
 

 
Le

tte
rs

 in
 O

rg
an

ic
 C

he
m

is
tr

y

������
����	
�
����

������	����	���
�������	��������

�������
	
���
�

 

Eduardo Rodrigo1, M. Belén Cid1*, Christian Roussel2, Nicolas Vanthuyne2*, Felipe Reviriego3, 
Ibon Alkorta3* and José Elguero3 

1Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; 2Aix-
Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France; 3Instituto de Química  
Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain 

 

A R T I C L E  H I S T O R Y 

Received: January 26, 2016 
Revised: May 10, 2016 
Accepted: June 24, 2016 
 
DOI:  
10.2174/15701786136661608151631
17 

Abstract: Background: In the field of asymmetric aminocatalysis, chiral catalysts 
derived from azoles (five-membered heterocycles containing exclusively N atoms) 
play an important role. Surprisingly, all the catalysts used for enamine and/or imin-
ium ion activation derive from pyrrole or imidazole. We decided to test if other re-
duced azole derivatives could be used as organocatalysts and particularly in amino-
catalysis via iminium ion activation. The azole derivatives that came naturally to 
mind are the 3,5-disubstituted 2-pyrazolines (also called 4,5-dihydro-1H-pyrazoles). 

Methods: We synthesized racemic 3,5-diphenyl-2-pyrazoline, separated both enanti-
omers by chiral-HPLC on a Lux-Cellulose-4 column (heptane/ethanol 70:30 as mo-
bile phase), determined the absolute configuration of their hydrochloride salts (pyra-
zolinium) by the combined use of experimental rotatory power and B3LYP/6-311++G(d,p) theoretical 
calculations and use one the enantiomers, the R, as the catalyst. 
Results: We have demonstrated that the enantiopure (R)-3,5-diphenyl-2-pyrazoline is able to catalyze 
the Michael addition of 1-(4-nitrophenyl)propan-2-one to cinnamaldehyde and crotonaldehyde via imin-
ium activation. 

Conclusion: This is the first example of activation of both types of enals, aliphatic and aromatic, via 
pyrazolinium salts and opens new possibilities to the design of other type of chiral organocatalysts than 
the traditional pyrrole and imidazole derivatives. 
 

Keywords: Absolute configuration, DFT calculations, 4,5-dihydro-1H-pyrazoles, Michael addition, organocatalysis, Pyra-
zolines. 

1. INTRODUCTION 

 In the field of asymmetric aminocatalysis [1], chiral cata-
lysts derived from azoles (five-membered heterocycles con-
taining exclusively N atoms) [2] play an important role. Sur-
prisingly, all the catalysts used for enamine and/or iminium 
ion activation derive from pyrrole or imidazole. Fig. (1) 
gathers some of the most employed chiral catalysts in imin-
ium and enamine activation. 
 Nowadays, the most popular catalysts in iminium and 
enamine activation are probably the diarylprolinol silyl 
ethers 2 [4] and 3 [5], which have resulted from proline (1) 
evolution (for general reviews on the use of silyl diarylproli-
nol ethers as catalysts see [3]). However, at the early times in 
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iminium ion catalysis, the most frequent catalysts were 
MacMillan's imidazolidinone-based catalysts (6 [8] and 7 
[9]). These catalysts were later also applied in SOMO cataly-
sis and enamine catalysis, yet they had been designed mostly 
for iminium ion catalysis. Nowadays, these catalysts are still 
being widely used; see for example [4].  
 To our knowledge, the use of imidazolines derivatives in 
aminocatalysis (covalent catalysis involving iminium or 
enamine activation) has not been described so far. Although 
4 has been used as catalyst in a Friedel-Crafts type reaction, 
it implied a non-covalent catalysis by hydrogen-bond [5]. 
 We decided to test if other reduced azole derivatives 
could be used as organocatalysts and particularly in amino-
catalysis via iminium ion activation. For a review of iminium 
activation, see [12] and for our previous experience in imin-
ium activation see [13]. 

2. RESULTS AND DISCUSSION 
 The azole derivatives that came naturally to mind are the 
3,5-disubstituted 2-pyrazolines (Fig. 2). Although several 
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enantioselective syntheses have been reported [14], this kind 
of compounds is usually prepared as racemates, for instance 
1,3,5-triphenyl-2-pyrazoline (8) (see later) [15]. Due to sim-
plicity reasons in its synthesis [16], 3,5-diphenyl-2-
pyrazoline (9) was chosen as tentative catalyst. 
 Several facts supported the viability of the use of com-
pound 9 in iminium activation processes. Firstly, it is known 
that 2-pyrazolines protonate on N1 [17]. Also, 10, 11 and 
some other iminium derivatives bearing the pyrazoline moi-
ety have been isolated (12 and 13 [18]) (Fig. 3). The X-ray 
structures of 10-12 were reported in the CSD under the code 
names of PYZOLC, VIDKUO and UPIPUT, respectively 
[19]. 
 We demonstrated that a p-nitrophenyl group converts 
acetone in an excellent and versatile nucleophile in the Mi-
chael addition to α,β-unsaturated aldehydes via iminium ac-
tivation using catalysts 2 and 3 (Scheme 1) [13c]. The ad-
ducts were obtained with good yields and variable enantiose-
lectivities according to the aromatic or aliphatic nature of the 

substituent. The Michael reaction/aldol reaction/ dehydration 
sequence provided 5-substituted 6-(4-nitrophenyl)-2-
cyclohexen-1-ones 16 in good yields and complete diastereo-
selectivity. 
 Therefore, in order to test the catalytic possibilities of 9 
via iminium activation, we have selected the Michael reac-
tion between 1-(4-nitrophenyl)propan-2-one (14) and both 
cinnamaldehyde (21a) and crotonaldehyde (21b) as model 
reactions (Schemes 2 and 3). Firstly, a preliminary study of 
reactivity of the racemic catalyst was performed (Scheme 2). 
The use of the hydrochloride (rac)-9.HCl led only to the 
diethoxyacetal of cinnamaldehyde, and no Michael addition 
was observed. Nevertheless, when the free base 9 was liber-
ated (by treatment with an aqueous solution of saturated 
K2CO3 followed by extraction with Et2O) and the reaction 
was carried out in the presence of benzoic acid, the corre-
sponding Michael adducts 15a of cinnamaldehyde were ob-
tained, although with low conversions. Under the same con-
ditions, no reaction was observed after 24 h when crotonal-
dehyde (21b) was used. 
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Fig. (1). Examples of chiral organocatalysts derived from pyrrole or imidazole: 1 [6], 2 [7], 3 [8], 4 [5], 5 [9], 6 [10] and 7 [11]. 
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Fig. (2). 3,5-Diphenyl-2-pyrazoline (9) proposed as aminocatalyst. 
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Fig. (3). Different salts derived from 2-pyrazolines. 
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Scheme (1). Previous work as model reaction [13b]. 
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Scheme (2). Preliminary study of Michael reactivity with catalyst 9. 
 
 We confirmed that the reaction does not occur in the ab-
sence of the catalyst after 24 h in the case of cinnamaldehyde 
(21a). Consequently, although the conversion was not very 
high, the formation of the adduct 15a (as a mixture of di-
astereoisomers) demonstrated that pyrazoline 9 was able to 
activate the enal via iminium activation. This result 
prompted us to prepare 9 in enantiomerically pure form by 
chromatographic separation of both enantiomers and evalu-
ate its possibilities in enantioselective catalysis. 
 Compound 9 was analyzed by chiral HPLC on a Lux-
Cellulose-4 column (heptane/ethanol 70:30 as mobile phase, 
UV 220 nm, 1 mL·min-1, 25°C, see Fig. 4). Compound 9 
proved to be not very stable; therefore the separation had to 
be done on the corresponding hydrochloride. At preparative 
scale, 9.HCl was injected on a Lux-Cellulose-4 column  
(250 x 10 mm), with hexane/ethanol (70/30) with 0.01 % of 
triethylamine as mobile phase and 5 mL·min–1 as flow-rate. 
Each enantiomer was collected separately, in a flask contain-
ing ethanol with aqueous hydrochloric acid to avoid its de-
composition, by formation of the hydrochloride. After 
evaporation of the solvents, each enantiomer of 9.HCl was 
obtained as a mixture with triethylamine hydrochloride. In 

our experiments, we employed the first eluted sample, which 
had a rotatory power value of [α]D –109. 
 

  
Fig. (4). Analytical chiral HPLC chromatogram of 9. 
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 To determine the absolute configuration of 9, first we 
calculated, using the Gaussian 09 facilities, at the B3LYP/6-
311++G(d,p) level, the static [α]D of one of the enantiomers 
of 1,3,5-triphenyl-2-pyrazoline (8) in CH2Cl2 that is equal to 
–547, the experimental value being –424 (1.3 times greater). 
Then, we calculated the (S)-enantiomer of 9.HCl and ob-
tained [α]D = +260. Thus, the first eluted compound is the 
(R)-9. Here the ratio is ~2.4, much larger than 1.3 but the 
hydrochloride 9.HCl is a mixture containing about 50 % 
(determined by 1H NMR) of triethylamine hydrochloride, 
thus the ratio becomes comparable. 
 The liberated catalyst (R)-9 was employed in the stereo-
selective Michael addition. In order to get higher conver-
sions, some small changes were performed compared to the 
preliminary experiments carried out with the racemic cata-
lyst. In the case of the aromatic aldehyde 21a, just longer 
reaction times led to higher conversions. In the case of the 
aliphatic aldehyde 21b, an increase of the catalyst loading as 
well as the use of a combination of additives were mandatory 

to obtain the corresponding adduct 15b (Scheme 3). The 
transformation of the adducts 15 into the corresponding cy-
clohexenones 16 was necessary to determine the enantiose-
lectivity of the process by HPLC. After cyclization, epimeri-
zation of the benzylic position towards the most stable anti 
cyclohexanone occurs [13]. Although the enantiomeric ex-
cess of 16a [derived form cinnamaldehyde (21a)] was rather 
low (8 %), the cyclohexenone 16b derived from the aliphatic 
enal 21b could be obtained with a preliminary promising 28 
% ee. 

 The (S,S) stereochemistry of the final products 16 was 
determined by comparison with a HPLC sample we had from 
our previous works, whose configuration was unequivocally 
determined by X-ray diffraction [13b]. This configuration 
agreed with a steric controlled mechanism (which seems 
reasonable in the absence of a stereodirecting substituent) 
and the formation of the (Z)-iminium. The attack of the nu-
cleophile would take place through the less hindered face, 
opposite to one of the phenyl group. This is in accordance 
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Scheme (3). (R)-3,5-Diphenyl-2-pyrazoline (9) as organocatalyst. 
 

 
 
Scheme (4). Proposed mechanism of formation of 16. 
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with the proposed one when using catalysts 2-7 [3c] 
(Scheme 4). 
 In conclusion, we have demonstrated that enantiopure 
(R)-4,5-dihydro-3,5-diphenyl-1H-pyrazole (9) can be used as 
chiral organocatalyst in Michael addition via iminium activa-
tion. The replacement of the 5-phenyl group by more elec-
tron-withdrawing and bulkier groups should increase the 
reactivity of the catalyst and the enantioselectivity of the 
process, for instance, compounds 17 [20] and 18 [21] (Fig. 4). 
On the same way, the introduction of a supplementary 5-
methyl substituent [5-methyl-3,5-diphenyl-2-pyrazoline 
(19)] [22] or a 4,4-dimethyl one [4,4-dimethyl-3,5-diphenyl-
2-pyrazoline (20)] could prevent the catalyst from oxidation, 
increasing its stability. Note that many N-H pyrazolines have 
been reported as stable compounds, amongst them 17 and 18. 

EXPERIMENTAL 

Experimental Procedure for Michael Addition to Cin-
namaldehyde (21a, R = Ph) and Crotonaldehyde (21b, R 
= Me) 

 Free base (R)-9 (20 mol% for 21a and 40 mol% for 21b), 
the corresponding aldehyde 21 (0.75 mmol) and the additives 
[20 mol % PhCO2H for 21a, and 40 mol % PhCO2H and 1 
equiv of TBAB (tetrabutylammonium bromide) for 21b] 
were dissolved in EtOH (1.5 mL) and the mixture was stirred 
at room temperature for 5 min, whereupon the nucleophile 
14 (26.8 mg, 0.15 mmol) was added to the solution. The so-
lution was stirred at room temperature 96 and 120 h for 21a 
(R = Ph) and 21b (R = Me) respectively. Whereupon, the 
solvent was removed under reduced pressure and the crude 
purified by flash column chromatography (hexane/ethyl ace-
tate 4:1) to afford the corresponding Michael adducts 15. 
The yields for 15a (13.6 mg, 68 %) and 15b (12.1 mg, 72 %) 
were calculated based on the recovered starting material 
(brsm). 

Experimental Procedure to Prepare Cyclohexenones 16  

 The previously obtained Michael adduct 15 was dis-
solved in 0.5 mL of THF and DBU (1,8-diazabicyclo 
[5.4.0]undec-7-ene, 0.4 equiv) was added to the solution. 
The mixture was stirred at room temperature until comple-
tion of the reaction (6 h). Then, it was filtered through a 
short pad of silica to remove the DBU eluting with EtOAc. 
The solvent was evaporated under reduced pressure and the 
crude was redissolved in 1 mL of toluene. p-TsOH (0.2 
equiv) was added to the solution and the mixture was heated 
and vigorously stirred at 120 ºC for 4 h. The solvent was 
removed under reduced pressure and the crude purified by 

flash column chromatography (hexane/ethyl acetate 4:1)  
to afford the corresponding cyclohexenones [16a, R = Ph  
(79 %); 16b, R = Me, (81 %)]. 
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