
Bioorganic & Medicinal Chemistry Letters 17 (2007) 3997–4000
Cyclic benzamidines as orally efficacious NR2B-selective
NMDA receptor antagonists
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Abstract—A novel series of cyclic benzamidines was synthesized and shown to exhibit NR2B-subtype selective NMDA antagonist
activity. Compound 29 is orally active in a carrageenan-induced rat hyperalgesia model of pain.
� 2007 Elsevier Ltd. All rights reserved.
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The N-methyl-DD-aspartate (NMDA) receptor is cur-
rently the subject of extensive investigation because of
its high therapeutic potential for the treatment of a large
number of disease states including stroke, epilepsy, neu-
ropathic pain, Alzheimer’s disease and Parkinson’s dis-
ease.1 The NMDA channel is a heterooligomeric
complex composed of up to three different subunits
NR1, NR2 and NR3. NR1 has at least eight isoforms
(NR1a-h), NR2 has four distinct subtypes (NR2A-D)
and NR3 has 2 subtypes (NR3A and B).

Ifenprodil (1, Fig. 1), an antagonist that binds selectively
to the NR2B subunit, can effectively modulate ion flux
and shows efficacy in animal models of pain.2,3 In addi-
tion, ifenprodil exhibits diminished CNS and locomotor
side effects in animal models when compared with non-
selective NMDA antagonists.4 Due to this intriguing
biological profile, the ifenprodil binding site on the
NR2B subunit has become a highly studied target.5,6

To date, a number of compounds have been shown to
have NR2B subtype selectivity, including CP-101,606
(2)7 and Ro25-6981 (3).8
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In a previous communication,9 we reported phenyl ami-
dine (4, Fig. 2) as an orally efficacious NR2B-selective
NMDA receptor antagonist. Indole amidine 5 has re-
cently also been reported to be a potent NR2B/NMDA
antagonist.10 In this communication, we report a novel
series of cyclic benzamidines as orally efficacious
NR2B-selective NMDA receptor antagonists.

Four different classes of cyclic amidines were synthe-
sized. The results of the NR2B binding and functional
assays (calcium ion-flux)11 and calculated pKa for se-
lected cyclic amidines are summarized in Table 1.12,13

6-Phenyl-2-[4-(trifluoromethoxy)phenyl]-1,4,5,6-tetrahy-
dropyrimidin-5-ol (6, Scheme 1) was synthesized from
CP-101,606 (2)

N

Ro 25-6981(3)

OH

OH

OH

OH

N

Figure 1. Structures of NR2B-selective NMDA receptor antagonists.
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Figure 2. Amidine derived NR2B/NMDA receptor antagonists.
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Scheme 1. Synthesis of 6. Reagents and conditions: (a) m-CPBA,

CH2Cl2, 40 �C; (b) 4-F3CO–Ph(C@NH)NH2, 2-propanol, 80 �C.
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Scheme 2. Synthesis of 7. Reagents and conditions: (a) NaN3, DMF,

75 �C; (b) NH2OHÆHCl, pyridine; (c) H2, Pd/C, Boc2O, EtOH; (d) H2,

Pd/C, MeOH; (e) 4-F3CO–Ph(C@NH)OMe, TFA, MeOH, 50 �C.
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Scheme 3. Synthesis of 8. Reagents and condition: (a) EDC, HOBt,

DMF, Et3N; (b) H2, Raney Ni, CH3CO2H, MeOH; (c) xylene, 200 �C.
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cinnamyl chloride (10) which was oxidized with
m-CPBA to produce epoxide 11. Treatment of the epox-
ide with 4-trifluoromethoxybenzamidine in 2-propanol
gave compound 6.

The synthesis of 4-phenyl-2-[4-(trifluoromethoxy)- phe-
nyl]-4,5,6,7-tetrahydro-1H-1,3-diazepine (7, Scheme 2)
started with 4-chlorobutyrophenone (12). Azide installa-
tion and conversion of the carbonyl to the oxime gave
compound 13. The azide was reduced to the amine
which was protected as its Boc derivative, and the oxime
was then reduced to afford compound 15. Amidine for-
mation and subsequent cyclization to 7 was carried out
in methanol under acidic conditions.

The synthesis of 5-(3-chlorophenyl)-2-[4-(trifluoro-meth-
oxy)phenyl]-4,5-dihydro-1H- imidazole (8, Scheme 3)
began with a standard amide coupling of 4-(trifluoro-
methoxy)benzoic acid (16) and amino(3-chlorophenyl)
acetonitrile (17) to form 18. Reduction of the nitrile
with Raney Ni in methanol and cyclization of 19 at high
temperature in xylene gave imidazoline 8.

2-(3-Chlorobenzyl)-5-(trifluoromethoxy)isoindolin-1-imine
(9, Scheme 4) was synthesized from nitrile 20 via bro-
mination and subsequent coupling with 3-chlorobenzyl
amine in ethanol.

Cyclic amidines 6 and 7, containing six and seven-
membered ring constraints, are moderately potent
NR2B-subtype NMDA receptor antagonists (Table 1).
Table 1. Structure, binding affinity, functional activity and pKa of amidine
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However, the 5-membered ring amidines (8 and 9) gave
optimal potency. We then sought to improve the activity
derived NR2B/NMDA receptor antagonists

) NR2B Ca2+-flux IC50 (nM) Calcd pKa
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Table 2. Structure, binding affinity and functional activity of 2,4-

dihydroimidazole derived NR2B/NMDA receptor antagonists
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Table 3. Structure, binding affinity and functional activity of isoindo-

lin-1-imine derived NR2B/NMDA receptor antagonists

Entry Structure NR2B
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IC50 (nM)
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Scheme 4. Synthesis of 9. Reagents and condition: (a) NBS, AIBN,

CCl4, reflux; (b) 3-ClBnNH2, EtOH.
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of these latter two classes of moderately basic con-
strained amidine NR2B antagonists by exploring substi-
tuent effects on the aromatic rings.

The imidazoline series (Table 2) was prepared following
the general procedure described in Scheme 3. In this ser-
ies, the aromatic groups at the 2- and 4-positions of the
4,5-dihydro-1H-imidazole central ring were required for
activity. Installation of electron withdrawing substitu-
ents on each of these phenyl rings resulted in increased
activity. Substitution at the meta and para positions of
the 2-phenyl was well tolerated. In the case of the 4-phe-
nyl, substitution at the ortho and meta positions was
most beneficial.

The addition of a m-chlorine substituent on the 2-phenyl
of compound 8 afforded 22, the most potent compound
in this series. Adding a second meta-chlorine on the
4-phenyl diminished activity (23). Ortho substituents
on the 4-phenyl had a significant influence on potency,
with larger group leading to diminished activity
(OMe > CF3 > OCF3) (24–26).

Applying the above SAR data, we synthesized a number
of high affinity compounds in the isoindolin-1-imine ser-
ies (Table 3). In this case, the 3,5-dimethyl substitution
pattern on the benzyl group (27) gave increased affinity.
Improvements in functional potency were realized by
installation of a benzofuran (28) or a 2-methoxy-benzyl
substituent (29). Compound 29 showed the best func-
tional potency in this series and had a calculated pKa

of 9.16.

We next evaluated the pharmacokinetic properties and
activity of compound 29.14 For PK evaluation, rats were
dosed at 2 mg/kg iv and 10 mg/kg po, compound 29 had
a Cmax of 215 nM with 5% bioavailability. It demon-
strated a moderate plasma half life of 2 h and a clear-
ance of 66 mL/kg/min. Efficacy was measured by
scoring behavioral responses to noxious stimuli in a car-
rageenan-induced hyperalgesia assay in the rat.4 Com-
pound 29 was dosed orally, and showed an ED50 of
20 mg/kg. At this dose, a 50% reduction in the hyperal-
gesic response as compared to control was observed.

In conclusion, we have developed a class of moderately
basic NR2B-selective NMDA receptor antagonists
which demonstrate good binding, excellent activity in
functional assays and good oral efficacy in a rodent
hyperalgesia model.
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