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We describe here an efficient method to synthesize 5-amino-2-thioimidazole compounds by T3P-medi-
ated cyclization of N-acetamidoisothiourea intermediates. The newly functionalized 5-amino-2-thioimi-
dazole compounds are finally obtained in 5 steps from an amine as starting block.

� 2015 Elsevier Ltd. All rights reserved.
Imidazoles represent an important family of heterocycles and
are incorporated in many compounds of both chemical and biolog-
ical interest. In particular a large number of imidazole-based drugs
including anticancer (dacarbazine), antibacterial, antiparasitic
(metronidazole), antifungal (ketoconazole), anxiolytic, and seda-
tive (midazolam), antihistaminic (cimetidine), and antihyperten-
sive (losartan) agents are widely used. The high therapeutic
properties of imidazole related drugs have encouraged the medic-
inal chemists to synthesize and test a large number of new imidaz-
ole derivatives.1 Additional improvements in the biological
activities can be further achieved by small modifications in the
substituents on the imidazole core. 2-Aminoimidazole (Fig. 1)
has been described as a privileged pharmacophore and a scaffold
of interest for the preparation of high value small molecules for
medicinal chemistry.2 2-Thioimidazoles (Fig. 1) are present in
COX-2 selective inhibitors,3 CCR2 antagonists,4 H3 antagonists,5

and in compounds that possess antitubercular activity.6

Interestingly, only very few 5-aminoimidazole7 (Fig. 1) com-
pounds and their synthetic methods are reported in the literature.
Moreover, while isosteric replacement is a common strategy in
medicinal chemistry, only very few 5-amino-2-thioimidazoles
coming from either carbon-to-nitrogen replacement on
2-thioimidazole compounds or carbon-to-sulfur replacement on
5-aminoimidazole compounds have been described. In 1980, the
synthesis of six 2-thio-5-morpholinoimidazole compounds was
published.8 More recently the preparation of one 5-amino-2-thio-
imidazole compound starting from an N-acetamidoisothiourea
intermediate was reported.9 The 5-amino-2-thioimidazole was
obtained in two steps with a moderate yield of 39% (Fig. 2).

Herein, we report a one step procedure for the preparation of
original 5-amino-2-thioimidazole derivatives starting from acet-
amidoisothiourea intermediates using �T3P (propylphosphonic
anhydride)10 for the cyclodehydration step.

�T3P is a powerful water scavenger and coupling reagent ini-
tially used for amide synthesis. Because of the low toxicity, high
safety, and ease of handling of this reagent, it has in recent years
been used for many other applications.11 In particular the synthetic
utility of this reagent as a cyclodehydration agent has been
described for the synthesis of various heterocycles such as
oxadiazoles and thiadiazoles,12 benzothiazoles, benzoxazoles, and
benzimidazoles.13

The cyclization of the N-acetamidoisothiourea intermediate in
5-amino-2-thioimidazole using T3P was examined with compound
1c as a prototype starting material to optimize the reaction condi-
tions. Compound 1c was obtained starting from N-methylaniline,
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Scheme 1. (a) Chloroacetyl chloride, DIEA, DCM, 0 �C, (b) aq NH3, EtOH, 65 �C, (c)
phenylisothiocyanate, TEA, EtOH, rt, (d) 1-bromomethyl-4-methylbenzene, NaI,
K2CO3, acetonitrile, rt.

Table 1
Optimization of conditions for synthesis of 1

Entry T3P (equiv) DIEA (equiv) T (�C) Time % 1 (% 10) a,b

Classical heating
1 1 2 Reflux 2 h 2 (2)
2 1 2 Reflux 4 h 4 (13)
3 1 2 Reflux 8 h 5 (40)
4 1 2 Reflux 24 h 9 (83)
5 0 2 Reflux 24 h 0 (0)
6 3 6 Reflux 2 h 23 (nd)
7 3 6 Reflux 4 h 30 (nd)
8 3 6 Reflux 8 h 48 (2)
9 3 6 Reflux 24 h 63 (6)
10 3+3c 6+6c Reflux 24 h 80 (nd)

Microwave heating
11 1 1 100 10 min 13 (8)
12 1 1 100 20 min 14 (9)
13 2 4 100 10 min 12 (nd)
14 2 4 100 20 min 21 (nd)
15 2 4 120 10 min 65 (9)
16 2 4 120 20 min 79 (14)
17 2 4 130 20 min 86 (11)
18 2 4 150 10 min 88 (12)
19 3 6 150 10 min 96 (4)
20 3 4.5 150 10 min 95 (5)
21 3 3 150 10 min 90 (10)
22 1 2 150 10 min 62 (33)

a Determined by LC–MS at 215 nm.
b nd: not detected.
c Additional equivalent of T3P (3 equiv) and DIEA (6 equiv) are added after 8 h of

reaction.
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Figure 1. Structures of imidazole derivatives.
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Figure 2. 2-Step synthesis of 5-amino-2-thioimidazole from N-acetamidoisothiou-
rea precursor versus one step procedure using T3P. ((a) Lawesson’s reagent, 1,2-
dimethoxyethane, 20 �C, 16 h, (b) 4 N NaOH, 20 �C, (c) T3P, DIEA, EtOAc, microwave
or classical heating.)
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which was first acylated with chloroacetyl chloride in dichloro-
methane in the presence of DIEA as the base (Scheme 1). The chlo-
rine atom was then substituted by aqueous ammonia in ethanol to
give the amino intermediate 1a. Compound 1a was reacted with
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Scheme 2. Proposed mechanism for the formation of
the appropriate isothiocyanate to give the thiourea 1b which was
then selectively alkylated on the sulfur atom with 1-bromo-
methyl-4-methylbenzene to give the precursor for the cyclization
1c. Single crystal X-ray diffraction confirmed the S-alkylation of
compound 1c.

We first tried the reaction under classical heating starting from
1c with T3P (1 equiv) and DIEA (2 equiv) in ethyl acetate, a classi-
cal solvent for the use of T3P. Under these conditions, we could
observe the formation of the desired product (1) but a side product
(10) appeared mainly in the reaction mixture after 24 h (Table 1,
entry 4). This undesired product results from the elimination of
the aniline moiety instead of the expected dehydration (Scheme 2).

As T3P is known as a dehydration agent, we hypothesized that
an increase in T3P quantity could favor the dehydration step
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Table 2
Scope of the 5-amino-2-thioimidazole synthesis
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instead of aniline elimination. The effect of the stoichiometry of
T3P was further investigated. As shown in Table 1 (entries 6–9),
increasing the amount of T3P to 3 equiv allowed a marked increase
in 1:10 ratio (63:6 after 24 h, entry 9). The addition of T3P (3 equiv)
and DIEA (6 equiv) after 8 h of reaction (entry 10) led to a 80%
conversion rate (after 24 h) without detection of the undesired
compound 10.

Eventually, in order to validate that the cyclization was mediated
by T3P and not just by a thermal process in basic media, a control
experiment without T3P (entry 5) was undertaken. No conversion
was observed, confirming the importance of T3P in the reaction.
Moreover, experiments using dehydrating agents like acetic
anhydride and trifluoroacetic anhydride failed to provide the target
compound (data not shown).

With the aim to reduce reaction time, we then carried out the
reaction under microwave irradiation. Comparable to classical
heating, the conversion of 1c into 1 increased with the amount of
T3P (entry 11 vs 13, 12 vs 14). Then the effect of the temperature
was investigated (entries 14, 16, and 17 for 10 min reaction and 15
and 18 for 20 min reaction). An increase in temperature led to
improved conversion and 150 �C was chosen for further optimiza-
tion. At this temperature, a decrease of the amount of DIEA (entries
20 and 21) or in T3P (entry 22) was detrimental for the conversion.

T3P (3 equiv), DIEA (6 equiv) under microwave heating at
150 �C during 10 min appeared optimal for the conversion of the
reaction (entry 19).

The optimized conditions (Table 1, entry 19) were then used to
explore the scope of the reaction. We investigated the effect of
each substituent (R1–R4, Table 2).14

In R3, both aryl (1–4) and alkyl groups (5) were compatible with
the reaction. Hindered aromatic rings in R3 were well tolerated (4,
98% yield). The presence of electron withdrawing or donating
groups on the aromatic ring in R3 position (2–3) had no impact
on the yield of the reaction. Influence of the sulfur component
(R4) was assessed using aliphatic (6–8) or benzylic (1) groups.
An ether function (8) as well as a protected amine (phthalimide
protection, 7) did not impact the reaction. Finally, the influence
of the substitution on the nitrogen atom (R1, R2) was evaluated.
N-Methylaniline bearing electron withdrawing or donating groups
were tested. The yield was better (70%) in the case of para-CF3 sub-
stitution (9) compared to para-OMe (10, 50%) or the unsubstituted
aromatic ring (1, 58%). The electron withdrawing effect of the CF3
group is likely to enhance the electrophilicity of the carbonyl of the
amide function thereby facilitating the nucleophilic attack by the
nitrogen of the isothiourea moiety. Conversely, the methoxy elec-
tron donating group decreases the reactivity of the carbonyl com-
pared to the unsubstituted aromatic ring. The piperidine was
evaluated as an aliphatic amine and gave the desired compound
in a moderate yield of 31%. In this case, the elimination of the
piperidine instead of the dehydration was also observed leading
to the side product 10 (60% yield).

In summary, a method for the synthesis of original 5-amino-2-
thioimidazoles has been developed. This method takes advantage
of a highly selective T3P-mediated microwave cyclodehydration
of N-acetamidoisothiourea and yields the target imidazoles in good
to excellent yields. This novel access to an underrepresented class
of imidazoles could be of high interest in medicinal chemistry.
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