, the mixture was diluted with H_2O (15 mL/ mmol) and the aqueous layer extracted with CH_2Cl_2 (5.0 mL/mmol) and Et₂O (2 × 10 mL/mmol). The combined organic layers were washed with aq 2 M HCl (5.0 mL/mmol) and ag sat. NaHCO₃ (5.0 mL/mmol), dried (Na₂SO₄), and the solvent evaporated under reduced pressure. To a solution of the crude product in CH_2Cl_2 (4.0– 5.0 mL/mmol) were added DHP (5.05 equiv) and PPTS (25.1 mol%) and the mixture was stirred at r.t. for about 17 h (TLC). The solvent was evaporated at reduced pressure and the residue purified by column chromatography.

2-[4-(2,2-Dibromovinyl)-3-methylphenoxy]tetrahydropyran (7a)

Yield: 79% (over three steps).

IR (film): 2943, 2874, 1604, 1569, 1494, 1453, 1388, 1356, 1288, 1250, 1200, 1182, 1168, 1122, 1098, 1077, 1038, 1021, 972, 907, 870, 819, 759, 747, 714 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.53–2.09 (m, 6 H, 3-CH₂, 4-CH₂, 5-CH₂), 2.24 (s, 3 H, 3'-CH₃), 3.61 (dtd, *J* = 11.4, 4.0, 1.4 Hz, 1 H, 6-H_a), 3.90 (ddd, *J* = 11.4, 9.2, 2.8 Hz, 1 H, 6-H_b), 5.43 (t, *J* = 3.2 Hz, 1 H, 2-H), 6.86–6.92 (m, 2 H, 2'-H, 6'-H), 7.36–7.42 (m, 2 H, 5'-H, 1"-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 18.7 (C-4), 20.1 (3'-CH₃), 25.2 (C-5), 30.3 (C-3), 62.0 (C-6), 90.4 (C-2"), 96.1 (C-2), 113.4 (C-6'), 117.7 (C-2'), 128.4 (C-4'), 129.6 (C-5'), 136.2 (C-1"), 137.7 (C-3'), 157.0 (C-1').

MS (EI, 70 eV): m/z (%) = 376.1 (4, [M]⁺), 292.0 (100, [M – C₅H₈O]⁺), 132.1 (66, [M – C₅H₈O – 2 Br]⁺) 85.1 (62, [C₅H₉O]⁺). UV (MeCN): λ_{max} (log ε) = 264.5 nm (4.073).

2-[4-(2,2-Dibromovinyl)-3-ethylphenoxy]tetrahydro-2*H*-pyran (7b)

Yield: 43% (over three steps).

IR (film): 3345, 2943, 1606, 1571, 1490, 1454, 1356, 1250, 1200, 1123, 1037, 965, 902, 869, 814, 757 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): $\delta = 1.19$ (t, J = 7.5 Hz, 3 H, 3'-CH₂CH₃), 1.53–1.76 (m, 3 H, 4-H_a, 5-CH₂), 1.80–2.10 (m, 3 H, 3-CH₂, 4-H_b), 2.56 (q, J = 7.5 Hz, 2 H, 3'-CH₂CH₃), 3.57–3.67 (m, 1 H, 6-H_a), 3.91 (ddd, J = 11.6, 9.4, 3.1 Hz, 1 H, 6-H_b), 5.44 (t, J = 3.2 Hz, 1 H, 2-H), 6.87–6.94 (m, 2 H, 2'-H, 6'-H), 7.33–7.39 (m, 1 H, 5'-H), 7.44 (s, 1 H, 4'-CH=CBr₂).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 14.7 (3'-CH₂CH₃), 18.7 (C-4), 25.2 (C-5), 26.7 (3'-CH₂CH₃), 30.3 (C-3), 62.1 (C-6), 90.7 (4'-CH=CBr₂), 96.2 (C-2), 113.2, 116.2 (C-2', C-6'), 127.9 (C-4'), 130.0 (C-5'), 136.1 (4'-CH=CBr₂), 143.7 (C-3'), 157.3 (C-1').

MS (EI, 70 eV): m/z (%) = 388.0/390.0/392.0 (1/2/1, [M]⁺), 303.9/305.9/307.9 (40/85/42, [M - C₅H₈O]⁺), 146.1 (100, [M - 2 Br - C₅H₈O]⁺), 85.0 (59, [C₅H₉O]⁺).

ESI-HRMS: m/z calcd for $C_{15}H_{18}Br_2O_2$ (390.110): 410.95658 [M + Na]⁺; found: 410.95666 [M + Na]⁺.

UV (MeCN): λ_{max} (log ε) = 192.5 (4.4338), 263.0 nm (4.0441).

2-[4-(2,2-Dibromovinyl)-3-isopropylphenoxy]tetrahydro-2*H*-pyran (7c)

Yield: 69% (over three steps).

IR (KBr): 2954, 2869, 1606, 1567, 1486, 1360, 1287, 1241, 1198, 1179, 1117, 1071, 1038, 1022, 976, 909, 872, 819, 762, 734, 587, 505 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.21$ [d, J = 6.8 Hz, 6 H, 3'-CH(CH₃)₂], 1.54–1.76 (m, 3 H, 4-H_a, 5-CH₂), 1.81–2.11 (m, 3 H, 3-CH₂, 4-H_b), 2.96 [sept, J = 6.8 Hz, 1 H, 3'-CH(CH₃)₂], 3.58–3.67 (m, 1 H, 6-H_a), 3.93 (ddd, J = 11.3, 9.3, 3.2 Hz, 1 H, 6-H_b), 5.43 (t, J = 3.3 Hz, 1 H, 2-H), 6.91 (dd, J = 8.5, 2.6 Hz, 1 H, 5'-H), 6.95 (d, J = 2.6 Hz, 1 H, 3'-H), 7.27 (d, J = 8.5 Hz, 1 H, 6'-H), 7.48 (s, 1 H, 4'-CH=CBr₂).

¹³C NMR (50.3 MHz, CDCl₃): δ = 18.8 (C-4), 23.2, 23.2 [3'-CH(CH₃)₂], 25.2 (C-5), 30.4 (C-3), 30.5 [3'-CH(CH₃)₂], 62.1 (C-6), 91.3 (4'-CH=*C*Br₂), 96.3 (C-2), 112.9 (C-2'), 113.5 (C-6'), 127.7 (C-4'), 130.2 (C-5'), 136.6 (4'-CH=CBr₂), 148.2 (C-3'), 157.5 (C-1').

MS (EI, 70 eV): m/z (%) = 402.2/404.2/406.2 (1/2/1, [M]⁺), 318.1/ 320.1/322.1 (36/72/36, [M - C₅H₈O]⁺), 160.1 (100, [M - C₅H₈O - 2 Br]⁺), 85.1 (48, [C₅H₉O]⁺).

EI-HRMS: m/z calcd for $C_{16}H_{20}Br_2O_2$ (404.137): 401.9830; found: 401.9830.

UV (MeCN): λ_{max} (log ϵ) = 203.0 (4.4301), 259.0 nm (4.0450).

2-[4-(2,2-Dibromovinyl)-3-*tert*-butylphenoxy]tetrahydro-2*H*-pyran (7d)

Yield: 26% (over three steps).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.35$ [s, 9 H, 3'-C(CH₃)₃], 1.54–1.76 (m, 3 H, 4-H_a, 5-CH₂), 1.81–1.90 (m, 2 H, 3-CH₂), 1.90–2.11 (m, 1 H, 4-H_b), 3.58–3.66 (m, 1 H, 6-H_a), 3.93 (ddd, J = 11.4, 9.2, 3.3 Hz, 1 H, 6-H_b), 5.42 (t, J = 3.3 Hz, 1 H, 2-H), 6.91 (dd, J = 8.5, 2.5 Hz, 1 H, 6'-H), 7.08 (d, J = 2.5 Hz, 1 H, 2'-H), 7.12 (d, J = 8.5 Hz, 1 H, 5'-H), 7.72 (s, 1 H, 4'-CH=CBr₂).

¹³C NMR (75.5 MHz, CDCl₃): $\delta = 18.9$ (C-4), 25.2 (C-5), 30.4 (C-3), 30.6 [3'-C(CH₃)₃], 35.7 [3'-C(CH₃)₃], 62.2 (C-6), 91.5 (4'-CH=CBr₂), 96.3 (C-2), 112.5 (C-6'), 115.1 (C-2'), 128.6 (C-4'), 132.4 (C-5'), 140.2 (4'-CH=CBr₂), 149.6 (C-3'), 157.0 (C-1').

MS (EI, 70 eV): m/z (%) = 416.0/418.0/420.0 (1/2/1, [M]⁺), 332.0/ 334.0/336.0 (50/100/48, [M - C₅H₈O]⁺), 238.0/240.0 (10/10, [M - Br - C₅H₈O - CH₃]⁺), 159.1 (26, [M - 2 Br - C₅H₈O - CH₃]⁺), 85.0 (40, [C₅H₉O]⁺).

EI-HRMS: m/z calcd for $C_{17}H_{22}Br_2O_2$ (418.163): 415.9987; found: 415.9985.

2-[4-(2,2-Dibromovinyl)-3-*n*-propylphenoxy]tetrahydro-2*H*-pyran (7e)

Yield: 62% (over three steps).

IR (film): 2955, 2871, 1605, 1568, 1489, 1356, 1247, 1200, 1123, 1078, 1038, 981, 909, 869, 759 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): $\delta = 0.96$ (t, J = 7.4 Hz, 3 H, 3'-CH₂CH₂CH₃), 1.52–1.77 (m, 5 H, 4-Ha, 5-CH₂, 3'-CH₂CH₂CH₃), 1.81–1.89 (m, 2 H, 3-CH₂), 1.89–2.10 (m, 1 H, 4-H_b), 2.50 (dd, J = 7.4, 6.3 Hz, 2 H, 3'-CH₂CH₂CH₃), 3.62 (dt, J = 11.4, 1.6 Hz, 1 H, 6-H_a), 3.91 (ddd, J = 11.4, 9.5, 3.2 Hz, 1 H, 6-H_b), 5.43 (t, J = 3.2 Hz, 1 H, 2-H), 6.88 (d, J = 2.6 Hz, 1 H, 2'-H), 6.91 (dd, J = 8.3, 2.6 Hz, 1 H, 6'-H), 7.36 (d, J = 8.3 Hz, 1 H, 5'-H), 7.45 (s, 1 H, 4'-CH=CBr₂).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 13.9 (3'-CH₂CH₂CH₃), 18.7 (C-4), 23.7 (3'-CH₂CH₂CH₃), 25.2 (C-5), 30.3 (C-3), 35.7 (3'-CH₂CH₂CH₃), 62.0 (C-6), 90.7 (4'-CH=CBr₂), 96.1 (C-2), 113.3 (C-6'), 117.0 (C-2'), 128.1 (C-4'), 130.0 (C-5'), 136.3 (4'-CH=CBr₂), 142.3 (C-3'), 157.1 (C-1').

MS (EI, 70 eV): m/z (%) = 402.0/404.0/406.0 (1/1/1, [M]⁺), 317.9/ 319.9/321.9 (47/99/45, [M - C₅H₈O]⁺), 239.0/241.0 (7/10, [M - Br - C₅H₈O]⁺), 160.1 (86, [M - 2 Br - C₅H₈O]⁺), 85.0 (100, [C₅H₉O]⁺).

ESI-HRMS: m/z calcd $C_{16}H_{20}Br_2O_2$ (404.137): 402.99028 [M + H]⁺, 424.97223 [M + Na]⁺; found: 402.99050 [M + H]⁺, 442.97245 [M + Na]⁺.

UV (MeCN): λ_{max} (log ϵ) = 197.0 (4.4095), 201.0 (4.4121), 262.0 nm (4.0495).

2-[4-(2,2-Dibromovinyl)-3-*n*-butylphenoxy]tetrahydro-2*H*-pyr-an (7f)

Yield: 67% (over three steps).

IR (film): 2952, 2871, 1605, 1568, 1489, 1356, 1245, 1201, 1123, 1078, 1038, 980, 909, 871, 758 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.94$ (t, J = 7.3 Hz, 3 H, 4"-CH₃), 1.37 (sext, J = 7.3 Hz, 2 H, 3"-CH₂), 1.47–1.77 (m, 5 H, 2"-CH₂, 4-H_b, 5-CH₂), 1.81–1.90 (m, 2 H, 3-CH₂), 1.90–2.10 (m, 1 H, 4-H_b), 2.52 (t, J = 7.7 Hz, 2 H, 1"-CH₂), 3.62 (dt, J = 11.4, 1.4 Hz, 1 H, 6-H_a), 3.91 (ddd, J = 11.4, 9.5, 3.1 Hz, 1 H, 6-H_b), 5.44 (t, J = 3.1 Hz, 1 H, 2-H), 6.87–6.93 (m, 2 H, 2'-H, 6'-H), 7.35 (d, J = 8.1 Hz, 1 H, 5'-H), 7.45 (s, 1 H, 4'-CH=CBr₂).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 13.9 (C-4′′), 18.7 (C-4), 22.4 (C-3′′), 25.2 (C-5), 30.3 (C-3), 32.7 (C-2′′), 33.3 (C-1′′), 62.0 (C-6), 90.7 (4′-CH=CBr₂), 96.1 (C-2), 113.3 (C-6′), 116.9 (C-2′), 128.1 (C-4′), 130.0 (4′-CH=CBr₂), 136.3 (C-5′), 142.5 (C-3′), 157.1 (C-1′).

MS (EI, 70 eV): m/z (%) = 416.0/418.0/420.0 (1/2/1, [M]⁺), 332.0/334.0/336.0 (46/100/46, [M - C₅H₈O]⁺), 174.1 (37, [M - 2 Br - C₅H₈O]⁺), 85.0 (94, [C₅H₉O]⁺).

 $\begin{array}{l} ESI\text{-}HRMS: \textit{m/z} calcd for $C_{17}H_{22}Br_2O_2$ (418.163): 417.00593 [M + H]^+$, 438.98788 [M + Na]^+$; found: 417.00589 [M + H]^+$, 438.98781 [M + Na]^+$. \end{array}$

UV (MeCN): λ_{max} (log ϵ) = 194.5 (4.4434), 262.0 nm (4.0540).

2-[4-(2,2-Dibromovinyl)-3-*n*-nonylphenoxy]tetrahydro-2*H*-py-ran (7g)

Yield: 65% (over three steps).

IR (film): 2926, 2853, 1605, 1568, 1489, 1466, 1356, 1247, 1200, 1123, 1038, 982, 908, 871, 759 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, J = 6.9 Hz, 3 H, 9"-CH₃), 1.20–1.40 (m, 12 H, 3"-CH₂, 4"-CH₂, 5"-CH₂, 6"-CH₂, 7"-CH₂, 8"-CH₂), 1.47–1.77 (m, 5 H, 2"-CH₂, 4-H_a, 5-CH₂), 1.81–1.90 (m, 2 H, 3-CH₂), 1.90–2.10 (m, 1 H, 4-H_b), 2.51 (t, J = 7.8 Hz, 2 H, 1"-CH₂), 3.62 (dt, J = 11.4 Hz, 1.4 Hz, 1 H, 6-H_a), 3.91 (ddd, J = 11.4, 9.5, 3.0 Hz, 1 H, 6-H_b), 5.43 (t, J = 3.2 Hz, 1 H, 2-H), 6.88 (d, J = 2.6Hz, 1 H, 2'-H), 6.90 (dd, J = 8.3, 2.6 Hz, 1 H, 6'-H), 7.35 (d, J = 8.3Hz, 1 H, 5'-H), 7.44 (s, 1 H, 4'-CH=CBr₂).

 $\label{eq:stars} \begin{array}{l} ^{13}\text{C NMR (75.5 MHz, CDCl_3): } \delta = 14.1 (C-9''), 18.7 (C-4), 22.7 (C-8''), 25.2 (C-5), 29.3 (C-7''), 29.3 (C-6''), 29.4 (C-5''), 29.5 (C-4''), 30.3, 30.5 (C-3, C-3''), 31.9 (C-2''), 33.6 (C-1''), 62.0 (C-6), 90.7 (4'-CH=CBr_2), 96.1 (C-2), 113.3 (C-6'), 116.9 (C-2'), 128.1 (C-4'), 130.0 (C-5'), 136.3 (4'-CH=CBr_2), 142.6 (C-3'), 157.1 (C-1'). \end{array}$

MS (EI, 70 eV): m/z (%) = 486.1/488.1/490.1 (1/2/1, [M]⁺), 402.1/404.1/406.1 (48/100/46, [M - C₅H₈O]⁺), 244.2 (7, [M - 2 Br - C₅H₈O]⁺), 85.0 (64, [C₅H₉O]⁺).

 $\begin{array}{l} ESI\text{-}HRMS\colon \textit{m/z} \text{ calcd for } C_{22}H_{32}Br_2O_2 \ (488.296)\text{: } 487.08418 \ [M+H]^+, 509.06613 \ [M+Na]^+ \text{; found } 487.08410 \ [M+H]^+, 509.06593 \ [M+Na]^+. \end{array}$

2-[4-(2,2-Dibromovinyl)-3,5-dimethylphenoxy]tetrahydropyran (7h)

Yield: 59% (over three steps).

IR (KBr): 2970, 2948, 2882, 1603, 1479, 1443, 1385, 1354, 1312, 1258, 1198, 1183, 1146, 1124, 1103, 1025, 977, 949, 907, 887, 866, 826, 816, 758, 714, 644, 614, 436 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.53-2.08$ (m, 6 H, 3-CH₂, 4-CH₂, 5-CH₂), 2.21 (s, 6 H, 3'-CH₂, 5'-CH₂), 3.61 (dtd, J = 11.6, 3.9, 1.6 Hz, 1 H, 6-H_a), 3.91 (dtd, J = 11.6, 9.4, 3.0 Hz, 1 H, 6-H_b), 5.41 (t, J = 3.2 Hz, 1 H, 2-H), 6.75 (s, 2 H, 2'-H, 6'-H), 7.33 (s, 1 H, 1"-H).

¹³C NMR (75.5 MHz, CDCl₃): $\delta = 18.7$ (C-4), 20.3 (3'-CH₃, 5'-CH₃), 25.2 (C-5), 30.4 (C-3), 62.0 (C-6), 93.0 (C-2''), 96.1 (C-2), 115.1 (C-2', C-6'), 129.2 (C-4'), 137.2 (C-3', C-5'), 137.3 (C-1''), 156.6 (C-1').

MS (EI, 70 eV): m/z (%) = 390.1 (1, [M]⁺), 306.0 (22, [M - C₅H₈O]⁺), 146.1 (77, [M - C₅H₈O - 2 Br]⁺), 85.1 (100, [C₅H₉O]⁺), 57.1 (33, [C₃H₅O]⁺), 41.0 (40, [C₃H₅]⁺).

EI-HRMS: m/z calcd for $C_{15}H_{18}Br_2O_2$ (390.11): 387.9674; found: 387.9674.

UV (MeCN): λ_{max} (log ϵ) = 203.5 (4.542), 241.5 nm (3.874).

2-[4-(2,2-Dibromovinyl)-3-phenylphenoxy]tetrahydro-2*H*-pyran (7i)

Yield: 62% (over three steps, 8:1 mixture with regioisomer 9i).

¹H NMR (300 MHz, CDCl₃): δ = 1.55–1.78 (m, 3 H, 4-H_a, 5-CH₂), 1.83–1.92 (m, 2 H, 3-CH₂), 1.92–2.10 (m, 1 H, 4-H_b), 3.59–3.68 (m, 1 H, 6-H_a), 3.93 (ddd, *J* = 11.2, 9.6, 3.1 Hz, 1 H, 6-H_b), 5.50 (t, *J* = 3.1 Hz, 1 H, 2-H), 7.06–7.10 (m, 2 H, 2'-H, 6'-H), 7.14 (s, 1 H, 4'-CH=CBr₂), 7.31–7.48 (m, 5 H, 2"-H, 3"-H, 4"-H, 5"-H, 6"-H), 7.63–7.70 (m, 1 H, 5'-H).

¹³C NMR (126 MHz, CDCl₃): δ = 18.6 (C-4), 25.1 (C-5), 30.3 (C-3), 62.1 (C-6), 89.3 (4'-CH=CBr₂), 96.2 (C-2), 114.9, 117.6 (C-2', C-6'), 127.1 (C-4'), 127.6 (C-4''), 128.2 (C-2'', C-6''), 129.5 (C-3'', C-5''), 130.4 (C-5'), 137.0 (4'-CH=CBr₂), 140.0, 142.6 (C-1'', C-3'), 157.0 (C-1').

MS (EI, 70 eV): m/z (%) = 436.0/438.0/440.0 (1/2/1, [M]⁺), 351.9/353.9/356.0 (11/21/9, [M - C₅H₈O]⁺), 194.1 (100, [M - 2 Br - C₅H₈O]⁺), 85.0 (36, [C₅H₉O]⁺).

ESI-HRMS: m/z calcd for $C_{19}H_{18}Br_2O_2$ (438.153): 458.95658 [M + Na]⁺; found: 458.95668 [M + Na]⁺.

2-[4-(2,2-Dibromovinyl)-3-trifluoromethylphenoxy]tetrahydro-2*H*-pyran (7j)

Yield: 55% (over three steps).

IR (KBr): 2948, 2879, 1614, 1566, 1493, 1442, 1316, 1258, 1228, 1164, 1123, 1048, 1020, 964, 883, 823, 752, 604, 536, 483, 423 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 1.55–1.79 (m, 3 H, 4-H_a, 5-CH₂), 1.82–1.91 (m, 2 H, 3-CH₂), 1.91–2.09 (m, 1 H, 4-H_b), 3.63 (dt, *J* = 11.5, 1.4 Hz, 1 H, 6-H_a), 3.86 (ddd, *J* = 11.5, 9.8, 3.0 Hz, 1 H, 6-H_b), 5.48 (t, *J* = 2.9 Hz, 1 H, 2-H), 7.22 (dd, *J* = 8.7, 2.5 Hz, 1 H, 6'-H), 7.34 (d, *J* = 2.5 Hz, 1 H, 2'-H), 7.52 (d, *J* = 8.7 Hz, 1 H, 5'-H), 7.55 (q, *J* = 2.1 Hz, 1 H, 4'-CH=CBr₂).

¹³C NMR (75.5 MHz, CDCl₃): δ = 18.4 (C-4), 25.0 (C-5), 30.1 (C-3), 62.0 (C-6), 92.9 (4'-CH=*C*Br₂), 96.4 (C-1), 114.4 (q, J = 5.6 Hz, C-2'), 118.8 (C-6'), 123.4 (q, J = 273 Hz, 3'-CF₃), 127.0 (q, J = 1.9 Hz, C-4'), 129.1 (q, J = 30.3 Hz, C-3'), 132.0 (C-5'), 133.9 (4'-*C*H=CBr₂), 156.8 (C-1').

MS (EI, 70 eV): m/z (%) = 428.0/430.0/432.0 (1/1/1, [M]⁺), 343.9/345.9/347.9 (6/12/6, [M - C₅H₈O]⁺), 186.0 (10, [M - 2 Br - C₅H₈O]⁺), 85.0 (100, [C₅H₉O]⁺).

EI-HRMS: m/z calcd for $C_{14}H_{13}Br_2F_3O_2$ (430.055): 427.9234; found: 427.9234.

UV (MeCN): λ_{max} (log ϵ) = 192.0 (4.5068), 250.5 nm (3.9719).

2-[4-(2,2-Dibromovinyl)-3-fluorophenoxy]tetrahydro-2H-pyran (7k)

Yield: 17% (over five steps).

IR (KBr): 3023, 2942, 2871, 1619, 1600, 1566, 1497, 1427, 1388, 1359, 1297, 1254, 1200, 1163, 1122, 1112, 1087, 1051, 1026, 976, 950, 906, 870, 845, 810, 769, 710, 632, 620, 581, 521, 482, 465, 431 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.53–2.07 (m, 6 H, 3-CH₂, 4-CH₂, 5-CH₂), 3.62 (dtd, *J* = 11.3, 4.0, 1.5 Hz, 1 H, 6-H_a), 3.85 (ddd, *J* = 11.3, 9.8, 3.0 Hz, 1 H, 6-H_b), 5.41 (t, *J* = 3.0 Hz, 1 H, 2-H), 6.79 (dd, *J* = 2.4 Hz, *J*_{H-F} = 12.1 Hz, 1 H, 2'-H), 6.84 (dd, *J* = 8.7, 2.4 Hz, 1 H, 6'-H), 7.48 (s, 1 H, 1''-H), 7.73 (t, *J* = *J*_{H-F} = 8.7 Hz, 1 H, 5'-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 18.5 (C-4), 25.0 (C-5), 30.0 (C-3), 62.0 (C-6), 90.0 (d, J = 1.7 Hz, C-2″), 96.4 (C-2), 103.8 (d, J = 25.5 Hz, C-2′), 111.9 (d, J = 3.2 Hz, C-6′), 116.4 (d, J = 12.9 Hz, C-4′), 129.3 (d, J = 4.0 Hz, C-5′), 129.5 (d, J = 4.8 Hz, C-1″), 158.5 (d, J = 11.5 Hz, C-1′), 160.2 (d, J = 250 Hz, C-3′).

MS (EI, 70 eV): m/z (%) = 380.0 (2, [M]⁺), 296.0 (42, [M - C₅H₈O]⁺), 136.1 (12, [M - C₅H₈O - 2 Br]⁺), 107.1 (11, [M - C₅H₈O - 2 Br - CO - H]⁺), 85.1 (100, [C₅H₉O]⁺), 57.1 (15, [C₃H₅O]⁺), 41.0 (15, [C₃H₅]⁺).

EI-HRMS: m/z calcd for $C_{13}H_{13}Br_2FO_2$ (380.05): 377.9266; found: 377.9266.

UV (MeCN): $\lambda_{max} (\log \epsilon) = 264.0 \text{ nm} (4.182).$

2-[4-(2,2-Dibromovinyl)-3,5-dichlorophenoxy]tetrahydro-2*H*-pyran (7l)

The methyl protected compound **7** ($\mathbb{R}^1 = \mathbb{M}e$, $\mathbb{R}^2 = \mathbb{R}^3 = \mathbb{C}l$) was synthesized according to the general procedure. The product (5.49 g, 15.2 mmol, 1.00 equiv) was dissolved in $\mathbb{C}H_2\mathbb{C}l_2$ (120 mL) and cooled down to -78 °C. A solution of BBr₃ (1.00 M in $\mathbb{C}H_2\mathbb{C}l_2$, 45.6 mL, 45.6 mmol, 3.00 equiv) was added, the mixture was stirred at

-78 °C for 30 min and 7 d at r.t. The mixture was diluted with H₂O (200 mL) and extracted with CH₂Cl₂ (75 mL) and EtOAc (2 × 150 mL). The combined organic layers were washed with aq 2 M HCl (75 mL) and aq sat. NaHCO₃ (75 mL), dried (Na₂SO₄), and the solvent was evaporated under reduced pressure. DHP (7.00 mL, 6.48 g, 77.0 mmol, 5.07 equiv) and PPTS (958 mg, 3.81 mmol, 25.1 mol%) in CH₂Cl₂ (100 mL) were added and the mixture was stirred for 15.5 h at r.t. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography (pentane–EtOAc–Et₃N, 98:2:1); yield: 5.84 g (72%, over three steps).

¹H NMR (300 MHz, CDCl₃): δ = 1.54–1.78 (m, 3 H, 4-H_a, 5-CH₂), 1.79–1.88 (m, 2 H, 3-CH₂), 1.88–2.04 (m, 1 H, 4-H_b), 3.64 (dt, *J* = 11.3, 1.5 Hz, 1 H, 6-H_a), 3.83 (ddd, *J* = 11.3, 10.0 Hz, 3.0 Hz, 1 H, 6-H_b), 5.40 (t, *J* = 2.9 Hz, 1 H, 2-H), 7.07 (s, 2 H, 2'-H, 6'-H), 7.25 (s, 1 H, 4'-CH=CBr₂).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 18.3 (C-4), 24.9 (C-5), 30.0 (C-3), 62.0 (C-6), 96.6 (C-2), 96.9 (4'-CH=CBr_2), 116.2 (C-2', C-6'), 127.2 (C-4'), 132.9 (4'-CH=CBr_2), 134.5 (C-3', C-5'), 157.4 (C-1').

MS (EI, 70 eV): m/z (%) = 427.9/429.9/431.9/435.9 (3/10/8/2, [M]⁺), 85.0 (100, [C₅H₉O]⁺).

EI-HRMS: m/z calcd for $C_{13}H_{12}Br_2Cl_2O_2$ (430.947): 427.8581; found: 427.8581.

1-(2,2-Dibromovinyl)-4-triisopropylsilyloxy-2-triisopropylsilyloxymethylbenzene (7m)

In this case the compound was not deprotected and reprotected with DHP.

Yield: 80%.

IR (film): 2944, 2867, 1605, 1567, 1489, 1464, 1422, 1385, 1295, 1255, 1193, 1167, 1122, 1067, 995, 919, 883, 836, 807, 767, 683 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): $\delta = 1.02-1.35$ [m, 6 H, $6 \times \text{SiCH}(\text{CH}_3)_2$], 1.09 [d, J = 7.1 Hz, 36 H, $6 \times \text{SiCH}(\text{CH}_3)_2$], 4.67 (s, 2 H, 1"-CH₂), 6.77 (dd, J = 8.5, 2.5 Hz, 1 H, 5-H), 7.06 (d, J = 2.5 Hz, 1 H, 3-H), 7.33 (d, J = 8.5 Hz, 1 H, 6-H), 7.44 (s, 1 H, 1'-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 12.0 {4-OSi[CH(CH₃)₂]₃}, 12.7 {1'-OSi[CH(CH₃)₂]₃}, 17.9, 18.0 {4-OSi[CH(CH₃)₂]₃, 1'-OSi[CH(CH₃)₂]₃}, 63.1 (C-1''), 90.6 (C-2'), 118.0, 118.2 (C-3, C-5), 126.0 (C-1), 129.6 (C-6), 135.2 (C-1'), 140.8 (C-2), 156.4 (C-4).

MS (EI, 70 eV): m/z (%) = 620.3 (33, [M]⁺), 577.2 (73, [M – C₃H₇]⁺), 498.3 (17, [M – C₃H₇ – Br]⁺), 367.2 (20, [M – HBr – *i*-Pr₃SiO]⁺), 139.0 (22, [C₇H₁₁OSi]⁺), 115.1 (29, [*i*-Pr₂SiH]⁺), 73.1 (40, [Me₃Si]⁺), 59.0 (100, [Me₂SiH]⁺), 43.0 (93, [C₃H₇]⁺).

EI-HRMS: m/z calcd for $C_{27}H_{48}Br_2O_2Si_2$ (620.65): 618.1560; found: 618.1560.

UV (MeCN): $\lambda_{max} (\log \epsilon) = 268.5 \text{ nm} (4.065).$

1-(2,2-Dibromovinyl)-4-methoxynaphthalene (7n)

In this case the compound was not deprotected and reprotected with DHP.

Yield: 84%.

IR (KBr): 2962, 2934, 1580, 1509, 1460, 1448, 1421, 1379, 1332, 1285, 1263, 1244, 1224, 1154, 1092, 1021, 973, 933, 868, 847, 816, 795, 756, 713, 637, 601, 509, 496, 469, 438, 418 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 4.02 (s, 3 H, 4-OCH₃), 6.82 (d, *J* = 8.0 Hz, 1 H, 3-H), 7.47–7.59 (m, 3 H, 2-H, 6-H, 7-H), 7.80–7.85 (m, 2 H, 8-H, 1'-H), 8.27–8.33 (m, 1 H, 5-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 55.6 (4-OCH₃), 91.7 (C-2'), 103.1 (C-3), 122.5 (C-5), 123.8 (C-8), 125.4, 125.4 (C-1, C-4a), 125.5, 127.0, 127.3 (C-2, C-6, C-7), 131.7 (C-8a), 135.7 (C-1'), 155.9 (C-4).

MS (EI, 70 eV): m/z (%) = 342.1 (31, [M]⁺), 182.2 (100, [M - 2 Br]⁺), 167.1 (29, [M - 2 Br - CH₃]⁺), 139.1 (59, [M - 2 Br - CH₃ - CO]⁺).

EI-HRMS: m/z calcd for $C_{13}H_{10}Br_2O$ (342.03): 339.9098; found: 339.9099.

UV (MeCN): λ_{max} (log ϵ) = 199.0 (4.475), 235.5 (4.536), 312.0 nm (4.054).

Alkynes 8 from Dibromovinyl Compounds 7; General Procedure

To a solution of the dibromovinyl compound **7** (1.85–15.8 mmol) in THF (7.0–7.5 mL/mmol) was slowly added *n*-BuLi (2.50 M in hexane, 2.20 equiv) at –78 °C. The mixture was stirred for 30 min at –78 °C, then at r.t. until completion (TLC), and poured into H₂O (10 mL/mmol); the layers were separated and the aqueous layer was extracted with Et₂O (3 × 4.0 mL/mmol). The combined organic layers were washed with brine (4.0 mL/mmol) and dried (Na₂SO₄). The solvent was evaporated at reduced pressure and the alkyne **8** purified by column chromatography.

2-(4-Ethynyl-3-methylphenoxy)tetrahydro-2H-pyran (8a) Yield: 94%.

IR (film): 3288, 2945, 2875, 2101, 1608, 1566, 1494, 1454, 1389, 1357, 1289, 1241, 1202, 1183, 1167, 1122, 1099, 1077, 1038, 1022, 970, 906, 872, 821 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.53–2.09 (m, 6 H, 3-CH₂, 4-CH₂, 5-CH₂), 2.42 (s, 3 H, 3'-CH₃), 3.19 (s, 1 H, 2"-H), 3.60 (dtd, J = 11.4, 4.0, 1.5 Hz, 1 H, 6-H_a), 3.87 (ddd, J = 11.4, 9.5, 3.0 Hz, 1 H, 6-H_b), 5.43 (t, J = 3.1 Hz, 1 H, 2-H), 6.83 (dd, J = 8.5, 2.5 Hz, 1 H, 6'-H), 6.90 (d, J = 2.5 Hz, 1 H, 2'-H), 7.38 (d, J = 8.5 Hz, 1 H, 5'-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 18.6 (C-4), 20.8 (3'-CH₃), 25.1 (C-5), 30.2 (C-3), 61.9 (C-6), 79.5 (C-2"), 82.6 (C-1"), 96.0 (C-2), 113.6 (C-6'), 114.9 (C-4'), 117.3 (C-2'), 133.7 (C-5'), 142.4 (C-3'), 157.2 (C-1').

MS (EI, 70 eV): m/z (%) = 216.2 (27, [M]⁺), 132.1 (100, [M - C₅H₈O]⁺), 85.1 (13, [C₅H₉O]⁺).

EI-HRMS: m/z calcd for $C_{14}H_{16}O_2$ (216.28): 216.1150; found: 216.1150.

UV (MeCN): λ_{max} (log ϵ) = 207.5 (4.496), 250.5 (4.288), 280.5 (3.163), 291.5 nm (3.039).

2-(3-Ethyl-4-ethynylphenoxy)tetrahydro-2*H***-pyran (8b)** Yield: 95%.

IR (film): 3287, 2943, 2878, 2101, 1606, 1565, 1489, 1455, 1357, 1291, 1235, 1201, 1167, 1122, 1038, 991, 963, 900, 872, 821 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): $\delta = 1.24$ (t, J = 7.6 Hz, 3 H, 3'-CH₂CH₃), 1.54–1.77 (m, 3 H, 4-H_a, 5-CH₂), 1.80–2.10 (m, 3 H, 3-CH₂, 4-H_b), 2.79 (q, J = 7.6 Hz, 2 H, 3'-CH₂CH₃), 3.17 (s, 1 H, 4'-C=CH), 3.56–3.66 (m, 1 H, 6-H_a), 3.88 (ddd, J = 11.6, 9.5, 3.1 Hz, 1 H, 6-H_b), 5.44 (t, J = 3.2 Hz, 1 H, 2-H), 6.84 (dd, J = 8.4, 2.5 Hz, 1 H, 6'-H), 6.90 (d, J = 2.5 Hz, 1 H, 2'-H), 7.39 (d, J = 8.4 Hz, 1 H, 5'-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 14.7 (3'-CH₂CH₃), 18.7 (C-4), 25.2 (C-5), 27.7 (3'-CH₂CH₃), 30.3 (C-3), 62.0 (C-6), 79.2 (4'-C=CH), 82.4 (4'-C=CH), 96.1 (C-2), 113.4, 116.1 (C-2', C-6'), 114.3 (C-4'), 134.1 (C-5'), 148.6 (C-3'), 157.5 (C-1').

MS (EI, 70 eV): m/z (%) = 230.2 (19, [M]⁺), 146.1 (100, [M - C₅H₈O]⁺), 85.0 (45, [C₅H₉O]⁺).

ESI-HRMS: m/z calcd for $C_{15}H_{18}O_2$ (230.302): 253.11990 [M + Na]⁺; found: 253.11986 [M + Na]⁺.

UV (MeCN): λ_{max} (log ε) = 208.5 (4.4999), 251.0 (4.2696), 280.0 (3.1723), 291.0 nm (3.0479).

2-(4-Ethynyl-3-isopropylphenoxy)tetrahydro-2H-pyran (8c) Yield: 92%.

IR (KBr): 3291, 2965, 2881, 2099, 1606, 1560, 1486, 1388, 1357, 1288, 1261, 1232, 1198, 1179, 1118, 1040, 1020, 971, 905, 873, 820 $\rm cm^{-1}$.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.25$ [d, J = 6.9 Hz, 6 H, 3'-CH(CH₃)₂], 1.55–1.76 (m, 3 H, 4-H_a, 5-CH₂), 1.80–2.10 (m, 3 H, 3-CH₂, 4-H_b), 3.17 (s, 1 H, 4'-C=CH), 3.44 [sept, J = 6.9 Hz, 1 H, 3'-CH(CH₃)₂], 3.57–3.65 (m, 1 H, 6-H_a), 3.89 (ddd, J = 11.4, 9.4, 3.2 Hz, 1 H, 6-H_b), 5.43 (t, J = 3.2 Hz, 1 H, 2-H), 6.85 (dd, J = 8.5, 2.5 Hz, 1 H, 6'-H), 6.93 (d, J = 2.5 Hz, 1 H, 2'-H), 7.40 (d, J = 8.5 Hz, 1 H, 5'-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 18.7 (C-4), 23.0, 23.0 [3'-CH(CH₃)₂], 25.1 (C-5), 30.3 (C-3), 31.5 [3'-CH(CH₃)₂], 62.0 (C-6), 79.3 (4'-C=CH), 82.4 (4'-C=CH), 96.1 (C-2), 113.1, 113.5 (C-2', C-6'), 113.9 (C-4'), 134.2 (C-5'), 152.9 (C-4'), 157.7 (C-1').

MS (EI, 70 eV): m/z (%) = 244.2 (14, [M]⁺), 160.1 (100, [M - C₅H₈O]⁺), 145.1 (20, [M - C₅H₈O - CH₃]⁺), 85.0 (46, [C₅H₉O]⁺).

EI-HRMS: m/z calcd for $C_{16}H_{20}O_2$ (244.329): 244.1463; found: 244.1463.

UV (MeCN): λ_{max} (log ϵ) = 208.5 (4.5064), 250.5 (4.2672), 279.5 (3.2097), 291.0 nm (3.0464).

2-(3-*tert***-Butyl-4-ethynylphenoxy)tetrahydro-2***H***-pyran (8d) Yield: 62%.**

IR (film): 3310, 2952, 2097, 1602, 1561, 1482, 1363, 1291, 1222, 1201, 1113, 1078, 1038, 975, 903, 873, 821 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.50$ [s, 9 H, 3'-C(CH₃)₃], 1.54–1.76 (m, 3 H, 4-H_a, 5-CH₂), 1.81–1.90 (m, 2 H, 3-CH₂), 1.90–2.10 (m, 1 H, 4-H_b), 3.32 (s, 1 H, 4'-C≡*CH*), 3.57–3.65 (m, 1 H, 6-H_a), 3.90 (ddd, J = 11.4, 9.3, 3.3 Hz, 1 H, 6-H_b), 5.42 (t, J = 3.3 Hz, 1 H, 2-H), 6.85 (dd, J = 8.5, 2.5 Hz, 1 H, 6'-H), 7.02 (d, J = 2.5 Hz, 1 H, 2'-H), 7.45 (d, J = 8.5 Hz, 1 H, 5'-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 18.7 (C-4), 25.2 (C-5), 29.8 [3'-C(CH₃)₃], 30.3 (C-3), 35.8 [3'-C(CH₃)₃], 62.1 (C-6), 81.6 (4'-C≡CH), 85.2 (4'-C≡CH), 96.2 (C-2), 112.5 (C-6'), 113.5 (C-4'), 114.7 (C-2'), 137.4 (C-5'), 154.0 (C-3'), 157.2 (C-1').

MS (EI, 70 eV): m/z (%) = 258.2 (6, [M]⁺), 174.1 (100, [M - C₅H₈O]⁺), 159.1 (39, [M - CH₃ - C₅H₈O]⁺), 85.0 (55, [C₅H₉O]⁺).

ESI-HRMS: m/z calcd for $C_{17}H_{22}O_2$ (258.355): 281.15120 [M + Na]⁺; found: 281.15127 [M + Na]⁺.

UV (MeCN): λ_{max} (log ε) = 206.5 (4.4577), 254.0 nm (4.2495).

2-(4-Ethynyl-3-*n***-propylphenoxy)tetrahydro-2***H***-pyran (8e)** Yield: 73%.

IR (KBr): 3254, 2946, 2871, 2100, 1606, 1564, 1489, 1358, 1289, 1244, 1202, 1122, 1070, 1038, 981, 906, 819, 640 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.97$ (t, J = 7.5 Hz, 3 H, 3'-CH₂CH₂CH₃), 1.53–1.76 (m, 5 H, 4-H_a, 5-CH₂, 3'-CH₂CH₂CH₃), 1.82–1.89 (m, 2 H, 3-CH₂), 1.89–2.09 (m, 1 H, 4-H_b), 2.74 (dd, J = 7.2, 6.5 Hz, 2 H, 3'-CH₂CH₂CH₃), 3.16 (s, 1 H, 4'-C≡CH), 3.61 (dt, J = 11.4, 1.5 Hz, 1 H, 6-H_a), 3.88 (dd, J = 11.4, 9.6, 3.1 Hz, 1 H, 6-H_b), 5.43 (t, J = 3.1 Hz, 1 H, 2-H), 6.84 (dd, J = 8.5, 2.6 Hz, 1 H, 5'-H), 6.89 (d, J = 2.6 Hz, 1 H, 2'-H), 7.39 (d, J = 8.5 Hz, 1 H, 5'-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 13.9 (3'-CH₂CH₂CH₃), 18.6 (C-4), 23.6 (3'-CH₂CH₂CH₃), 25.1 (C-5), 30.2 (C-3), 36.6 (3'-CH₂CH₂CH₂CH₃), 61.9 (C-6), 79.0 (4'-C=CH), 82.5 (4'-C=CH), 96.1

MS (EI, 70 eV): m/z (%) = 244.2 (15, [M]⁺), 160.1 (100, [M - C₅H₈O]⁺), 145.1 (13, [M - C₅H₈O - CH₃]⁺), 131.1 (13, [M - C₅H₈O - C₂H₅]⁺), 85.0 (42, [C₅H₉O]⁺).

ESI-HRMS: m/z calcd for $C_{16}H_{20}O_2$ (244.329): 245.15361 [M + H]⁺, 267.13555 [M + Na]⁺; found: 245.15385 [M + H]⁺, 267.13581 [M + Na]⁺.

UV (MeCN): λ_{max} (log ϵ) = 209.0 (4.5267), 251.0 (4.2777), 280.0 (3.2257), 291.5 nm (3.0727).

2-(3-*n***-Butyl-4-ethynylphenoxy)tetrahydro-2***H***-pyran (8f) Yield: 97%.**

IR (film): 3288, 2953, 2102, 1605, 1564, 1489, 1357, 1286, 1240, 1202, 1166, 1123, 1078, 1038, 979, 908, 872, 821 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.94$ (t, J = 7.3 Hz, 3 H, 4"-CH₃), 1.38 (sext, J = 7.3 Hz, 2 H, 3"-CH₂), 1.53–1.76 (m, 5 H, 2"-CH₂, 4-H_a, 5-CH₂), 1.80–1.90 (m, 2 H, 3-CH₂), 1.90–2.11 (m, 1 H, 4-H_b), 2.75 (t, J = 7.8 Hz, 2 H, 1"-CH₂), 3.16 (s, 1 H, 4'-C=CH), 3.61 (dt, J = 11.4, 1.5 Hz, 1 H, 6-H_a), 3.88 (ddd, J = 11.4, 9.5, 3.0 Hz, 1 H, 6-H_b), 5.43 (t, J = 3.1 Hz, 1 H, 2-H), 6.84 (dd, J = 8.5, 2.5 Hz, 1 H, 6'-H), 6.88 (d, J = 2.5 Hz, 1 H, 2'-H), 7.39 (d, J = 8.5 Hz, 1 H, 5'-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 13.9 (C-4″), 18.6 (C-4), 22.5 (C-3″), 25.1 (C-5), 30.2 (C-3), 32.6 (C-2″), 34.3 (C-1″), 62.0 (C-6), 79.1 (4′-C≡CH), 82.5 (4′-C≡CH), 96.1 (C-2), 113.5 (C-6′), 114.5 (C-4′), 116.7 (C-2′), 134.1 (C-5′), 147.3 (C-3′), 157.3 (C-1′).

MS (EI, 70 eV): m/z (%) = 258.1 (19, [M]⁺) 174.1 (100, [M - C₅H₈O]⁺), 159.0 (66, [M - C₅H₈O - CH₃]⁺), 145.1 (13, [M - C₅H₈O - C₃H₅]⁺), 131.0 (20, [M - C₅H₈O - C₃H₇]⁺), 85.0 (54, [C₅H₉O]⁺).

ESI-HRMS: m/z calcd for $C_{17}H_{22}O_2$ (258.355): 259.16926 [M + H]⁺, 281.15120 [M + Na]⁺; found: 259.16933 [M + H]⁺, 281.15131 [M + Na]⁺.

UV (MeCN): λ_{max} (log ϵ) = 209.5 (4.5222), 250.5 (4.2702), 280.5 (3.1703), 291.5 nm (3.0402).

2-(4-Ethynyl-3-*n***-nonylphenoxy)tetrahydro-**2*H***-pyran (8g)** Yield: 96%.

IR (KBr): 3314, 2926, 2854, 2102, 1605, 1565, 1489, 1467, 1357, 1287, 1239, 1201, 1123, 1038, 980, 906, 872, 821 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, J = 6.9 Hz, 3 H, 9"-CH₃), 1.21–1.43 (m, 12 H, 3"-CH₂, 4"-CH₂, 5"-CH₂, 6"-CH₂, 7"-CH₂, 8"-CH₂), 1.54–1.77 (m, 5 H, 2"-CH₂, 4-H_a, 5-CH₂), 1.81–1.90 (m, 2 H, 3-CH₂), 1.90–2.09 (m, 1 H, 4-H_b), 2.75 (t, J = 7.8 Hz, 2 H, 1"-CH₂), 3.16 (s, 1 H, 4'-C≡CH), 3.61 (dt, J = 11.4, 1.5 Hz, 1 H, 6-H_a), 3.88 (ddd, J = 11.4, 9.5, 3.1 Hz, 1 H, 6-H_b), 5.43 (t, J = 3.1 Hz, 1 H, 2-H), 6.84 (dd, J = 8.4, 2.5 Hz, 1 H, 6'-H), 6.88 (d, J = 2.5 Hz, 1 H, 2'-H), 7.39 (d, J = 8.4 Hz, 1 H, 5'-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 14.1 (C-9"), 18.6 (C-4), 22.7 (C-8"), 25.1 (C-5), 29.3, 29.4, 29.5 (C-4", C-5", C-6", C-7"), 30.2, 30.5 (C-3, C-3"), 31.9 (C-2"), 34.6 (C-1"), 61.9 (C-6), 79.0 (4'-C=CH), 82.5 (4'-C=CH), 96.1 (C-2), 113.5 (C-6'), 114.5 (C-4'), 116.7 (C-2'), 134.0 (C-5'), 147.3 (C-3'), 157.3 (C-1').

MS (EI, 70 eV): m/z (%) = 328.3 (32, [M]⁺), 244.2 (27, [M - C₅H₈O]⁺), 229.2 (12, [M - C₅H₈O - CH₃]⁺), 159.1 (60, [M - C₅H₈O - C₆H₁₃]⁺), 145.1 (29, [M - C₅H₈O - C₇H₁₅]⁺), 85.0 (100, [C₅H₉O]⁺).

ESI-HRMS: m/z calcd for $C_{22}H_{32}O_2$ (328.488): 329.24751 [M + H]⁺; found: 329.24770 [M + H]⁺.

UV (MeCN): λ_{max} (log ε) = 209.5 (4.5364), 250.5 (4.2806), 280.5 (3.1627), 291.5 nm (3.0270).

2-(4-Ethynyl-3,5-dimethylphenoxy)tetrahydropyran (8h) Yield: 95%.

IR (film): 3287, 2945, 2875, 2097, 1606, 1477, 1441, 1377, 1356, 1311, 1284, 1260, 1203, 1184, 1147, 1123, 1107, 1078, 1033, 977, 946, 906, 885, 872, 859, 819, 725, 641 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.52-2.08$ (m, 6 H, 3-CH₂, 4-CH₂, 5-CH₂), 2.42 (s, 6 H, 3'-CH₃, 5'-CH₃), 3.42 (s, 1 H, 2"-H), 3.60 (dtd, J = 11.4, 3.9, 1.5 Hz, 1 H, 6-H_a), 3.87 (ddd, J = 11.4, 9.6, 3.2 Hz, 1 H, 6-H_b), 5.42 (t, J = 3.1 Hz, 1 H, 2-H), 6.75 (s, 2 H, 2'-H, 6'-H).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 18.6 (C-4), 21.2 (3'-CH₃, 5'-CH₃), 25.2 (C-5), 30.2 (C-3), 61.9 (C-6), 81.3 (C-1"), 83.8 (C-2"), 95.9 (C-2), 114.7 (C-2', C-6'), 115.1 (C-4'), 142.6 (C-3', C-5'), 156.6 (C-1').

MS (EI, 70 eV): m/z (%) = 230.2 (8, [M]⁺), 146.1 (100, [M - C₅H₈O]⁺), 85.1 (21, [C₅H₉O]⁺).

EI-HRMS: m/z calcd for $C_{15}H_{18}O_2$ (230.30): 230.1307; found: 230.1307.

UV (MeCN): λ_{max} (log ε) = 212.0 (4.466), 252.5 nm (4.190).

2-(4-Ethynyl-3-phenylphenoxy)tetrahydro-2*H***-pyran (8i)** Yield: 92%.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.56-1.77$ (m, 3 H, 4-Ha, 5-CH₂), 1.84–1.91 (m, 2 H, 3-CH₂), 1.91–2.07 (m, 1 H, 4-H_b), 2.96 (s, 1 H, 4'-C≡CH), 3.62 (dt, J = 11.4, 1.5, 1 H, 6-H_a), 3.89 (ddd, J = 11.4, 9.6, 3.1 Hz, 1 H, 6-H_b), 5.49 (t, J = 3.1 Hz, 1 H, 2-H), 7.00 (dd, J = 8.5, 2.5 Hz, 1 H, 6'-H), 7.07 (d, J = 2.5 Hz, 1 H, 2'-H), 7.33– 7.47 (m, 3 H, 3"-H, 4"-H, 5"-H), 7.54 (d, J = 8.5 Hz, 1 H, 5'-H), 7.56–7.63 (m, 2 H, 2"-H, 6"-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 18.6 (C-4), 25.1 (C-5), 30.2 (C-3), 62.0 (C-6), 78.7 (4'-C≡CH), 83.1 (4'-C≡CH), 96.2 (C-2), 113.4 (C-4'), 115.0 (C-6'), 117.5 (C-2'), 127.6 (C-4''), 127.9 (C-2'', C-6''), 129.2 (C-3'', C-5''), 135.2 (C-5'), 140.2 (C-1''), 145.9 (C-3'), 157.3 (C-1').

MS (EI, 70 eV): m/z (%) = 278.1 (15, [M]⁺), 194.1 (100, [M - C₅H₈O]⁺), 85.0 (28, [C₅H₉O]⁺).

ESI-HRMS: m/z calcd for $C_{19}H_{18}O_2$ (278.345): 279.13796 [M + H]⁺, 301.11990 [M + Na]⁺; found: 279.13817 [M + H]⁺, 301.12005 [M + Na]⁺.

2-(4-Ethynyl-3-trifluoromethylphenoxy)tetrahydro-2*H*-pyran (8j)

Yield: 78%.

IR (KBr): 3255, 2965, 2881, 1613, 1497, 1433, 1328, 1259, 1233, 1206, 1187, 1162, 1118, 1048, 1021, 958, 935, 900, 870, 816, 730, 701, 657, 592, 449 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.54–1.79 (m, 3 H, 4-H_a, 5-CH₂), 1.83–1.91 (m, 2 H, 3-CH₂), 1.91–2.07 (m, 1 H, 4-H_b), 3.26 (s, 1 H, 4'-C≡CH), 3.62 (dt, *J* = 11.5, 1.5 Hz, 6-H_a), 3.82 (ddd, *J* = 11.5, 10.1, 3.1 Hz, 1 H, 6-H_b), 5.48 (t, *J* = 2.9 Hz, 1 H, 2-H), 7.16 (dd, *J* = 8.6, 2.5 Hz, 1 H, 6'-H), 7.33 (d, *J* = 2.5 Hz, 1 H, 2'-H), 7.55 (d, *J* = 8.6 Hz, 1 H, 5'-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 18.3 (C-4), 24.9 (C-5), 30.0 (C-3), 61.9 (C-6), 79.4 (4'-C≡CH), 81.1 (4'-C≡CH), 96.3 (C-2), 112.7 (q, *J* = 2.2 Hz, C-4'), 114.5 (q, *J* = 5.3 Hz, C-2'), 118.8 (C-6'), 123.1 (q, *J* = 274 Hz, 3'-CF₃), 133.4 (q, *J* = 31 Hz, C-3'), 136.1 (C-5'), 157.0 (C-1').

MS (EI, 70 eV): m/z (%) = 270.1 (13, [M]⁺), 186.0 (9, [M - C₅H₈O]⁺), 167.0 (6, [M - F - C₅H₈O]⁺), 85.0 (100, [C₅H₉O]⁺).

EI-HRMS: m/z calcd for $C_{14}H_{13}F_3O_2$ (270.247): 270.0868; found: 270.0867.

UV (MeCN): λ_{max} (log ϵ) = 201.5 (4.4419), 252.5 (4.3170), 287.5 (3.5309), 295.5 nm (3.4683).

2-(4-Ethynyl-3-fluorophenoxy) tetrahydropyran (8k) Yield: 10%.

IR (KBr): 3298, 2981, 2941, 2872, 2114, 1621, 1566, 1504, 1434, 1393, 1359, 1315, 1285, 1259, 1207, 1187, 1159, 1125, 1097, 1052, 1040, 1023, 978, 948, 906, 872, 856, 823, 810, 756, 665, 610, 585, 540, 474, 442 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.53–2.07 (m, 6 H, 3-CH₂, 4-CH₂, 5-CH₂), 3.22 (s, 1 H, 2"-H), 3.62 (dtd, *J* = 11.3, 3.9, 1.5 Hz, 1 H, 6-H_a), 3.84 (ddd, *J* = 11.3, 9.8, 3.0 Hz, 1 H, 6-H_b), 5.41 (t, *J* = 3.0 Hz, 1 H, 2-H), 6.79 (dd, *J* = 2.4 Hz, *J*_{H-F} = 6.8 Hz, 1 H, 2'-H), 6.82 (dd, *J* = 8.8, 2.4 Hz, 1 H, 6'-H), 7.37 (t, *J* = *J*_{H-F} = 8.8 Hz, 1 H, 5'-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 18.4 (C-4), 25.0 (C-5), 30.0 (C-3), 62.0 (C-6), 77.2 (C-1″), 80.9 (d, J = 3.3 Hz, C-2″), 96.4 (C-2), 103.3 (d, J = 15.9 Hz, C-4′), 104.1 (d, J = 24.7 Hz, C-2′), 112.3 (d, J = 3.3 Hz, C-6′), 134.3 (d, J = 4.8 Hz, C-5′), 158.8 (d, J = 11.1 Hz, C-1′), 164.0 (d, J = 252 Hz, C-3′).

MS (EI, 70 eV): m/z (%) = 220.1 (22, [M]⁺), 136.1 (26, [M - C₅H₈O]⁺), 107.1 (10, [M - C₅H₈O - CO - H]⁺), 85.1 (100, [C₅H₉O]⁺), 67.1 (16, [C₅H₇]⁺), 57.1 (19, [C₃H₅O]⁺), 41.0 (18, [C₃H₅]⁺).

EI-HRMS: m/z calcd for $C_{13}H_{13}FO_2$ (220.24): 220.0900; found: 220.0900.

UV (MeCN): λ_{max} (log ϵ) = 202.0 (4.374), 248.5 (4.310), 278.5 (3.422), 282.0 (3.406), 288.0 nm (3.377).

2-[3,5-Dichloro-4-ethynylphenoxy]tetrahydro-2H-pyran (8l) The reaction was quenched with H₂O at -78 °C; yield: 96%.

IR (KBr): 3298, 2949, 2869, 1593, 1543, 1455, 1403, 1359, 1280, 1247, 1202, 1183, 1121, 1058, 1024, 970, 899, 880, 849, 822, 802, 710, 663, 627 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 1.54–1.78 (m, 3 H, 4-H_a, 5-CH₂), 1.80–1.88 (m, 2 H, 3-CH₂), 1.88–2.06 (m, 1 H, 4-H_b), 3.57 (s, 1 H, 4'-C≡CH), 3.63 (dt, *J* = 11.1, 1.5 Hz, 1 H, 6-H_a), 3.74–3.84 (m, 1 H, 6-H_b), 5.41 (t, *J* = 2.8 Hz, 1 H, 2-H), 7.06 (s, 2 H, 2'-H, 6'-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 18.1 (C-4), 24.9 (C-5), 29.8 (C-3), 61.9 (C-6), 77.3 (4'-*C*=CH), 85.9 (4'-C=CH), 96.5 (C-2), 115.0 (C-4'), 116.0 (C-2', C-6'), 138.1 (C-3', C-5'), 157.2 (C-1').

MS (EI, 70 eV): m/z (%) = 270.0/272.0 (12/8, [M]⁺), 186.0/188.0 (12/7, [M - C₅H₈O]⁺), 85.0 (100, [C₅H₉O]⁺).

EI-HRMS: m/z calcd for $C_{13}H_{12}Cl_2O_2$ (271.139): 270.0214; found: 270.0215.

UV (MeCN): λ_{max} (log ϵ) = 219.5 (4.5833), 256.0 (4.2386), 262.0 (4.2223), 287.5 (3.0432), 300.0 nm (2.8995).

1-Ethynyl-4-triisopropylsilyloxy-2-triisopropylsilyloxymethylbenzene (8m)

Yield: quant.

IR (film): 3315, 2944, 2867, 2104, 1604, 1562, 1489, 1464, 1424, 1384, 1373, 1294, 1238, 1165, 1120, 1067, 1013, 982, 919, 883, 838, 822, 756, 685, 662, 587 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.09$ [d, J = 7.0 Hz, 18 H, $3 \times \text{SiCH}(CH_3)_2$], 1.10 [d, J = 6.0 Hz, 18 H, $3 \times \text{SiCH}(CH_3)_2$], 1.13–1.35 [m, 6 H, $6 \times \text{SiCH}(CH_3)_2$], 3.21 (s, 1 H, 2'-H), 4.93 (s, 2 H, 1''-CH₂), 6.70 (dd, J = 8.3, 2.6 Hz, 1 H, 5-H), 7.19 (d, J = 2.6 Hz, 1 H, 3-H), 7.31 (d, J = 8.3 Hz, 1 H, 6-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 12.0 [4-OSi[CH(CH₃)₂]₃], 12.7 [1'-OSi[CH(CH₃)₂]₃], 17.9, 18.0 [4-OSi[CH(CH₃)₂]₃, 1'-OSi[CH(CH₃)₂]₃], 63.1 (C-1''), 80.7 (C-2 '), 81.1 (C-1 '), 110.6 (C-1), 116.9 (C-3), 118.1 (C-5), 133.6 (C-6), 146.0 (C-2), 157.1 (C-4).

MS (EI, 70 eV): m/z (%) = 460.5 (7, [M]⁺), 417.4 (100, [M - C₃H₇]⁺), 375.3 (19, [M - C₃H₇ - C₃H₆]⁺).

UV (MeCN): λ_{max} (log ϵ) = 208.0 (4.465), 253.0 (4.285), 290.0 nm (2.895).

1-Ethynyl-4-methoxynaphthalene (8n) Yield: 97%.

IR (film): 3292, 3065, 3006, 2937, 2840, 2099, 1582, 1510, 1462, 1423, 1387, 1322, 1279, 1241, 1223, 1162, 1094, 1020, 972, 819, 766, 716, 687, 656, 621 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.38 (s, 1 H, 2'-H), 4.01 (s, 3 H, 4-OCH₃), 6.76 (d, *J* = 8.0 Hz, 1 H, 3-H), 7.51 (ddd, *J* = 8.3, 6.9, 1.1 Hz, 1 H, 6-H), 7.60 (ddd, *J* = 8.3, 6.9, 1.1 Hz, 1 H, 7-H), 7.67 (d, *J* = 8.0 Hz, 1 H, 2-H), 8.27 (dd, *J* = 8.3, 1.1 Hz, 1 H, 8-H), 8.30 (dd, *J* = 8.3, 1.1 Hz, 1 Hz, 1 H, 5-H).

¹³C NMR (50.3 MHz, CDCl₃): δ = 55.6 (4-OCH₃), 80.2 (C-2'), 82.1 (C-1'), 103.3 (C-3), 111.8 (C-1), 122.2 (C-5), 125.2 (C-4a), 125.8, 125.8, 127.4 (C-6, C-7, C-8), 131.9 (C-2), 134.4 (C-8a), 156.3 (C-4).

MS (EI, 70 eV): m/z (%) = 182.1 (100, [M]⁺), 167.1 (32, [M – CH₃]⁺), 139.1 (59, [M – CH₃ – CO]⁺).

EI-HRMS: m/z calcd for $C_{13}H_{10}O$ (182.22): 182.0732; found: 182.0732.

UV (MeCN): λ_{max} (log ε) = 224.0 (4.544), 309.0 (4.025), 327.0 nm (3.936).

Vinyl Iodides 12 and 13; General Procedure

To a stirred solution of Ph₃P (1.10–1.30 equiv) in MeCN (10 mL/ mmol) was added I_2 (1.15–1.30 equiv) at r.t. and the stirring was continued for 30 min. Et₃N (1.17–1.37 equiv) was then added and the solution stirred for 5 min. The corresponding 1,3-dione (28.9– 103 mmol) was added and the solution heated to reflux. After completion of the reaction, the solvent was evaporated at reduced pressure, the remaining solid was dissolved in Et₂O (10 mL/mmol), stirred, and the solvent decanted. The latter procedure was repeated three times. The combined organic extracts were filtered over SiO₂, which was washed with Et₂O. The solvent was evaporated under reduced pressure to give vinyl iodides **12** and **13**, respectively.

3-Iodo-2-methylcyclopent-2-en-1-one (12a)

Yield: 96%.

¹H NMR (200 MHz, CDCl₃): δ = 1.80 (t, *J* = 2.2 Hz, 3 H, 2-CH₃), 2.48–2.55 (m, 2 H, 5-CH₂), 2.99 (tq, *J* = 4.7, 2.3 Hz, 2 H, 4-CH₂).

¹³C NMR (50.3 MHz, CDCl₃): δ = 12.9 (2-CH₃), 36.5 (C-5), 39.0 (C-4), 133.8 (C-3), 147.8 (C-2), 202.6 (C-1).

HRMS (EI⁺): m/z calcd for C₆H₇IO: 221.9542 [M]⁺; found: 221.9542.

2-Ethyl-3-iodocyclopent-2-en-1-one (12b) Yield: 93%.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.00$ (t, J = 7.5 Hz, 3 H, 2-CH₂CH₃), 2.27 (tq, J = 7.5, 1.0 Hz, 2 H, 2-CH₂CH₃), 2.51 (mc, 2 H, 5-CH₂), 2.96–3.02 (m, 2 H, 4-CH₂).

¹³C NMR (50.3 MHz, CDCl₃): δ = 11.7 (2-CH₂CH₃), 20.9 (2-CH₂CH₃), 36.8 (C-5), 39.1 (C-4), 133.1 (C-3), 152.4 (C-2), 202.3 (C-1).

HRMS (EI⁺): m/z calcd for C₇H₉IO: 235.9698 [M]⁺; found: 235.9696.

3-Iodo-2-isopropylcyclopent-2-en-1-one (12c)

Yield: 78%.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.19$ [d, J = 7.0 Hz, 6 H, 2-CH(CH₃)₂], 2.47 (mc, 2 H, 5-CH₂), 2.82 [sept, J = 7.0 Hz, 1 H, 2-CH(CH₃)₂], 2.97 (mc, 2 H, 4-CH₂).

¹³C NMR (75.5 MHz, CDCl₃): δ = 19.2 [2-CH(*C*H₃)₂], 30.2 [2-CH(CH₃)₂], 37.5 (C-4), 39.6 (C-5), 132.5 (C-3), 154.0 (C-2), 201.9 (C-1).

HRMS (EI⁺): m/z calcd for C₈H₁₁IO: 249.9855 [M]⁺; found: 289.9850.

3-Iodo-2-methylcyclohex-2-en-1-one (13a)

Yield: 86%.

¹H NMR (300 MHz, CDCl₃): δ = 1.93–2.02 (m, 2 H, 5-CH₂), 2.03 (t, *J* = 2.0 Hz, 3 H, 2-CH₃), 2.46–2.53 (m, 2 H, 6-CH₂), 3.04 (tq, *J* = 6.0, 2.0 Hz, 2 H, 4-CH₂).

¹³C NMR (50.3 MHz, CDCl₃): δ = 21.7 (2-CH₃), 24.5 (C-5), 37.8 (C-6), 42.7 (C-4), 128.0 (C-3), 142.0 (C-2), 193.2 (C-1).

2-Ethyl-3-iodocyclohex-2-en-1-one (13b) Yield: 90%.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.96$ (t, J = 7.5 Hz, 3 H, 2-CH₂CH₃), 1.90–2.00 (m, 2 H, 5-CH₂), 2.43–2.53 (m, 4 H, 4-CH₂, 2-CH₂CH₃), 3.03 (t, J = 6.1 Hz, 2 H, 6-CH₂).

¹³C NMR (75.5 MHz, CDCl₃): δ = 12.3 (2-CH₂CH₃), 24.5 (C-5), 28.9 (2-CH₂CH₃), 38.1 (C-6), 42.9 (C-4), 127.2 (C-3), 147.0 (C-2), 192.8 (C-1).

HRMS (EI⁺): m/z calcd for C₈H₁₁IO: 249.9855 [M]⁺; found: 289.9854.

3-Iodo-2-isopropylcyclohex-2-en-1-one (13c)

Yield: 88%.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.17$ [d, J = 7.0 Hz, 6 H, 2-CH(CH₃)₂], 1.84–1.95 (m, 2 H, 5-CH₂), 2.41–2.48 (m, 2 H, 4-CH₂), 2.94 [sept, J = 7.0 Hz, 1 H, 2-CH(CH₃)₂], 3.04 (t, J = 6.1 Hz, 2 H, 6-CH₂).

¹³C NMR (75.5 MHz, CDCl₃): δ = 19.8 [2-CH(*C*H₃)₂], 24.3 (C-5), 39.8 (C-6), 40.3 [2-CH(CH₃)₂], 43.7 (C-4), 127.3 (C-3), 148.8 (C-2), 192.7 (C-1).

HRMS (EI⁺): m/z calcd for C₉H₁₃IO: 265.0011 [M]⁺; found: 265.0011.

Sonogashira Reactions for the Synthesis of Estrogen Analogues 14 and 15; General Procedure

To a solution of the cyclic vinyl iodide **12** or **13** (0.820–1.20 equiv) and the appropriate alkyne **8** (1.54–4.73 mmol) in DMF (2.50 mL/mmol) was added Et₃N (1.20–1.80 equiv) at r.t. and the mixture degassed by repeated evacuation of the reaction flask with subsequent flooding with argon. Pd(PPh₃)₂Cl₂ (1.50 mol%) and CuI (3.00 mol%) were added, the resulting suspension heated to 50–60 °C and stirred at r.t. Upon completion of the reaction, the mixture was diluted with H₂O (7.5 mL/mmol) and extracted with Et₂O (3 × 3.0 mL/mmol). The combined organic layers were washed with brine (3.0 mL/mmol), dried (Na₂SO₄) and the solvent was evaporated at reduced pressure. The estrogen analogue **14** or **15** was isolated by column chromatography.

3-(4-Methoxynaphthalene-1-ylethynyl)-2-methylcyclopent-2enone (14a) Yield: 91%.

IR (KBr): 2939, 2183, 1680, 1615, 1577, 1511, 1467, 1424, 1398, 1375, 1344, 1318, 1298, 1251, 1159, 1095, 1053, 1013, 868, 827, 819, 773, 723, 611, 580, 476, 442 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.02 (t, J = 2.2 Hz, 3 H, 2-CH₃), 2.46–2.51 (m, 2 H, 5-CH₂), 2.79 (tq, J = 4.8, 2.2 Hz, 2 H, 4-CH₂),

4.03 (s, 3 H, 4"-OCH₃), 6.81 (d, J = 8.1 Hz, 1 H, 3"-H), 7.54 (ddd, J = 8.2, 7.0, 1.2 Hz, 1 H, 6"-H), 7.63 (ddd, J = 8.3, 7.0, 1.2 Hz, 1 H, 7"-H), 7.72 (d, J = 8.1 Hz, 1 H, 2"-H), 8.26 (d, J = 8.3 Hz, 1 H, 8"-H), 8.30 (d, J = 8.2 Hz, 1 H, 5"-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 9.9 (2-CH₃), 30.2 (C-4), 34.0 (C-5), 55.7 (4"-OCH₃), 88.9 (C-1'), 103.6 (C-3"), 104.6 (C-2'), 111.7 (C-1"), 122.5 (C-5"), 125.3 (C-4a"), 125.5, 126.0, 127.8 (C-6", C-7", C-8"), 132.5 (C-2"), 133.8 (C-8a"), 143.4 (C-3), 150.6 (C-2), 157.2 (C-4"), 209.0 (C-1).

MS (EI, 70 eV): m/z (%) = 276.2 (100, [M]⁺), 261.2 (22, [M – CH₃]⁺).

EI-HRMS: m/z calcd $C_{19}H_{16}O_2$ (276.33): 276.1150; found: 276.1150.

UV (MeCN): λ_{max} (log ε) = 205.0 (4.539), 242.0 (4.429), 271.5 (3.981), 282.0 (3.969), 353.5 nm (4.431).

3-(4-Methoxynaphthalene-1-ylethynyl)-2-methylcyclohex-2enone (15a)

Yield: 85%.

IR (KBr): 2942, 2181, 1651, 1574, 1508, 1464, 1419, 1391, 1371, 1354, 1323, 1307, 1257, 1235, 1194, 1152, 1099, 1038, 1012, 908, 854, 814, 776, 714, 610, 577, 446, 418 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.06$ (quint, J = 6.4 Hz, 2 H, 5-CH₂), 2.16 (t, J = 1.8 Hz, 3 H, 2-CH₃), 2.50 (t, J = 6.4 Hz, 2 H, 6-CH₂), 2.68 (tq, J = 6.4, 1.8 Hz, 2 H, 4-CH₂), 4.02 (s, 3 H, 4"-OCH₃), 6.79 (d, J = 8.1 Hz, 1 H, 3"-H), 7.53 (ddd, J = 8.3, 6.9, 1.4 Hz, 1 H, 6"-H), 7.62 (ddd, J = 8.3, 6.9, 1.4 Hz, 1 H, 7"-H), 7.67 (d, J = 8.1 Hz, 1 H, 2"-H), 8.24 (d, J = 8.3 Hz, 1 H, 8"-H), 8.29 (d, J = 8.3 Hz, 1 H, 5"-H).

¹³C NMR (75.5 MHz, CDCl₃): δ = 14.2 (2-CH₃), 22.7 (C-5), 31.4 (C-4), 37.9 (C-6), 55.7 (4"-OCH₃), 92.0 (C-1'), 102.3 (C-2'), 103.6 (C-3''), 112.2 (C-1''), 122.4 (C-5''), 125.3 (C-4a''), 125.6, 125.9, 127.7 (C-6'', C-7'', C-8''), 132.1 (C-2''), 133.9 (C-8a''), 137.8, 138.1 (C-2, C-3), 156.9 (C-4''), 198.5 (C-1).

UV (MeCN): λ_{max} (log ϵ) = 206.5 (4.561), 242.0 (4.411), 274.0 (3.971), 284.0 (3.965), 356.0 nm (4.427).

MS (EI, 70 eV): m/z (%) = 290.3 (100, [M]⁺).

EI-HRMS: m/z calcd for $C_{20}H_{18}O_2$ (290.36): 290.1307; found: 290.1307.

Cleavage of THP Ethers 14, 15 for the Synthesis of Estrogen Analogues 2 and 3; General Procedure

To a solution of the THP ethers **14** or **15** (0.0452-3.16 mmol) in CH₂Cl₂ (15–16 mL/mmol) was added trifluoroacetic acid (1.5–1.6 mL/mmol) at r.t. and the resulting mixture was stirred until completion of the reaction. The solvent was evaporated at reduced pressure and the residue dissolved in THF. The resulting solution was slowly added to *n*-pentane (75 mL/mmol) and the formed precipitate was collected by filtration.

Cleavage of TIPS Protecting Groups in 2g and 3p; General Procedure

To a solution of the TIPS ether **2g** or **3p** (2.25–2.53 mmol) in THF (19–25 mL/mmol) was added *n*-Bu₄NF·3H₂O (1.86–3.03 equiv) at 0 °C. After stirring for 15 min at 0 °C, the stirring was continued at r.t. until completion of the reaction. The mixture was diluted with H₂O (40 mL/mmol), the layers were separated, and the aqueous layer was extracted with Et₂O (3 × 5.0 mL/mmol). The combined organic layers were washed with brine (5.0 mL/mmol), dried (Na₂SO₄) and the solvent was evaporated at reduced pressure. The product was isolated by column chromatography.

3-(4-Hydroxy-2-methylphenylethynyl)-2-methylcyclopent-2enone (2a)

Yield: 45% (over two steps).

IR (KBr): 3128, 2188, 1653, 1592, 1456, 1394, 1355, 1305, 1272, 1220, 1084, 1046, 883, 858, 817, 745, 569 $\rm cm^{-1}.$

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.79$ (t, J = 2.2 Hz, 3 H, 2-CH₃), 2.35 (s, 3 H, 2"-CH₃), 2.35–2.40 (m, 2 H, 5-CH₂), 2.67 (tq, J = 4.8, 2.2 Hz, 2 H, 4-CH₂), 6.65 (dd, J = 8.4, 2.4 Hz, 1 H, 5"-H), 6.73 (d, J = 2.4 Hz, 1 H, 3"-H), 7.34 (d, J = 8.4 Hz, 1 H, 6"-H), 9.98 (s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 9.4$ (2-CH₃), 20.4 (2"-CH₃), 29.6 (C-4), 33.5 (C-5), 87.7 (C-1'), 105.2 (C-2'), 111.4 (C-1''), 113.5 (C-5''), 116.7 (C-3''), 133.9 (C-6''), 142.0, 142.1 (C-3, C-2''), 149.8 (C-2), 159.1 (C-4''), 207.5 (C-1).

MS (EI, 70 eV): m/z (%) = 226.1 (100, [M]⁺), 183.1 (15, [M - C₂H₂O - H]⁺), 170.1 (12, [M - CO - C₂H₄]⁺).

ESI-HRMS: m/z calcd for $C_{15}H_{14}O_2(226.27)$: 227.10721 $[M + H]^+$; found: 227.10666 $[M + H]^+$.

UV (MeCN): λ_{max} (log ϵ) = 239.0 (3.931), 260.5 (3.812), 325.0 nm (4.388).

3-(2-Ethyl-4-hydroxyphenylethynyl)-2-methylcyclopent-2enone (2b)

Yield: 57% (over two steps).

IR (KBr): 3192, 2964, 2184, 1664, 1592, 1459, 1388, 1352, 1296, 1237, 1084, 881, 755 cm $^{-1}$.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.18$ (t, J = 7.5 Hz, 3 H, 2"-CH₂CH₃), 1.79 (t, J = 2.0 Hz, 3 H, 2-CH₃), 2.33–2.39 (m, 2 H, 5-CH₂), 2.62–2.67 (m, 2 H, 4-CH₂), 2.71 (q, J = 7.5 Hz, 2 H, 2"-CH₂CH₃), 6.66 (dd, J = 8.4, 2.4 Hz, 1 H, 5"-H), 6.73 (d, J = 2.4 Hz, 1 H, 3"-H), 7.33 (d, J = 8.4 Hz, 1 H, 6"-H), 9.97 (br s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO- d_6): δ = 9.3 (2-CH₃), 14.6 (2"-CH₂CH₃), 27.2 (2"-CH₂CH₃), 29.6 (C-4), 33.5 (C-5), 87.3 (C-1'), 105.0 (C-2'), 110.6 (C-1"), 113.5 (C-5"), 115.2 (C-3"), 134.2 (C-6"), 141.9 (C-3), 148.2 (C-2"), 149.8 (C-2), 159.4 (C-4"), 207.4 (C-1).

MS (EI, 70 eV): m/z (%) = 240.2 (100, [M]⁺), 225.1 (6, [M – CH₃]⁺).

ESI-HRMS: m/z calcd for $C_{16}H_{16}O_2$ (240.297): 241.12231 [M + H]⁺; found: 241.12224 [M + H]⁺.

UV (MeCN): λ_{max} (log ϵ) = 192.5 (4.4036), 239.5 (4.0017), 324.5 nm (4.4315).

3-(4-Hydroxy-2-*n*-propylphenylethynyl)-2-methylcyclopent-2enone (2c)

Yield: 71% (over two steps).

IR (KBr): 3225, 2960, 2188, 1664, 1569, 1499, 1386, 1351, 1294, 1086, 826 cm⁻¹.

¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 0.91$ (t, *J* = 7.5 Hz, 3 H, 2"-CH₂CH₂CH₃), 1.60 (sext, *J* = 7.5 Hz, 2 H, 2"-CH₂CH₂CH₂CH₃), 1.79 (t, *J* = 1.9 Hz, 3 H, 2-CH₃), 2.34–2.40 (m, 2 H, 5-CH₂), 2.63–2.71 (m, 4 H, 4-CH₂, 2"-CH₂CH₂CH₃), 6.66 (dd, *J* = 8.3, 2.4 Hz, 1 H, 5"-H), 6.71 (d, *J* = 2.4 Hz, 1 H, 3"-H), 7.34 (d, *J* = 8.3 Hz, 1 H, 6"-H), 9.97 (br s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO- d_6): δ = 9.3 (2-CH₃), 13.7 (2"-CH₂CH₂CH₃), 23.3 (2"-CH₂CH₂CH₃), 29.6 (C-4), 33.5 (C-5), 36.1 (2"-CH₂CH₂CH₃), 87.2 (C-1'), 105.2 (C-2'), 110.9 (C-1"), 113.6 (C-5"), 116.0 (C-3"), 134.2 (C-6"), 141.7 (C-3), 146.6 (C-2"), 149.8 (C-2), 159.1 (C-4"), 207.4 (C-1).

MS (EI, 70 eV): m/z (%) = 254.2 (100, [M]⁺).

ESI-HRMS: m/z calcd for $C_{17}H_{18}O_2$ (254.324): 255.13796 [M + H]⁺, 277.11990 [M + Na]⁺; found: 255.13803 [M + H]⁺, 277.11998 [M + Na]⁺.

UV (MeCN): λ_{max} (log ϵ) = 191.5 (4.5034), 240.0 (4.0230), 324.5 nm (4.4434).

3-(2-*n*-Butyl-4-hydroxyphenylethynyl)-2-methylcyclopent-2enone (2d)

Yield: 55% (over two steps).

IR (KBr): 3219, 2928, 2186, 1663, 1590, 1455, 1386, 1352, 1295, 1272, 1238, 1087, 871, 820, 628 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 0.89$ (t, J = 7.4 Hz, 3 H, 4^{'''}-CH₃), 1.33 (sext, J = 7.4 Hz, 2 H, 3^{'''}-CH₂), 1.50–1.62 (m, 2 H, 2^{'''-}CH₂), 1.79 (t, J = 1.8 Hz, 3 H, 2-CH₃), 2.33–2.42 (m, 2 H, 5-CH₂), 2.61–2.75 (m, 4 H, 1^{'''}-CH₂, 4-CH₂), 6.66 (dd, J = 8.4, 2.4 Hz, 1 H, 5^{''}-H), 6.71 (d, J = 2.4 Hz, 1 H, 3^{''-}H), 7.34 (d, J = 8.4 Hz, 1 H, 6^{''-}H), 9.95 (br s, 1 H, 4^{''}-OH).

¹³C NMR (126 MHz, DMSO-*d*₆): δ = 9.3 (2-CH₃), 13.6 (C-4″″), 21.9 (C-3″″), 29.6 (C-4), 32.3 (C-2″″), 33.5, 33.7 (C-1″″, C-5), 87.2 (C-1′), 105.2 (C-2′), 110.9 (C-1″), 113.6 (C-5″), 115.9 (C-3″), 134.2 (C-6″), 141.7 (C-3), 146.8 (C-2″), 149.8 (C-2), 159.2 (C-4″), 207.4 (C-1).

MS (EI, 70 eV): m/z (%) = 268.2 (100, [M]⁺).

EI-HRMS: m/z calcd for $C_{18}H_{20}O_2$ (268.350): 268.1463; found: 268.1457.

UV (MeCN): λ_{max} (log ε) = 240.0 (4.0243), 327.0 nm (4.4093).

3-(2-Trifluoromethyl-4-hydroxyphenylethynyl)-2-methylcyclopent-2-enone (2e)

Yield: 76% (over two steps).

IR (KBr): 3197, 2196, 1670, 1598, 1458, 1388, 1329, 1266, 1168, 1124, 1056, 894, 758 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.78$ (t, J = 1.9 Hz, 3 H, 2-CH₃), 2.34–2.41 (m, 2 H, 5-CH₂), 2.62–2.69 (m, 2 H, 4-CH₂), 7.07 (dd, J = 8.5, 2.3 Hz, 1 H, 5"-H), 7.16 (d, J = 2.4 Hz, 1 H, 3"-H), 7.61 (d, J = 8.5 Hz, 1 H, 6"-H), 10.74 (br s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO- d_6): δ = 9.1 (2-CH₃), 29.3 (C-4), 33.5 (C-5), 88.0 (C-1'), 100.9 (C-2'), 108.8 (q, *J* = 2.2 Hz, C-1''), 113.3 (q, *J* = 5.3 Hz, C-3''), 119.1 (C-5''), 123.1 (q, *J* = 274 Hz, 2"-CF₃), 131.6 (q, *J* = 30 Hz, C-2''), 136.4 (C-6''), 143.6 (C-3), 148.5 (C-2), 159.0 (C-4''), 207.5 (C-1).

MS (EI, 70 eV): m/z (%) = 280.1 (100, [M]⁺).

EI-HRMS: m/z calcd for $C_{15}H_{11}F_3O_2$ (280.242): 280.0711; found: 280.0711.

UV (MeCN): $λ_{max}$ (log ε) = 319 nm (4.4520).

3-(2,6-Dichloro-4-hydroxyphenylethynyl)-2-methylcyclopent-2-enone (2f)

Yield: 82% (over two steps).

IR (KBr): 3137, 2198, 1665, 1588, 1435, 1394, 1356, 1289, 1093, 1065, 954, 863, 811, 751 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.82$ (t, J = 1.9 Hz, 3 H, 2-CH₃), 2.36–2.43 (m, 2 H, 5-CH₂), 2.64–2.72 (m, 2 H, 4-CH₂), 6.96 (s, 2 H, 3"-H, 5"-H), 11.07 (br s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 9.5 (2-CH₃), 29.2 (C-4), 33.5 (C_5), 92.6 (C-1'), 98.5 (C-2'), 111.5 (C-1''), 115.6 (C-3'', C-5''), 137.1 (C-2'', C-6''), 144.0 (C-3), 148.2 (C-2), 159.6 (C-4''), 207.4 (C-1).

MS (EI, 70 eV): m/z (%) = 280.0/282.0 (100/62, [M]⁺), 245.1/247.1 (34/10, [M - Cl]⁺), 182.1 (30, [M - 2 Cl - CO]⁺).

Synthesis 2009, No. 12, 2040-2060 © Thieme Stuttgart · New York

ESI-HRMS: m/z calcd for $C_{14}H_{10}Cl_2O_2$ (281.134): 281.01306 [M + H]⁺; found: 281.01317 [M + H]⁺.

UV (MeCN): λ_{max} (log ε) = 204.5 (4.3576), 242.5 (4.0954), 248.0 (4.0876), 320.0 (4.4208), 409.5 nm (3.4482).

3-(4-Hydroxy-2-hydroxymethylphenylethynyl)-2-methylcyclopent-2-enone (2g)

Yield: 60% (over two steps).

IR (KBr): 3473, 2918, 2689, 2191, 1648, 1584, 1462, 1386, 1351, 1296, 1236, 1159, 1081, 1038, 874, 814, 630, 519 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.80$ (t, J = 2.1 Hz, 3 H, 2-CH₃), 2.35–2.41 (m, 2 H, 5-CH₂), 2.67 (tq, J = 4.5, 2.1 Hz, 2 H, 4-CH₂), 4.62 (s, 2 H, 1^{'''}-CH₂), 5.28 (s, 1 H, 1^{'''}-OH), 6.68 (dd, J = 8.4, 2.3 Hz, 1 H, 5^{''}-H), 7.02 (d, J = 2.3 Hz, 1 H, 3^{''}-H), 7.34 (d, J = 8.4 Hz, 1 H, 6^{''}-H), 10.03 (s, 1 H, 4^{''}-OH).

¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 9.4$ (2-CH₃), 29.5 (C-4), 33.5 (C-5), 61.0 (C-1'''), 88.3 (C-1'), 103.8 (C-2'), 108.5 (C-1''), 113.5, 113.9 (C-3'', C-5''), 133.8 (C-6''), 142.1 (C-3), 146.8 (C-2''), 149.7 (C-2), 159.4 (C-4''), 207.5 (C-1).

MS (EI, 70 eV): m/z (%) = 242.1 (100, [M]⁺), 157.1 (16, [M – 2 CO – $C_2H_4 – H$]⁺).

EI-HRMS: m/z calcd for $C_{15}H_{14}O_3$ (242.27): 242.0943; found: 242.0943.

UV (MeCN): λ_{max} (log ε) = 239.0 (3.999), 324.5 nm (4.448).

3-(4-Hydroxy-2-methylphenylethynyl)-2-methylcyclohex-2enone (3a)

Yield: 50% (over two steps).

IR (KBr): 3151, 2943, 2184, 1630, 1605, 1579, 1500, 1459, 1381, 1359, 1334, 1301, 1237, 1199, 1132, 1105, 1061, 953, 865, 816, 694, 584, 536, 483 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.92$ (t, J = 1.6 Hz, 3 H, 2-CH₃), 1.94 (quint, J = 6.3 Hz, 2 H, 5-CH₂), 2.33 (s, 3 H, 2"-CH₃), 2.39 (t, J = 6.3 Hz, 2 H, 6-CH₂), 2.54 (tq, J = 6.3, 1.6 Hz, 2 H, 4-CH₂), 6.63 (dd, J = 8.4, 2.3 Hz, 1 H, 5"-H), 6.71 (d, J = 2.3 Hz, 1 H, 3"-H), 7.30 (d, J = 8.4 Hz, 1 H, 6"-H), 9.91 (s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 13.7 (2-CH₃), 20.4 (2"-CH₃), 22.2 (C-5), 30.6 (C-4), 37.2 (C-6), 90.8 (C-1'), 103.0 (C-2'), 111.8 (C-1''), 113.4 (C-5''), 116.6 (C-3''), 133.7 (C-6''), 136.2, 137.6 (C-2, C-3), 141.9 (C-2''), 158.8 (C-4''), 197.1 (C-1).

MS (EI, 70 eV): m/z (%) = 240.2 (100, [M]⁺), 212.2 (22, [M - CO]⁺), 184.1 (10, [M - CO - C₂H₄]⁺).

EI-HRMS: m/z calcd for $C_{16}H_{16}O_2$ (240.30): 240.1150; found: 240.1150.

UV (MeCN): λ_{max} (log ε) = 241.0 (3.999), 330.5 nm (4.429).

3-(2-Ethyl-4-hydroxyphenylethynyl)-2-methylcyclohex-2enone (3b)

Yield: 45% (over two steps).

IR (KBr): 3255, 2934, 2181, 1635, 1585, 1496, 1452, 1382, 1358, 1336, 1297, 1233, 1199, 1064, 912, 880, 835, 715 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.17$ (t, J = 7.5 Hz, 3 H, 2'-CH₂CH₃), 1.88–1.99 (m, 2 H, 5-CH₂), 1.92 (t, J = 1.6 Hz, 3 H, 2-CH₃), 2.39 (t, J = 6.6 Hz, 2 H, 6-CH₂), 2.50–2.58 (m, 2 H, 4-CH₂), 2.69 (q, J = 7.5 Hz, 2 H, 2"-CH₂CH₃), 6.64 (dd, J = 8.4, 2.3 Hz, 1 H, 5"-H), 6.71 (d, J = 2.3 Hz, 1 H, 3"-H), 7.30 (d, J = 8.4 Hz, 1 H, 6"-H), 9.92 (br s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 13.5 (2-CH₃), 14.7 (2"-CH₂CH₃), 22.2 (C-5), 27.2 (2"-CH₂CH₃), 30.6 (C-4), 37.2 (C-6), 90.3 (C-1'), 102.8 (C-2'), 111.0 (C-1"), 113.4, 115.2 (C-3", C-5"),

134.0 (C-6"), 136.1, 137.6 (C-2, C-3), 148.0 (C-2"), 159.1 (C-4"), 197.1 (C-1).

MS (EI, 70 eV): m/z (%) = 254.2 (100, [M]⁺), 239.2 (8, [M – CH₃]⁺), 226.2 (13, [M – C₂H₄]⁺).

EI-HRMS: m/z calcd for $C_{17}H_{18}O_2$ (254.324): 254.1307; found: 254.1307.

UV (MeCN): λ_{max} (log ϵ) = 192.0 (4.5330), 241.5 (4.0283), 332.0 nm (4.4434).

3-(2-Ethyl-4-hydroxyphenylethynyl)-2-ethylcyclohex-2-enone (3c)

Yield: 42% (over two steps).

IR (KBr): 3311, 2964, 2181, 1634, 1614, 1568, 1495, 1376, 1334, 1299, 1253, 1218, 1083, 820 $\rm cm^{-1}$.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 0.96$ (t, J = 7.5 Hz, 3 H, 2-CH₂CH₃), 1.16 (t, J = 7.5 Hz, 3 H, 2"-CH₂CH₃), 1.91 (quint, J = 6.4 Hz, 2 H, 5-CH₂), 2.33–2.39 (m, 2 H, 6-CH₂), 2.43 (q, J = 7.5 Hz, 2 H, 2-CH₂CH₃), 2.53 (t, J = 6.0 Hz, 2 H, 4-CH₂), 2.68 (q, J = 7.5 Hz, 2 H, 2"-CH₂CH₃), 6.65 (dd, J = 8.3, 2.4 Hz, 1 H, 5"-H), 6.71 (d, J = 2.4 Hz, 1 H, 3"-H), 7.29 (d, J = 8.3 Hz, 1 H, 6"-H), 9.92 (br s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 13.4$ (2-CH₂CH₃), 14.9 (2"-CH₂CH₃), 21.1 (2-CH₂CH₃), 22.2 (C-5), 27.2 (2"-CH₂CH₃), 30.7 (C-4), 37.4 (C-6), 89.9 (C-1'), 102.2 (C-2'), 111.0 (C-1"), 113.5 (C-5"), 115.2 (C-3"), 134.1 (C-6"), 137.3 (C-3), 142.1 (C-2), 148.0 (C-2"), 159.1 (C-4"), 196.6 (C-1).

MS (EI, 70 eV): m/z (%) = 268.2 (100, [M]⁺), 253.2 (11, [M – CH₃]⁺), 240.1 (17, [M – CO]⁺).

ESI-HRMS: m/z calcd for $C_{18}H_{20}O_2$ (268.350): 269.15361 [M + H]⁺; found: 269.15354 [M + H]⁺.

UV (MeCN): λ_{max} (log ϵ) = 194.5 (4.4425), 242.0 (3.9861), 332.0 nm (4.3858).

3-(4-Hydroxy-2-isopropylphenylethynyl)-2-methylcyclohex-2enone (3d)

Yield: 59% (over two steps).

IR (KBr): 3323, 2956, 2181, 1634, 1583, 1444, 1384, 1357, 1333, 1297, 1221, 1198, 1057, 820 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.20$ [d, J = 6.9 Hz, 6 H, 2"-CH(CH₃)₂], 1.89–1.99 (m, 2 H, 5-CH₂), 1.92 (t, J = 1.7 Hz, 2-CH₃), 2.35–2.43 (m, 2 H, 6-CH₂), 2.50–2.58 (m, 2 H, 4-CH₂), 3.21–3.38 [sept, J = 6.9 Hz, 1 H, 2"-CH(CH₃)₂], 6.64 (dd, J = 8.5, 2.5 Hz, 1 H, 5"-H), 6.74 (d, J = 2.5 Hz, 1 H, 3"-H), 7.30 (d, J = 8.5 Hz, 1 H, 6"-H), 9.92 (br s, 1 H, 4"-OH).

¹³C NMR (50.3 MHz, DMSO-*d*₆): δ = 13.5 (2-CH₃), 22.2 (C-5), 22.7 [2″-CH(*C*H₃)₂], 30.6 (C-4), 31.2 [2″-CH(CH₃)₂], 37.2 (C-6), 90.6 (C-1′), 102.8 (C-2′), 110.7 (C-1″), 112.2, 113.4 (C-3″, C-5″), 134.2 (C-6″), 136.1 (C-2), 137.6 (C-3), 152.3 (C-2″), 159.2 (C-4″), 197.1 (C-1).

MS (EI, 70 eV): m/z (%) = 268.2 (100, [M]⁺), 253.1 (24, [M – CH₃]⁺).

ESI-HRMS: m/z calcd for $C_{18}H_{20}O_2$ (268.350): 269.15361 [M + H]⁺; found: 269.15353 [M + H]⁺.

UV (MeCN): λ_{max} (log ϵ) = 195.5 (4.4027), 241.5 (3.9942), 332.0 nm (4.4093).

3-(2-*tert*-Butyl-4-hydroxyphenylethynyl)-2-methylcyclohex-2enone (3e)

Yield: 41% (over two steps).

IR (KBr): 3229, 2949, 2176, 1637, 1583, 1443, 1382, 1359, 1298, 1240, 1058, 881 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.43$ [s, 9 H, 2"-C(CH₃)₃], 1.88–1.99 (m, 2 H, 5-CH₂), 1.93 (t, J = 1.6 Hz, 3 H, 2-CH₃), 2.38 (dd, J = 7.4, 6.2 Hz, 2 H, 6-CH₂), 2.50–2.58 (m, 2 H, 4-CH₂), 6.64 (dd, J = 8.4, 2.3 Hz, 1 H, 5"-H), 6.83 (d, J = 2.3 Hz, 1 H, 3"-H), 7.33 (d, J = 8.4 Hz, 1 H, 6"-H), 9.90 (br s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 13.6$ (2-CH₃), 22.2 (C-5), 29.6 [2"-C(CH₃)₃], 30.2 (C-4), 35.3 [2"-C(CH₃)₃], 37.2 (C-6), 92.1 (C-1'), 105.6 (C-2'), 110.0 (C-1"), 112.8 (C-5"), 113.3 (C-3"), 135.9 (C-2), 137.2 (C-6"), 137.7 (C-3), 153.3 (C-2"), 158.8 (C-4"), 197.1 (C-1).

MS (EI, 70 eV): m/z (%) = 282.3 (100, [M]⁺).

EI-HRMS: m/z calcd for $C_{19}H_{22}O_2$ (282.377): 282.1620; found: 282.1620.

UV (MeCN): λ_{max} (log ε) = 242.2 (3.9987), 332.5 nm (4.4078).

3-(4-Hydroxy-2-*n*-propylphenylethynyl)-2-methylcyclohex-2enone (3f)

Yield: 56% (over two steps).

IR (KBr): 2951, 2185, 1578, 1447, 1379, 1360, 1308, 1233, 1060, 861, 479 $\rm cm^{-1}.$

¹H NMR (300 MHz, DMSO- d_6): $\delta = 0.91$ (t, J = 7.3 Hz, 3 H, 2"-CH₂CH₂CH₃), 1.59 (sext, J = 7.5 Hz, 2 H, 2"-CH₂CH₂CH₃), 1.88–1.99 (m, 2 H, 5-CH₂), 1.93 (t, J = 1.6 Hz, 3 H, 2-CH₃), 2.39 (t, J = 6.7 Hz, 2 H, 6-CH₂), 2.50–2.57 (m, 2 H, 4-CH₂), 2.65 (t, J = 7.7 Hz, 2 H, 2"-CH₂CH₂CH₃), 6.65 (dd, J = 8.3, 2.4 Hz, 1 H, 5"-H), 6.70 (d, J = 2.4 Hz, 1 H, 3"-H), 7.30 (d, J = 8.3 Hz, 1 H, 6"-H), 9.90 (br s, 1 H, 4"-OH).

 $^{13}\mathrm{C}$ NMR (75.5 MHz, DMSO- d_6): δ = 13.5, 13.6 (2-CH₃, 2"-CH₂CH₂CH₃), 22.2 (C-5), 23.3 (2"-CH₂CH₂CH₃), 30.6 (C-4), 36.1 (2"-CH₂CH₂CH₃), 37.2 (C-4), 90.2 (C-1'), 103.1 (C-2'), 111.4 (C-1''), 113.5 (C-5''), 116.0 (C-3''), 134.0 (C-6''), 136.0 (C-3), 137.6 (C-2), 146.4 (C-2''), 158.9 (C-4''), 197.0 (C-1).

MS (EI, 70 eV): m/z (%) = 268.2 (100, [M]⁺).

ESI-HRMS: m/z calcd for $C_{18}H_{20}O_2$ (268.350): 269.15361 [M + H]⁺, 291.13555 [M + Na]⁺; found: 269.15372 [M + H]⁺, 291.13573 [M + Na]⁺.

UV (MeCN): λ_{max} (log ε) = 241.5 (4.0025), 332.0 nm (4.3951).

3-(4-Hydroxy-2-*n*-butylphenylethynyl)-2-methylcyclohex-2enone (3g)

Yield: 57% (over two steps).

IR (KBr): 3122, 2935, 2183, 1626, 1578, 1451, 1380, 1359, 1304, 1235, 1061, 865 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 0.88$ (t, J = 7.4 Hz, 3 H, 4^{'''}-CH₃), 1.32 (sext, J = 7.4 Hz, 2 H, 3^{'''}-CH₂), 1.48–1.61 (m, 2 H, 2^{'''-}CH₂), 1.88–1.98 (m, 2 H, 5-CH₂), 1.92 (t, J = 1.7 Hz, 3 H, 2-CH₃), 2.38 (t, J = 6.6 Hz, 2 H, 6-CH₂), 2.49–2.57 (m, 2 H, 4-CH₂), 2.66 (t, J = 7.6 Hz, 2 H, 1^{'''-}CH₂), 6.64 (dd, J = 8.4, 2.4 Hz, 1 H, 5^{''-}H), 6.69 (d, J = 2.4 Hz, 1 H, 3^{''-}H), 7.29 (d, J = 8.4 Hz, 1 H, 6^{''-}H), 9.90 (br s, 1 H, 4^{''-}OH).

¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 13.6, 13.6 (C-4^{'''}, 2-CH₃), 21.9 (C-3^{'''}), 22.2 (C-5), 30.6 (C-4), 32.3 (C-2^{'''}), 33.8 (C-1^{'''}), 37.2 (C-6), 90.2 (C-1'), 103.1 (C-2'), 111.3 (C-1''), 113.5 (C-5''), 115.9 (C-3''), 134.1 (C-6''), 136.1 (C-3), 137.6 (C-2), 146.6 (C-2''), 158.9 (C-4''), 197.1 (C-1).

MS (EI, 70 eV): m/z (%) = 282.2 (100, [M]⁺).

ESI-HRMS: m/z calcd for $C_{19}H_{22}O_2$ (282.377): 283.16926 [M + H]⁺, 305.15120 [M + Na]⁺; found: 283.16930 [M + H]⁺, 305.15125 [M + Na]⁺.

UV (MeCN): λ_{max} (log ϵ) = 191.5 (4.5363), 242.0 (4.0317), 331.5 nm (4.4398).

3-(4-Hydroxy-2-*n*-nonylphenylethynyl)-2-methylcyclohex-2enone (3h)

Yield: 60% (over two steps).

IR (KBr): 3380, 2921, 2850, 2182, 1639, 1578, 1444, 1382, 1358, 1291, 1218, 1060, 876, 822, 659 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 0.83$ (t, J = 7.0 Hz, 3 H, 9^{*m*}-CH₃), 1.15–1.35 (m, 12 H, 3^{*m*}-CH₂, 4^{*m*}-CH₂, 5^{*m*}-CH₂, 6^{*m*}-CH₂, 7^{*m*}-CH₂, 8^{*m*}-CH₂), 1.48–1.61 (m, 2 H, 2^{*m*}-CH₂), 1.87–1.98 (m, 2 H, 5-CH₂), 1.92 (t, J = 1.6 Hz, 3 H, 2-CH₃), 2.38 (t, J = 6.7 Hz, 2 H, 6-CH₂), 2.47–2.56 (m, 2 H, 4-CH₂), 2.65 (t, J = 7.7 Hz, 2 H, 1^{*m*}-CH₂), 6.64 (dd, J = 8.4, 2.4 Hz, 1 H, 5^{*m*}-H), 6.68 (d, J = 2.4 Hz, 1 H, 3^{*m*}-H), 7.29 (d, J = 8.4 Hz, 1 H, 6^{*m*}-H), 9.89 (br s, 1 H, 4^{*m*}-OH).

¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 13.6, 13.8 (C-9^{*ii*}, 2-*C*H₃), 22.0, 22.2 (C-5, C-8^{*ii*}), 28.6 (C-7^{*ii*}), 28.7 (C-6^{*ii*}), 28.8 (C-5^{*ii*}), 28.9 (C-4^{*ii*}), 30.2, 30.6, 31.2 (C-2^{*ii*}, C-3^{*ii*}, C-4), 34.1 (C-1^{*ii*}), 37.2 (C-6), 90.2 (C-1'), 103.1 (C-2'), 111.3 (C-1''), 113.5 (C-5^{*ii*}), 115.8 (C-3''), 134.0 (C-6''), 136.0 (C-3), 137.6 (C-2), 146.6 (C-2''), 158.9 (C-4''), 196.9 (C-1).

MS (EI, 70 eV): m/z (%) = 352.3 (100, [M]⁺).

ESI-HRMS: m/z calcd for $C_{24}H_{32}O_2$ (352.510): 353.24751 [M + H]⁺; found: 353.24758 [M + H]⁺.

UV (MeCN): λ_{max} (log ϵ) = 194.0 (4.4735), 242.0 (4.0226), 332.0 nm (4.4237).

3-(4-Hydroxy 2-phenylphenylethynyl)-2-methylcyclohex-2enone (3i)

Yield: 23% (over two steps).

IR (KBr): 3310, 2182, 1633, 1580, 1433, 1382, 1359, 1308, 1226, 1068, 772, 701 $\rm cm^{-1}.$

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.64$ (t, J = 1.6 Hz, 3 H, 2-CH₃), 1.85 (sext, J = 6.3 Hz, 2 H, 5-CH₂), 2.29–2.39 (m, 2 H, 4-CH₂, 6-CH₂), 6.81–6.87 (m, 2 H, 3-H, 5-H), 7.35–7.55 (m, 6 H, 2^{'''}-H, 3^{'''}-H, 4^{'''}-H, 5^{'''}-H, 6^{'''}-H), 10.18 (br s, 1 H, 4^{''}-OH).

¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 13.3 (2-*C*H₃), 22.1 (C-5), 30.2 (C-4), 37.2 (C-6), 89.3 (C-1'), 103.9 (C-2'), 110.4 (C-1''), 114.9 (C-5''), 116.3 (C-3''), 127.6 (C-4'''), 128.0 (C-2''', C-6'''), 128.7 (C-3''', C-5'''), 135.0 (C-6''), 136.4, 137.4, 139.7 (C-1''', C-2, C-3), 145.5 (C-2''), 158.9 (C-4''), 197.1 (C-1).

MS (EI, 70 eV): m/z (%) = 302.3 (100, [M]⁺).

EI-HRMS: m/z calcd for $C_{21}H_{18}O_2$ (302.366): 302.1307; found: 302.1307.

UV (MeCN): λ_{max} (log ϵ) = 199.5 (4.5188), 229.5 (4.2247), 261.5 (4.1881), 334.5 nm (4.3579).

3-(2-Trifluoromethyl-4-hydroxyphenylethynyl)-2-methylcyclohex-2-enone (3j)

Yield: 82% (over two steps).

IR (KBr): 3132, 2955, 2191, 1634, 1612, 1579, 1508, 1457, 1383, 1363, 1330, 1263, 1201, 1167, 1133, 1078, 1042, 908, 886 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.90$ (t, J = 1.7 Hz, 3 H, 2-CH₃), 1.90–1.99 (m, 2 H, 5-CH₂), 2.39 (t, J = 6.7 Hz, 2 H, 6-CH₂), 2.50–2.54 (m, 2 H, 4-CH₂), 7.06 (dd, J = 8.4, 2.4 Hz, 1 H, 5"-H), 7.14 (d, J = 2.4 Hz, 1 H, 3"-H), 7.57 (d, J = 8.4 Hz, 1 H, 6"-H), 10.68 (br s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 13.4 (2-CH₃), 22.1 (C-5), 30.2 (C-4), 37.2 (C-6), 91.1 (C-1'), 98.6 (C-2'), 109.2 (q, *J* = 2.2 Hz, C-1''), 113.2 (q, *J* = 5.2 Hz, C-3''), 119.13 (C-5''), 123.1 (q, *J* = 274 Hz, 2''-CF₃), 131.3 (q, *J* = 30 Hz, C-2''), 136.3 (C-6''), 136.5, 137.7 (C-2, C-3), 158.7 (C-4''), 197.1 (C-1).

MS (EI, 70 eV): m/z (%) = 294.1 (100, [M]⁺), 266.0 (37, [M – CO]⁺).

Synthesis 2009, No. 12, 2040–2060 $\,$ © Thieme Stuttgart \cdot New York

EI-HRMS: m/z calcd for $C_{16}H_{13}F_3O_2$ (294.268): 294.0868; found: 294.0868.

UV (MeCN): λ_{max} (log ϵ) = 236.5 (3.8499), 322.0 nm (4.4478).

3-(2-Trifluoromethyl-4-hydroxyphenylethynyl)-2-isopropyl-cyclohex-2-enone (3k)

Yield: 42% (over two steps).

IR (KBr): 3332, 2946, 2186, 1611, 1568, 1449, 1326, 1259, 1168, 1135, 912, 877 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.15$ [d, J = 7.1 Hz, 6 H, 2-CH(CH_{3})₂], 1.88 (m, 2 H, 5-CH₂), 2.34 (t, J = 6.7 Hz, 2 H, 6-CH₂), 2.51 (t, J = 6.0 Hz, 2 H, 4-CH₂), 3.24 [sept, J = 7.1 Hz, 1 H, 2-CH(CH₃)₂], 7.06 (dd, J = 8.5, 2.4 Hz, 1 H, 5"-H), 7.14 (d, J = 2.4 Hz, 1 H, 3"-H), 7.55 (d, J = 8.5 Hz, 1 H, 6"-H), 10.70 (s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 20.3$ [2-CH(CH₃)₂], 22.0 (C-5), 29.4 [2-CH(CH₃)₂], 31.1 (C-4), 38.4 (C-5), 91.0 (C-1'), 98.8 (C-2'), 109.3 (q, J = 2.3 Hz, C-1"), 113.3 (q, J = 5.2 Hz, C-3"), 119.2 (C-5"), 123.1 (q, J = 274 Hz, 2"-CF₃), 131.2 (q, J = 30 Hz, C-2"), 135.7 (C-3), 136.2 (C-6"), 146.3 (C-2), 158.7 (C-4"), 197.1 (C-1).

MS (EI, 70 eV): m/z (%) = 322.2 (100, [M]⁺), 307.2 (70, [M – CH₃]⁺).

ESI-HRMS: m/z calcd for $C_{18}H_{17}F_3O_2$ (322.322): 323.12534 [M + H]⁺, 345.10729 [M + Na]⁺; found: 323.12524 [M + H]⁺, 345.10716 [M + Na]⁺.

UV (MeCN): λ_{max} (log ε) = 237.0 (3.8253), 322.0 nm (4.4263).

3-(4-Hydroxy-2,6-dimethylphenylethynyl)-2-methylcyclohex-2enone (3l)

Yield: 46% (over two steps).

IR (KBr): 3326, 2938, 2178, 1638, 1609, 1579, 1466, 1382, 1359, 1321, 1307, 1257, 1217, 1197, 1165, 1068, 860, 691 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.92$ (t, J = 1.7 Hz, 3 H, 2-CH₃), 1.94 (quint, J = 6.4 Hz, 2 H, 5-CH₂), 2.31 (s, 6 H, 2"-CH₃, 6"-CH₃), 2.39 (t, J = 6.4 Hz, 2 H, 6-CH₂), 2.56 (tq, J = 6.4, 1.7 Hz, 2 H, 4-CH₂), 6.55 (s, 2 H, 3"-H, 5"-H), 9.79 (s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 13.7$ (2-CH₃), 20.7 (2"-CH₃, 6"-CH₃), 22.2 (C-5), 30.7 (C-4), 37.2 (C-6), 95.2 (C-1'), 102.1 (C-2'), 112.0 (C-1"), 114.2 (C-3", C-5"), 135.6, 137.9 (C-2, C-3), 142.1 (C-2", C-6"), 158.3 (C-4"), 197.1 (C-1).

MS (EI, 70 eV): m/z (%) = 254.2 (100, [M]⁺), 226.2 (15, [M – CO]⁺), 198.2 (12, [M – CO – C₂H₄]⁺), 183.1 (12, [M – CO – C₃H₆ – H]⁺), 145.1 (11, [M – CO – C₂H₂O – C₃H₃]⁺), 115.1 (14, [C₉H₇]⁺), 55.0 (14, [C₃H₃O]⁺), 44.0 (29, [C₂H₃O]⁺), 41.0 (33, [C₃H₅]⁺).

(EI-HRMS): m/z calcd for $C_{17}H_{18}O_2$ (254.32): 254.1307; found: 254.1307.

UV (MeCN): λ_{max} (log ϵ) = 197.0 (4.441), 245.0 (4.022), 337.0 nm (4.458).

3-(2-Fluoro-4-hydroxyphenylethynyl)-2-methylcyclohex-2enone (3m)

Yield: 40% (over two steps).

IR (KBr): 3071, 2946, 2186, 1622, 1572, 1508, 1458, 1384, 1362, 1330, 1308, 1238, 1162, 1106, 1063, 968, 845, 811, 608, 582, 488 $\rm cm^{-1}.$

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.90$ (t, J = 1.8 Hz, 3 H, 2-CH₃), 1.93 (quint, J = 6.4 Hz, 2 H, 5-CH₂), 2.39 (t, J = 6.4 Hz, 2 H, 6-CH₂), 2.52 (tq, J = 6.4, 1.7 Hz, 2 H, 4-CH₂), 6.63–6.70 (m, 2 H, 3"-H, 5"-H), 7.38 (t, $J_{ortho} = J_{H-F} = 8.6$ Hz, 1 H, 6"-H), 10.55 (s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 13.6 (2-CH₃), 22.2 (C-5), 30.2 (C-4), 37.2 (C-6), 91.5 (d, *J* = 3.2 Hz, C-1'), 96.7 (C-2'), 100.1 (d, *J* = 15.8 Hz, C-1''), 103.0 (d, *J* = 22.7 Hz, C-3''), 112.4 (d, *J* = 2.5 Hz, C-5''), 134.2 (d, *J* = 2.9 Hz, C-6''), 136.8, 137.2 (C-2, C-3), 160.8 (d, *J* = 11.7 Hz, C-4''), 162.9 (d, *J* = 250 Hz, C-2''), 197.1 (C-1).

MS (EI, 70 eV): m/z (%) = 244.2 (100, [M]⁺), 216.2 (15, [M – CO]⁺), 188.2 (17, [M – CO – C₂H₄]⁺), 85.1 (44, [C₄H₂FO]⁺), 57.1 (14, [C₃H₃O]⁺), 43.0 (18, [C₂H₂O]⁺).

EI-HRMS: m/z calcd for $C_{15}H_{13}FO_2$ (244.26): 244.0900; found: 244.0900.

UV (MeCN): λ_{max} (log ϵ) = 236.5 (4.000), 257.0 (3.892), 321.0 nm (4.465).

3-(2,6-Dichloro-4-hydroxyphenylethynyl)-2-methylcyclohex-2enone (**3**n)

Yield: 51% (over two steps).

IR (KBr): 3261, 2193, 1639, 1583, 1432, 1384, 1361, 1299, 1226, 1051, 860, 810 $\rm cm^{-1}.$

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.89-2.00$ (m, 2 H, 5-CH₂), 1.94 (t, J = 1.6 Hz, 3 H, 2-CH₃), 2.40 (t, J = 6.7 Hz, 2 H, 6-CH₂), 2.50–2.58 (m, 2 H, 4-CH₂), 6.94 (s, 2 H, 3"-H, 5"-H), 11.00 (br s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 13.8 (2-CH₃), 22.2 (C-5), 30.13 (C-4), 37.2 (C-6), 95.7 (C-1'), 96.5 (C-2'), 111.8 (C-1''), 115.6 (C-3'', C-5''), 136.3 (C-3), 137.1 (C-2'', C-6''), 137.9 (C-2), 159.4 (C-4'''), 197.1 (C-1).

MS (EI, 70 eV): m/z (%) = 294.0/296.0 (100/61, [M]⁺), 266.0/268.0 (38/23, [M - CO]⁺).

ESI-HRMS: m/z calcd for $C_{15}H_{12}Cl_2O_2$ (295.161): 295.02871 [M + H]⁺; found: 295.02880 [M + H]⁺.

UV (MeCN): λ_{max} (log ε) = 204.0 (4.3091), 243.0 (4.0115), 322.5 (4.3592), 414.0 nm (3.3796).

3-(2,6-Dichloro-4-hydroxyphenylethynyl)-2-ethylcyclohex-2enone (30)

Yield: 64% (over two steps).

IR (KBr): 2965, 2196, 1620, 1556, 1433, 1375, 1335, 1306, 1265, 1197, 1102, 1061, 849, 815 $\,\rm cm^{-1}$

¹H NMR (300 MHz, DMSO- d_6): $\delta = 0.95$ (t, J = 7.5 Hz, 3 H, 2-CH₂CH₃), 1.93 (quint, J = 6.3 Hz, 2 H, 5-CH₂), 2.39 (t, J = 6.7 Hz, 2 H, 6-CH₂), 2.47 (q, J = 7.5 Hz, 2 H, 2-CH₂CH₃), 2.54 (t, J = 6.0 Hz, 2 H, 4-CH₂), 6.94 (s, 2 H, 3"-H, 5"-H), 11.00 (br s, 1 H, 4"-OH).

¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 13.3 (2-CH₂CH₃), 21.1 (2-CH₂CH₃), 22.2 (C-5), 30.2 (C-4), 37.5 (C-6), 95.3, 96.1 (C-1', C-2'), 111.8 (C-1''), 115.6 (C-3'', C-5''), 136.0 (C-3), 137.1 (C-2'', C-6''), 143.8 (C-2), 159.4 (C-4''), 196.7 (C-1).

MS (EI, 70 eV): m/z (%) = 308.0/310.1 (100/65, [M]⁺).

ESI-HRMS: m/z calcd for $C_{16}H_{14}Cl_2O_2$ (309.187): 309.04436 [M + H]⁺; found: 309.04429 [M + H]⁺.

UV (MeCN): λ_{max} (log ε) = 204.5 (4.0896), 243.5 (3.7912), 324.5 (4.1372), 416.0 nm (3.0889).

3-(4-Hydroxy-2-hydroxymethylphenylethynyl)-2-methylcyclohex-2-enone (3p)

Yield: 45% (over two steps).

IR (KBr): 3507, 3291, 2946, 2184, 1632, 1574, 1494, 1465, 1383, 1361, 1334, 1298, 1241, 1198, 1161, 1133, 1106, 1066, 1035, 910, 876, 826, 689, 489 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.92$ (t, J = 1.7 Hz, 3 H, 2-CH₃), 1.94 (quint, J = 6.4 Hz, 2 H, 5-CH₂), 2.39 (t, J = 6.4 Hz, 2 H,

6-CH₂), 2.54 (tq, J = 6.4, 1.7 Hz, 2 H, 4-CH₂), 4.58 (s, 2 H, 1^{'''}-CH₂), 5.25 (s, 1 H, 1^{'''}-OH), 6.66 (dd, J = 8.4, 2.4 Hz, 1 H, 5^{''}-H), 7.00 (d, J = 2.4 Hz, 1 H, 3^{''}-H), 7.30 (d, J = 8.4 Hz, 1 H, 6^{''}-H), 9.99 (s, 1 H, 4^{''}-OH).

¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 13.7 (2-CH₃), 22.2 (C-5), 30.6 (C-4), 37.3 (C-6), 61.1 (C-1″), 91.4 (C-1′), 101.7 (C-2′), 108.9 (C-1″), 113.4, 113.9 (C-3″, C-5″), 133.7 (C-6″), 136.3, 137.5 (C-2, C-3), 146.6 (C-2″), 159.2 (C-4″), 197.1 (C-1).

 $\begin{array}{l} \text{MS (EI, 70 eV): } \textit{m/z (\%)} = 256.1 \ (100, [\text{M}]^+), 238.1 \ (22, [\text{M} - \text{OH} - \text{H}]^+), 182.1 \ (32, [\text{M} - \text{OH} - 2 \ \text{CO} - \text{H}]^+), 157.1 \ (40, [\text{M} - \text{OH} - 2 \ \text{CO} - \text{C}_2\text{H}_2]^+), 128.1 \ (35, [\text{M} - \text{OH} - 2 \ \text{CO} - \text{C}_2\text{H}_4 - \text{C}_2\text{H}_2 - \text{H}]^+), 115.1 \ (42, [\text{C}_9\text{H}_7]^+), 91.1 \ (30, [\text{C}_7\text{H}_7]^+), 77.0 \ (39, [\text{C}_6\text{H}_5]^+), 55.0 \ (33, [\text{C}_3\text{H}_3\text{O}]^+), 42.0 \ (52, [\text{C}_3\text{H}_6]^+), 41.0 \ (62, [\text{C}_3\text{H}_5]^+). \end{array}$

EI-HRMS: m/z calcd for $C_{16}H_{16}O_3$ (256.30): 256.1099; found: 256.1099.

UV (MeCN): λ_{max} (log ε) = 241.0 (3.990), 330.0 nm (4.431).

Acknowledgment

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for generous support.

References

- Tietze, L. F.; Vock, C. A.; Krimmelbein, I. K.; Wiegand, J. M.; Nacke, L.; Ramachandar, T.; Islam, K. M. D.; Gatz, C. *Chem. Eur. J.* **2008**, *14*, 3670.
- (2) Islam, K. M. D.; Dilcher, M.; Thurow, C.; Vock, C.; Krimmelbein, I.; Tietze, L. F.; Gonzalez, V.; Zhao, H.; Gatz, C. Protein Eng. Des. Sel. 2009, 22, 45.
- (3) Examples: (a) Myers, M. J.; Sun, J.; Carlson, K. E.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 1999, 42, 2456. (b) Myers, M. J.; Sun, J.; Carlson, K. E.; Marriner, G. A.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2001, 44, 4230. (c) Stauffer, S. R.; Coletta, C. J.; Tedesco, R.; Nishiguchi, G.; Carlson, K.; Sun, J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2000, 43, 4934. (d) Mortensen, D. S.; Rodriguez, A. L.; Carlson, K. E.; Sun, J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2001, 44, 3838. (e) Muthyala, R. S.; Sheng, S.; Carlson, K. E.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2003, 46, 1589. (f) Dowers, T. S.; Qin, Z.; Thatcher, G. R. J.; Bolton, J. L. Chem. Res. Toxikol. 2006, 19, 1125. (g) Zhao, L.; Jin, C.; Mao, Z.; Gopinathan, M. B.; Rehder, K.; Brinton, R. D. J. Med. Chem. 2007, 50, 4471.
- (4) Silberberg, S. D.; Magleby, K. L. Science 1999, 285, 1859.
- (5) Mendelsohn, M. E.; Karas, R. H. N. Engl. J. Med. 1999, 340, 1801.
- (6) Examples: (a) Funk, R. L.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1979, 101, 215. (b) Funk, R. L.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1980, 102, 5253. (c) Oppolzer, W.; Bättig, K.; Petrzilka, M. Helv. Chim. Acta 1978, 61, 1945.
 (d) Oppolzer, W.; Roberts, D. A.; Bird, T. G. C. Helv. Chim. Acta 1979, 62, 2017. (e) Nicolaou, K. C.; Barnette, W. E.; Ma, P. J. Org. Chem. 1980, 45, 1463. (f) Posner, G. H.; Hulce, H. Tetrahedron Lett. 1984, 25, 379. (g) Charlton, J. L.; Alauddin, M. M. Tetrahedron 1987, 43, 2873. (h) Doi, T.; Shimizu, K.; Takahashi, T.; Tsuji, J.; Yamamoto, K. Tetrahedron Lett. 1990, 31, 3313. (i) Kametani, T. Pure Appl. Chem. 1979, 51, 747. (j) Kametani, T.; Nemoto, H. Tetrahedron 1981, 37, 3. (k) Groth, U.; Richter, N.; Kalogerakis, A. Synlett 2006, 905. (l) Groth, U.; Koehler, T.; Taapken, T. Tetrahedron 1991, 47, 7583.

- (7) (a) Tietze, L. F.; Nöbel, T.; Spescha, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2259; Angew. Chem. 1996, 108, 2385.
 (b) Tietze, L. F.; Nöbel, T.; Spescha, M. J. Am. Chem. Soc. 1998, 120, 8971.
- (8) (a) Tietze, L. F.; Petersen, S. *Eur. J. Org. Chem.* 2000, 1827.
 (b) Tietze, L. F.; Petersen, S. *Eur. J. Org. Chem.* 2001, 1619. (c) Tietze, L. F.; Wiegand, J. M.; Vock, C. A. *J. Organomet. Chem.* 2003, 687, 346. (d) Tietze, L. F.; Wiegand, J. M.; Vock, C. A. *Eur. J. Org. Chem.* 2004, 4107.
 (e) Tietze, L. F.; Schneider, G.; Wölfling, J.; Fecher, A.; Nöbel, T.; Petersen, S.; Schuberth, I.; Wulff, C. *Chem. Eur. J.* 2000, *6*, 3755.
- (9) Tietze, L. F.; Krimmelbein, I. K. *Chem. Eur. J.* **2008**, *14*, 1541.
- (10) Shieh, W.-C.; Dell, S.; Repič, O. Org. Lett. 2001, 3, 4279.
- (11) Andersh, B.; Murphy, D. L.; Olson, R. J. Synth. Commun. 2000, 30, 2091.

- (12) Karl, J.; Gust, R.; Spruss, T.; Schneider, M. R.; Schoenenberg, H. J. Med. Chem. 1988, 31, 72.
- (13) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769.
- (14) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* **1975**, 4467. (b) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. *Synthesis* **1980**, 627.
 (c) Sonogashira, K. In *Comprehensive Organic Synthesis*, Vol. 3; Trost, B. M.; Fleming, I.; Pattenden, G., Eds.; Pergamon: Oxford, **1991**.
- (15) Tamura, R.; Kohno, M.; Utsunomiya, S.; Yamawaki, K.; Azuma, N.; Matsumoto, A.; Ishii, Y. J. Org. Chem. **1993**, 58, 3953.
- (16) Kemperman, G. J.; Roeters, T. A.; Hilberink, P. W. Eur. J. Org. Chem. 2003, 1681.
- (17) Piers, E.; Grierson, J. R.; Lau, C. K.; Nagakura, I. *Can. J. Chem.* **1982**, *60*, 210.

PAPER