DOI: 10.1002/ejoc.200500414

Synthesis of Substituted Imidazolo[1,2-*a*]piperidinoses and Their Evaluation as Glycosidase Inhibitors

Estelle Dubost,^[a] Didier Le Nouën,^[a] Jacques Streith,^[a] Céline Tarnus,^[a] and Théophile Tschamber*^[a]

Keywords: Azasugars / Carbohydrates / Inhibitors / Nitrogen heterocycles

The synthesis of substituted imidazolo[1,2-*a*]-L-*arabino*-piperidinoses is reported. The substituents are methyl, phenylmethyl, phenylethyl, cyclohexylethyl, pyridinylethyl, piperidinylethyl, phenylpropyl and hydroxymethyl. All substituents are connected to the imidazole moiety. Examination of the inhibitory properties of the newly synthesised compounds against a β -glucosidase (from almonds) and a β -galactosidase (from *Escherichia coli*) lead to the conclusion that the substitution of the C-2 position on the imidazole moiety

with cyclohexylethyl or phenylethyl gives the best results (K_i = 2 and 4 nM, respectively, against a β -galactosidase) as compared with the non-substituted azasugar. The synthesis of the imidazolo[1,2-*a*]-D-xylo-piperidinose substituted with phenylethyl is also reported, as well as its inhibitory potency against the β -xylosidase from *Aspergillus niger*.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Introduction

Recent advances in the total synthesis of piperidine azasugars were reviewed recently.^[1] The enzymatic mechanism of catalytic polysaccharide hydrolysis, using glycosidases, has been well studied and widely reported in a number of publications.^[2-4] The putative oxocarbenium ion like transition state (TS), which is presumably produced during both the glycosylation and the deglycosylation steps of glycosides, appears to be in a half-chair conformation. This TS can be mimicked by some putative inhibitors, for example with azasugars fused to a tetrazole, a triazole or an imidazole, provided that one N-atom is attached to the pseudoanomeric C-atom, which assures the best requirement for a "lateral" or in-plane protonation demonstrated by Vasella.^[5] In a previous publication we reported the synthesis of all eight stereomeric imidazolo[1,2-a]piperidinopentoses, and, in particular, the imidazolo-L-arabino- and -D-xylo-piperidinoses 1 and 2, respectively.^[6] All eight stereoisomers were tested against six glycosidases. Azasugar 1 was found to show a marked inhibition of β -glucosidase from almonds $(K_i = 1 \mu M)$ and β -galactosidase from *Escherichia coli* $(K_i = 1 \mu M)$ 1 μ M), and azasugar **2** an inhibition of β -glucosidase from almonds ($K_i = 17 \mu M$). By studying the influence of substituents on the imidazole moiety of 3, Vasella^[7] has reached the conclusion that inhibition of a β -glucosidase is con-

 [a] Ecole Nationale Supérieure de Chimie, Université de Haute-Alsace,
3, rue Alfred Werner, 68093 Mulhouse, France

France France France France France France France France France Fax: +33-3-8933-6875

siderably increased when a phenylethyl substituent is attached to C-2 of the azasugar, as shown for **4** (Scheme 1).

Scheme 1. Examples of inhibition potency.

In a preliminary publication^[8] we described the synthesis and the inhibitory potency of compounds possessing a phenylethyl or a hydroxymethyl group at C-2 or C-3 of **1**. The inhibitory potency of two of the four compounds was higher against β -glucosidase from almonds and β -galactosidase from *Escherichia coli* than for **1**. We therefore surmised that other substituents on the imidazole ring might be used in order to increase the inhibitory potency. However, we must note that our substrate does not possess the hy-

610

Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

droxymethyl group on the sugar moiety that is present in Vasella's compounds **3** and **4**.

We described in a previous paper^[6] a method that permits the synthesis of all the imidazolo[1,2-a]piperidinoses from D- and L-threose and from D- and L-erythrose, which were prepared from L-ascorbic and D-isoascorbic acids. However, for the specific synthesis of 1, this method has some disadvantages. In order to arrive directly at the desired configuration of 1 or 2, and in order to introduce different substituents on the imidazole moiety, we developed a new methodology starting from L-arabinose (for 1) and from D-xylose (for 2) by making use of glyoxal for the construction of the imidazole ring.

Results

Synthesis of Linear Imidazolyl-L-arabinose

L-Arabinose (5) was converted into the diethyldithioacetal $6^{[9,10]}$ and the hydroxy groups were then specifically protected to give $7^{[11]}$ (Scheme 2). The aldehyde 8, regenerated by treatment with NBS^[12] in the presence of 2,6-lutidine, was condensed with two different glyoxals and with cyclohexane-1,2-dione to give the linear imidazolo sugars 9–11, according to the method of Rothenberg.^[13] The trityl groups were then removed to give 12–14. It should be noted that both 10 and 13 occur as dynamic mixtures of two tautomers, only one of which is given in Scheme 2.

Scheme 2. Synthesis of the linear imidazolo-L-*arabino* sugars **12– 14**: a) EtSH, concd. HCl, 0 °C, 15 min, 79%; b) TrCl, pyridine, DMAP, 80 °C, 3 h, 97%; c) DMF, NaH, *n*Bu₄NI, BnBr, 96%; d) acetone/H₂O, 2,6-lutidine, NBS, 1 h, 71%; e) MeOH/NH₃, glyoxal derivatives, 70–80 °C, **9**: 62%, **11**: 53%; f) dioxane, 4 м HCl, 80 °C, **12**: 74%, **13**: 75% over two steps, **14**: 88%.

(IUPAC heterocyclic numbering)

Scheme 3. Synthesis of imidazolo-L-arabinoses **21** and **22**: a) pyridine, MsCl, 0 °C; b) 80 °C, 2 h, yield over 2 steps: **18**: 77%, **19**: 81%, **20**: 93%; c) EtOH/AcOH, Pd(OH)₂/C, H₂, **21**: 78%, **22**: 72%.

Scheme 4. Synthesis of 2-methylimidazolo[1,2-*a*]-L-*arabino*-piperidinose (**27**): a) CH₃CN, NIS, room temp., 12 h, 82%; b) (i) pyridine, MsCl, 0 °C; (ii) 80 °C; c) THF, EtMgBr, 0 °C, 10 min, 70% overall yield from **23**; d) EtOH/AcOH, Pd(OH)₂/C, H₂, 69%.

Mesylation of **12–14**, followed by heating to 80 °C, gave bicyclic compounds **18–20**, by an intramolecular nucleophilic substitution. It is noteworthy that the cyclisation of **13** gave only **19**, with the methyl group connected to C-3. This selectivity is obviously due to the fact that the steric interaction between the methyl and the mesyl group in **16** is less pronounced than in the alternative intramolecular approach. Palladium-catalysed hydrogenolysis of the benzyloxy groups of **19** and **20** gave azasugars **21** and **22**, respectively. The position of the methyl group of **21** was unambiguously assigned by NMR spectroscopy (the gHMBC shows cross-peaks between C-3 and the two 5-H protons; see Scheme 3).

In order to form 27, which is the isomer of 21, an iodine atom was introduced onto the imidazole ring of 13, the reagent being NIS. Mesylation of 23 led preferentially to the compound in which the mesyl group has no steric interaction with the bulky iodine atom. As a consequence, cyclisation was supposed to give 24 as the major compound. Indeed, after mesylation of 23, cyclisation led preferentially to 24. Compounds 26 and 19 were obtained with an overall yield of 70% and in an 83:17 ratio, as determined by ¹H NMR spectroscopy, after deiodination. Subsequent hydrogenolytic debenzylation of 26 gave 27 (Scheme 4).

Introduction of Substituents at C-2 and C-3 of Imidazolo[1,2-*a*]piperidinoses

These reactions were performed in all cases starting from the cyclic mono- and diiodoimidazolopiperidinoses, i. e. **28**, **31** and **29**. The substitution of the iodine atom can be achieved with an organomagnesium derivative or according to the Sonogashira^[14] methodology. Two strategies were employed for the preparation of mono- or diiodo derivatives. The 3-iodoimidazolopiperidinose **28** was synthesised according to the method described by Vasella^[7] and according to what is known of the reactivity of imidazoles (Scheme 5).^[15,16]

Direct access to the 2-iodoimidazolopiperidinose is not possible as introduction of the two iodine atoms on the bicyclic compound **18** requires a large excess of NIS and heating.^[7] In contrast, when the linear compound **12** was treated with 2.5 equiv. of NIS at room temperature for 12 h, the

Scheme 5. Synthesis of 3-iodoimidazolo[1,2-*a*]-L-*arabino*-piperidinose (**28**): a) CH₃CN, NIS, 80 °C, 24 h, **28**: 57%.

diiodo compound **30** was obtained with a yield of 94%. After cyclisation of **30** to **29** (87%), the more reactive iodine atom at C-3 was removed to give **31** (87%; Scheme 6).^[7,17] The bicyclic monoiodide derivatives **28** and **31** were characterised by ¹H and ¹³C NMR spectroscopy (Table 1).

Scheme 6. a) CH₃CN, NIS, room temp., 12 h, 94%; b) pyridine, MsCl, 0–80 °C; 87%; c) CH₂Cl₂, EtMgBr, 0 °C, 87%.

Substitution of the Iodoimidazole Compounds by an Organomagnesium Derivative

Because of the importance of the imidazole ring in medicinal chemistry, numerous studies have been made to develop methodologies for the derivatisation of such compounds. The simplest approach for substitution of an imidazole ring is to prepare an anion on the imidazole moiety which is able to react with an electrophile. Thus, treatment

Table 1.Chemical shifts in the ¹H (400 MHz) and ¹³C NMR (100.6 MHz) spectra for the C-2 and C-3 positions of the imidazoles **18**, **29**, **28** and **31**.

		N 2 3	BnO, N 2 3 18	BnO, OBn N OBn 29	BnO OBn N OBn 28	BnO, OBn N N OBn J 31
¹ HNMR	2-H		7.11		7.15	
	3-Н		6.84	-		6.90
¹³ C NMR	C-2	129.6	127.6	95.3	136.2	82.2
	C-3	120.3	119.1	82.5	70.1	124.5

of iodides 28 and 31 with EtMgBr and then DMF^[7] led to the formylimidazolo derivatives 32 and 33, which, after reduction and deprotection, gave the hydroxymethyl derivatives 38 and 39. The formyl group can also be fixed selectively on C-3 of the diiodo derivative 29 to give 34 and thence 37 (Scheme 7).

Scheme 7. a) (i) THF, EtMgBr, 0 °C, (ii) DMF, room temp., 12 h, **32**: 50%, **33**: 84%, **34**: 88%; b) THF, LiAlH₄, -78 °C to -30 °C, **35**: 85%, **36**: 83%, **37**: 68%; c) EtOH/AcOH, Pd(OH)₂/C, H₂, **38**: 87%, **39**: 68%.

For the synthesis of the 2- and 3-benzoylimidazolo derivatives, the corresponding magnesium derivatives of **28** and **31** were first treated with benzaldehyde. When **28** was treated with EtMgBr and benzaldehyde, compound **40** was obtained with 37% yield. With BnMgBr, the reaction gave **40** in 84% yield. When **31** was sequentially treated with EtMgBr and benzaldehyde, a mixture of **42** and **43** was obtained after 3 h. The formation of **40** and **43** can be explained by an Oppenauer reoxidation. Timmermann et al.^[18] have observed a similar reoxidation and studied its mechanism. Treatment of **40** with H₂ and Pd(OH)₂/C as well as of the **42** and **43** mixture, gave **41** and **44** (Scheme 8).

Scheme 8. a) (i) THF, EtMgBr or BnMgBr, 0 °C, (ii) PhCHO, **40**: 84%, **42** + **44**: 97%; b) EtOH/AcOH, Pd(OH)₂/C, H₂, **41**: 60%, **44**: 73%.

Substitution of the Imidazole Ring by a Sonogashira Reaction

In order to improve the docking capabilities (by increasing the number of van der Waals interactions), we decided to increase the length of the lipophilic substituents. For that purpose the monoiodo derivatives **28**, **31** and **37**, as well as the diiodo derivative **29**, were submitted to the Sonogashira reaction conditions, i.e. tretament with monosubstituted acetylenes in the presence of [Pd(PPh₃)₄], CuI and NEt₃ in DMF at 80 °C. These reactions led to the corresponding acetylenic adducts **45–53** (Scheme 9) with yields ranging from 71% to 100%.

Scheme 9. Coupling of monosubstituted acetylene derivatives with the imidazole moiety by the Sonogashira methodology: a) DMF, RCCH, [Pd(PPh₃)₄], NEt₃, CuI, 80 °C.

Exhaustive hydrogenation of the triple bond and hydrogenolysis of the benzyl groups of **45–49**, **52** and **53** were performed in a one-pot procedure with H_2 in the presence of Pd(OH)₂/C and led to compounds **54–60** (Scheme 10).

Treatment of the pyridinylethynyl derivative **50** with H_2 and Pd(OH)₂/C in EtOH/AcOH gave a mixture of pyridine derivative **61** and piperidine compound **62** as the benzyloxy protection groups were only partially removed. After elimination of the catalyst and the solvent, the mixture was treated with BCl₃ to completely deprotect the hydroxy groups to give pure unprotected **61** and a mixture of **61** and **62**. Treatment of this mixture with H_2 and Pd(OH)₂ in EtOH/AcOH gave pure **62**. A similar strategy was applied to the ethynylpyridine derivative **51**, which gave **63** and thence **64** (Scheme 11).

Scheme 10. Exhaustive catalytic hydrogenation of the triple bond and hydrogenolysis of the benzyl groups of **45–49**, **52** and **53**. a) EtOH/AcOH, $Pd(OH)_2/C$, room temp., overnight.

Scheme 11. Catalytic hydrogenation and hydrogenolytic debenzylation of the derivatives **50** and **51** bearing a pyridinylethyl group. a) (i) EtOH/AcOH, Pd(OH)₂/C, H₂; (ii) CH₂Cl₂, BCl₃, -70 to -20 °C, 12 h; b) EtOH/AcOH, Pd(OH)₂/C, H₂, room temp., 18 h; c) (i) EtOAc, Pd/C, H₂, room temp., 6 h; (ii) CH₂Cl₂, BCl₃, -70 to -20 °C, 16 h; d) EtOH/AcOH, Pd(OH)₂/C, H₂, room temp., 24 h.

Synthesis of 2-Phenylimidazolo[1,2-*a*]-D-*xylo*-piperidinose (75)

The synthesis of target molecule **75** was performed starting from D-xylose by making use of a methodology analogous to the one described above, as shown in Scheme 12.

Scheme 12. a) HSCH₂CH₂CH₂SH, concd. HCl, 0 °C, 15 min, 94%; b) pyridine, TrCl, DMAP, 80 °C, 2 h, 89%; c) DMF, NaH, *n*Bu₄NI, BnBr, 0 °C to room temp., 93%; d) acetone/H₂O, NBS, 2,6-lutidine, room temp., 2 h, 45%; e) (i) MeOH/NH₃, glyoxal, -20 to 75 °C, 1 h; (ii) dioxane, 4 \times HCl, 85 °C, 1 h, 73%; f) CH₃CN, NIS, room temp., 12 h, 83%;g) pyridine, MsCl, 0 to 80 °C, 2 h, 83%; h) CH₂Cl₂, EtMgBr, 0 °C to room temp., 87%; i) DMF, PhCCH, [Pd(PPh₃)₄], NEt₃, CuI, 80 °C, 12 h, 71%; j) (i) EtOH/AcOH, Pd(OH)₂/C, H₂, room temp., 48 h; (ii) CH₂Cl₂, BCl₃, -78 to -20 °C, 12 h, 56%.

Enzymatic Essays

All the target azasugars were submitted to in vitro inhibition assays. As we noted in the Introduction, **1** and **2** are active as inhibitors against β -galactosidase from *Escherichia coli* and against β -glucosidase from almonds. Therefore, the synthesised molecules were tested against these two enzymes only, according to a methodology described in detail in the Experimental Section. Inhibition data were determined by Michaelis–Menten kinetics. Each compound tested behaved as a competitive inhibitor.

Effect of C-3 Substitution

Scheme 13 shows that the imidazolo[1,2-*a*]-L-*arabino*-piperidinoses substituted at C-3 generally have a lower inhibitory potency than the unsubstituted reference compound **1**. This observation is in agreement with the one made by Vasella.^[19] This decrease of potency is most probably the consequence of an unfavourable interaction of the inhibitor with the enzyme's active site, the docking becoming more difficult because of steric crowding.

Scheme 13. Inhibition values (K_i in μ M; in one instance IC₅₀ in μ M) of the substituted imidazolo[1,2-*a*]-L-*arabino*-piperidinoses against β -glucosidase (glu) from almonds and β -galactosidase (gal) from *Escherichia coli*.

Effect of C-2 Substitution

On the contrary, substituents at C-2 of compound 1 increase the inhibition toward the two enzymes significantly. The best inhibition was observed against β -galactosidase with **58** ($K_i = 2 \text{ nM}$) and **55** ($K_i = 4 \text{ nM}$). Such an enhanced inhibition, which is observed with the cyclohexylethyl substituent in **58** and with the phenylethyl substituent in **55**, reflects that hydrophobic interactions take place in the enzyme that favour inhibition. The presence of the N-atom in the pyridinylethyl and piperidineethyl derivatives **63** and **64** causes a decrease of the inhibitory potency against the β -galactosidase when compared with **55** and **58**. The length

of the chain that separates the imidazole from the phenyl moiety has an optimal effect on inhibition against β -galactosidase with two carbon atoms (comparison of **55** with **44** and **56**). With the β -glucosidase the length of the chain seems to have no great influence. Compound **22**, which contains a rigid tetrahydrobenzimidazole moiety, is much less active against β -glucosidase and against the β -galactosidase than 1 (IC₅₀ = 350 µM and $K_i = 20 µM$). The disubstituted compounds **59** and **60** have K_i values between 0.03 and 4 µM towards the two enzymes.

Compound **2** has an inhibitory activity on the β -glucosidase with a K_i of 17 μ M. Since **2** has a *xylo* configuration, we determined its inhibition potency towards the β -xylosidase from *Aspergillus niger* and found a K_i of 0.35 μ M. For **75**, substitution at C-2 decreases these two values to 0.14 and 0.10 μ M (Scheme 14). Here also the hydrophobic phenylethyl group enhances inhibition but much more so against the β -glucosidase (more than 100 times) than against the β xylosidase (ca. 3 times).

Scheme 14. Inhibition values (K_i in μM) of the substituted imidazolo[1,2-*a*]-D-*xylo*-piperidinoses against β -glucosidase from almonds (glu) and the β -xylosidase from *Aspergillus niger* (xyl).

Conclusion

The herein described approach provides some potent glycosidase inhibitors with interesting selectivity profiles towards the evaluated enzymes. This completes the panel of experimental tools already available in glycobiology.

Experimental Section

General: Flash chromatography: silica gel (Merck 60 or Macherey-Nagel 60 M, 230-400 mesh). TLC: silica gel on aluminium sheets (Merck 60 HF₂₅₄); the spots were viewed under UV light or by heating with a heat gun after spraying with a solution of KMnO₄ (20 g) and Na₂CO₃ (40 g) in H₂O (1 L) or with a solution of phosphomolybdic acid (5% in EtOH 96%). M.p.: Kofler hot-bench or Büchi-SMP apparatus; corrected values. Optical rotations were measured at 20 °C with a Perkin-Elmer Model 341LC; the rotatory power of compounds of which we had only a small quantity was measured in a 40-µL cell at the wavelength indicated. ¹H and ¹³C NMR spectra: 400 and 100.6 MHz (Bruker Avance 400 spectrometer at 20 °C). Internal references for ¹H NMR: SiMe₄ (δ = 0.00 ppm), CDCl₃ (δ = 7.26 ppm), CD₃OD (δ = 3.30 ppm), C₆D₆ $(\delta = 7.16 \text{ ppm})$, [D₄]TSP for spectra in D₂O ($\delta = 0.00 \text{ ppm}$); for ¹³C NMR: CDCl₃ (δ = 77.03 ppm), CD₃OD (δ = 49.02 ppm), C₆D₆ (δ = 128.04 ppm); δ in ppm and J in Hz. High-resolution mass spectra were measured at the University of Basle and at the University Louis Pasteur, Strasbourg. Microanalyses were carried out by the Service Central de Microanalyses of the CNRS, 69390 Vernaison, France. "MeOH + NH_3 " stands for a solution of pure MeOH saturated at room temp. with NH_3 (ex gas form). Each preparation is described only once in full detail, along with its workup and chromatographic methodologies. In some instances, minor modifications were used; they are indicated explicitly.

Enzymatic Assays: Glycosidases [β-glucosidase (EC, 3.2.1.21) from almonds, β-galactosidase from Escherichia coli (EC, 3.2.1.23), βxylosidase from Aspergillus niger (EC, 3.2.1.37)] and their corresponding substrates were purchased from Sigma Co. Spectrophotometric assays were performed at the optimum pH for each enzyme.^[20] Substrate for the enzymes and conditions: [p-nitrophenyl- β -D-glucopyranoside for β -glucosidase ($K_{\rm m}$ = 1.3 mM, pH = 5.0), *p*-nitrophenyl- β -D-galactopyranoside for β -galactosidase ($K_{\rm m}$ = 0.4 mM, pH = 7) and *p*-nitrophenyl- β -D-xylopyranoside for β -xylosidase ($K_{\rm m} = 0.5 \text{ mM}$, pH = 5.0)]. The release of *p*-nitrophenol was measured continuously at 405 nm with an HP-8453 spectrophotometer to determine initial velocities. All kinetics were performed at 25 °C and the reaction was started by the addition of enzyme in a 1-mL assay medium (AcOH/AcOK buffer 50 mM, or K₂HPO₄/ KH₂PO₄ buffer 20 mM according to the desired pH value) using substrate concentrations around the $K_{\rm m}$ value of each enzyme. The substituted compounds of Schemes 13 and 14 are poorly soluble in water, therefore we dissolved them in DMSO to a 100 mM concentration. For the tests, we prepared solutions of the enzymes, the substrates and the inhibitors in the corresponding buffer and added DMSO so that the concentration of DMSO was 1%. Previously, the stability of the enzymes in different concentrations of DMSO was controlled. As a matter of fact, the activity of the enzymes did not change when the solution contained 1% DMSO. The K_i values were determined by the Dixon graphical procedure.[20,21]

(2R,3S,4S)-1,1-Bis(ethylsulfanyl)-5-(trityloxy)pentane-2,3,4-triol (6): A solution of L-arabinose diethyldithioacetal^[9,10] (1.28 g, 5.00 mmol), trityl chloride (2.09 g, 7.50 mmol) and DMAP (50 mg) in anhydrous pyridine (20 mL) was heated at 80 °C whilst stirring for 3 h. After concentration to dryness, the residue was purified by flash chromatography (EtOAc/cyclohexane, 2:8) to give 6 (2.41 g, 97%) as a colourless foam of which a small quantity was recrystallised from EtOAc. M.p. 126–127 °C. Foam: $[\alpha]_{D}^{20} = +30$ (c = 3.3, CHCl₃); enantiomer: $[11] [\alpha]_D^{20} = -29.8$ (*c* = 1.06, CHCl₃); crystals: $[\alpha]_{D}^{20} = +11 \ (c = 1.1, \text{ MeOH}).$ ¹H NMR (400 MHz, CDCl₃): $\delta =$ 1.17 (t, 3 H, CH₃CH₂S), 1.19 (t, 3 H, 3 H, CH₃CH₂S), 2.49–2.71 (m, 4 H, CH₃CH₂S), 3.08 (br. d, 1 H, HOC-3), 3.29 (dd, 1 H, H-5a), 3.33 (d, 1 H, HOC-4), 3.38 (dd, 1 H, H-5b), 3.70 (d, 1 H, HOC-4), 3.81 (br. d, 1 H, H-2), 3.94 (m, 1 H, H-4), 4.05 (d, 1 H, H-1), 4.17 (t, 1 H, H-3), 7.13-7.29 and 7.44-7.46 (m, 15 H, CH arom.) ppm; $J_{1,2} = 9.3$, $J_{4,5a} = 5.2$, $J_{4,5b} = 5.6$, $J_{5a,5b} = 9.6$, $J_{\text{CH}_2-\text{CH}_3}$ = 7.3, $J_{2,\text{OH}}$ = 1.7, $J_{3,\text{OH}}$ = 8.6, $J_{4,\text{OH}}$ = 6.9 Hz. ¹³C NMR $(100.6 \text{ MHz}, \text{CDCl}_3)$: $\delta = 14.2 (CH_3), 14.3 (CH_3), 23.4 (CH_2), 25.1$ (CH₂), 55.2 (C-1), 64.8 (C-5), 70.0 (C-3), 70.8 (C-2), 71.8 (C-4), 86.6 (CPh₃), 126.8, 127.6, 128.4 (CH arom.), 143.4 (C_{quat.} of phenyls of trityl) ppm.

(2*R*,3*S*,4*S*)-2,3,4-Tris(benzyloxy)-1,1-bis(ethylsulfanyl)-5-(trityloxy)pentane (7): NaH (ca. 60% in oil, 1.90 g, ca. 47 mmol) was added, under argon, to a solution of **6** (5.63 g, 11.3 mmol) and *n*Bu₄NI (200 mg) in DMF at 0 °C. Once hydrogen formation had ceased, BnBr (4.50 mL, 38 mmol) was added, and the reaction mixture stirred at room temperature for 2 h. MeOH was then added carefully (2 mL) and the resulting solution concentrated to dryness in vacuo. The residue was dissolved in CH₂Cl₂ (150 mL), washed with H₂O (80 mL) and brine (80 mL), dried (MgSO₄) and filtered.

After evaporation of the solvents, the residue was purified by flash chromatography (EtOAc/cyclohexane, 5:95) to give compound 7 as a pure yellow oil (8.35 g, 96%). $[\alpha]_{D}^{20} = +4$ (c = 1.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 1.16 (t, 3 H, CH₃CH₂S), 1.19 (t, 3 H, CH₃CH₂S), 2.55 (q, 2 H, CH₃CH₂S), 2.67 (q, 2 H, CH₃CH₂S), 3.35 (dd, 1 H, H-5a), 3.57 (dd, 1 H, H-5b), 3.78 (m, 1 H, H-4), 3.96 (t, 1 H, H-2), 4.02 (d, 1 H, H-1) 4.38 (t, 1 H, H-3), 4.48 (d, J = 11.6 Hz, 1 H, CHPh), 4.54 (d, J = 11.1 Hz, 1 H, CHPh), 4.66 (d, J = 11.6 Hz, 1 H,CHPh), 4.69 (d, J = 11.6 Hz, 1 H, CHPh), 4.76 (d, J = 11.3 Hz, 2 H, 2×CHPh), 7.05, 7.19–7.40, 7.45–7.55 (m, 30 H, CH arom.) ppm; $J_{1,2} = 5.3$, $J_{2,3} = 5.5$, $J_{3,4} \approx 5.8$, $J_{4,5a} =$ 5.0, $J_{4.5b} = 3.0$, $J_{5a,5b} = 10.3$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 14.2 (CH_3), 14.3 (CH_3), 24.7 (CH_2), 25.0 (CH_2), 54.2 (C-1),$ 62.5 (C-5), 71.8 (CH₂Ph), 74.3 (CH₂Ph), 74.7 (CH₂Ph), 79.4 (C-4 and C-3), 82.8 (C-2), 86.6 (CPh₃), 126.6 to 128.5 (CH arom.), 138.2, 138.5, 138.6 ($C_{\text{quat.}}$ of phenyls of benzyls), 143.7 ($C_{\text{quat.}}$ of phenyls of trityl) ppm. C₄₉H₅₂O₄S₂ (769.09): calcd. C 76.53, H 6.82, S 8.34; found C 76.5, H 6.7, S 8.7.

(2R,3S,4S)-2,3,4-Tris(benzyloxy)-5-(trityloxy)pentanal (8): 2,6-Lutidine (2.6 mL, 22.4 mmol) and then NBS (1.60 g, 8.94 mmol) were added in small portions to a stirred solution of 7 (1.01 g, 1.38 mmol) in acetone (25 mL) and H₂O (4 mL) under argon and at room temperature. After stirring for 1 h, the reaction was quenched with saturated aqueous solutions of NaHCO₃ (25 mL) and Na₂S₂O₃ (25 mL). Acetone was evaporated and the aqueous phase extracted with EtOAc. The organic phase was dried (MgSO₄), filtered and the solvent evaporated to dryness in vacuo. The residue was purified by flash chromatography (EtOAc/cyclohexane, 1:9) to give 8 (646 mg, 71%) as a syrup. $[\alpha]_{D}^{20} = +20$ (c = 1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 3.30 (dd, 1 H, H-5a), 3.66 (dd, 1 H, H-5b), 3.84 (m, 1 H, H-4), 4.15 (dd, 1 H, H-2), 4.29 (dd, 1 H, H-3), 4.33 and 4.74 (AB, $J_{gem} = 11.4$ Hz, 2 H, CH_2Ph), 4.40 and 4.44 (AB, $J_{gem} = 11.1$ Hz, 2 H, CH_2Ph), 4.48 and 4.62 (AB, J_{gem} = 11.8 Hz, 2 H, CH₂Ph), 7.00, 7.18–7.38, 9.50 (m, 30 H, CH arom.), 9.65 (d, 1 H, H-1) ppm; $J_{1,2} = 1.2$, $J_{2,3} =$ 3.6, $J_{3,4} = 8.2$, $J_{4,5a} = 4.1$, $J_{4,5b} \approx 1$, $J_{5a,5b} = 10.3$ Hz. ¹³C NMR $(100.6 \text{ MHz}, \text{CDCl}_3): \delta = 62.1 \text{ (C-5)}, 71.9 \text{ (CH}_2\text{Ph}), 73.1 \text{ (CH}_2\text{Ph}),$ 73.9 (CH₂Ph), 77.7 (C-4), 78.6 (C-3), 84.2 (C-2), 86.7 (CPh₃), 126.8–128.9 (CH of phenyls), 137.2, 137.5, 138.0 (C_{quat.} of phenyls), 143.9 (C_{guat.} of phenyls), 202.1 (C-1) ppm. C₄₅H₄₂O₅ (662.83): calcd. C 81.54, H 6.39; found C 81.6, H 6.5.

2-[(1S,2R,3S)-1,2,3-Tris(benzyloxy)-4-(trityloxy)butyl]-1H-imidazole (9): A solution of glyoxal (40% in H₂O, 220 µL, 1.92 mmol) was added to a solution of 8 (182 mg, 0.27 mmol) in MeOH (4 mL) saturated with NH₃ at -20 °C. The reaction mixture was warmed up slowly to room temperature then heated to 70 °C for 1 h (NH₃ gas evolves!). After evaporation of the solvent to dryness, the residue was dissolved in H₂O and EtOAc. The organic phase was extracted, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography (EtOAc/cyclohexane, 2:8) to give 9 as a colourless solid (123 mg, 62%). M.p. 156-158 °C (MeOH/pentane). $[\alpha]_{D}^{20} = +11$ (c = 1, MeOH). ¹H NMR (400 MHz, CDCl₃): δ = 3.17 (dd, 1 H, H-4a), 3.50 and 4.17 (AB, J_{gem} = 10.3 Hz, 2 H, CH₂Ph), 3.63 (dd, 1 H, H-4b), 3.91 (ddd, 1 H, H-3), 4.04 (dd, 1 H, H-2), 4.18 and 4.25 (AB, $J_{gem} = 12.1$ Hz, 2 H, CH₂Ph), 4.28 and 4.70 (AB, J_{gem} = 11.3 Hz, 2 H, CH₂Ph), 5.12 (d, 1 H, H-1), 6.66 (d, 2 H, CH arom.), 6.94 (br. s, 2 H, H-4', H-5'), 7.05–7.30, 7.35–7.42 (m, \approx 30 H, CH arom.) ppm; $J_{1,2} = 2.2, J_{2,3} =$ 8.8, $J_{3,4a} = 3.8$, $J_{3,4b} = 1.8$, $J_{4a,4b} = 10.3$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 62.2 (C-4), 71.9 (CH₂Ph), 72.2 (CH₂Ph), 74.6 $(CH_2Ph), 74.9$ (C-1), 77.9 (C-3), 80.6 (C-2), 86.6 (CPh₃), 126.9-128.8 (CH arom.), 137.5, 138.5 ($3 \times C_{\text{quat.}}$ of phenyls of benzyls), 144.0 ($C_{quat.}$ of phenyls of trityl), 146.9 (C-2') ppm. $C_{47}H_{44}N_2O_4$

(700.89): calcd. C 80.54, H 6.33, N 4.00; found C 80.3, H 6.5, N 4.0.

4(5)-Methyl-2-[(1*S*,2*R*,3*S*)-1,2,3-tris(benzyloxy)-4-(trityloxy)butyl]-1*H*-imidazole (10): See 13.

2-[(1S,2R,3S)-1,2,3-Tris(benzyloxy)-4-(trityloxy)butyl]-4,5,6,7-tetrahydro-1H-benzimidazole (11): This compound was prepared from 8 (1.98 g, 2.99 mmol), MeOH (65 mL) and cyclohexanedione (608 mg, 5.42 mmol) analogously to 9. Compound 11 was isolated as a colourless solid (1.195 g, 53%). M.p. 99-101 °C (EtOAc/pentane). $[\alpha]_{D}^{20} = +7$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta =$ 1.78 (br. s, 4 H, H-7',H-8'), 2.37, 2.64 (2×br. s, 4 H, H-6', H-9'), 3.26 (dd, 1 H, H-4a), 3.73 and 4.33 (AB, $J_{gem} = 10.3$ Hz, 2 H, CH₂Ph), 3.75 (dd, 1 H, H-4b), 3.98 (ddd, 1 H, H-3), 4.15 (dd, 1 H, H-2), 4.27 and 4.37 (AB, $J_{gem} = 11.6$ Hz, 2 H, CH_2Ph), 4.34 and 4.75 (AB, J_{gem} = 11.6 Hz, 2 H, CH₂Ph), 5.10 (d, 1 H, H-1), 6.77 (m, 2 H, H arom.), 7.10–7.35 and 7.47–7.50 (m, \approx 28 H, CH arom.), 8.96 (br. s, 1 H, NH) ppm; $J_{1,2} = 2.5$, $J_{2,3} = 8.8$, $J_{3,4a} =$ $3.5, J_{3.4b} = 2.0, J_{4a,4b} = 10.3$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 21.3, 22.6-23.9 (C-6', C-7', C-8', C-9'), 62.0 (C-4), 71.5$ (CH₂Ph), 71.9 (CH₂Ph), 74.6 (CH₂Ph), 75.2 (C-1), 77.8 (C-3), 80.8 (C-2), 86.4 (CPh₃), 124.2 (C-4' or C-5'), 126.6–128.7 (CH arom.), 135.1 (C-4' or C-5'), 137.6, 137.7, 138.4 ($3 \times C_{\text{quat.}}$ of phenyls), 143.9 (C_{quat.} of phenyls), 144.2 (C-2') ppm. C₅₁H₅₀N₂O₄ (754.98): calcd. C 81.14, H 6.68, N 3.71; found C 81.4, H 6.8, N 3.8.

(2S,3R,4S)-2,3,4-Tris(benzyloxy)-4-(1H-imidazol-2-yl)butan-1-ol (12): A solution of 9 (1,931 g, 2.75 mmol) in dioxane (60 mL) was treated with 4 M HCl (40 mL) at room temperature, then heated to 80 °C for 2 h. The reaction mixture was cooled to 0 °C and basified with 4 M NaOH. The dioxane was evaporated and the aqueous phase extracted with CH₂Cl₂. The organic phase was dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography (EtOAc/cyclohexane, 1:9) to give 12 as a colourless solid (939 mg, 74%). M.p. 95-96 °C (EtOAc/hexane). $[\alpha]_{D}^{20} = +36$ (c = 1, CHCl₃). ¹H NMR (400 MHz, C₆D₆): $\delta =$ 3.70 (dt, 1 H, H-3), 3.76 (dd, 1 H, H-4a), 3.88 (dd, 1 H, H-4b), 3.91 and 4.55 (AB, J_{gem} = 10.8 Hz, 2 H, CH₂Ph), 4.03 (dd, 1 H, H-2), 4.05 and 4.15 (AB, $J_{gem} = 11.6$ Hz, 2 H, CH_2 Ph), 4.11 and 4.35 (AB, $J_{gem} = 11.6$ Hz, 2 H, CH_2 Ph), 5.03 (d, 1 H, H-1), 6.94–7.20 (m, 15 H, CH arom.) ppm; $J_{1,2} = 3.2$ Hz, $J_{2,3} = 7.6$, $J_{3,4a} = 2.8$, $J_{3,4\mathrm{b}}$ = 3.6, $J_{4\mathrm{a},4\mathrm{b}}$ = 12.0 Hz. $^{13}\mathrm{C}$ NMR (100.6 MHz, CDCl_3): δ = 60.0 (C-4), 71.8 (CH₂Ph), 72.0 (CH₂Ph), 74.8 (CH₂Ph), 75.2 (C-1), 78.7 (C-3), 80.8 (C-2), 116.4 (C-4', C-5'), 127.6-128.4 (CH arom.), 137.3, 137.7, 138.0 ($3 \times C_{quat.}$ of phenyls), 146.7 (C-2') ppm. C₂₈H₃₀N₂O₄ (458.56): calcd. C 73.34, H 6.59, N 6.11; found C 73.5, H 6.7, N 6.3.

(2S,3R,4S)-2,3,4-Tris(benzyloxy)-4-[4(5)-methyl-1H-imidazol-2-yl]butan-1-ol (13): A solution of pyruvaldehyde (40% in H₂O, 5 mL) was added to a solution of 8 (2.99 g, 4.52 mmol) in MeOH (60 mL) saturated with NH₃ at -20 °C. The reaction mixture was warmed up slowly to room temperature, then heated to 75-80 °C for 30 min (NH3 gas evolved!). After evaporation of the solvent to dryness, the residue was dissolved in H₂O and EtOAc. The organic phase was extracted, dried (MgSO₄), filtered and concentrated in vacuo. The crude compound 10 in dioxane (45 mL) was treated with 4 M HCl (45 mL) at room temperature then heated to 80 °C for 2 h. The reaction mixture was cooled to 0 °C and basified with 4 M NaOH. The dioxane was evaporated and the aqueous phase extracted with CH₂Cl₂. The organic phase was dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography to give **13** (1.570 g, 75%). $[\alpha]_{D}^{20} = +33$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃), mixture of rotamers, $\delta = 2.10, 2.26$ [2×br. s (rotamers), 3 H, CH₃], 3.1 (br. s, 1 H, OH), 3.75–3.81 (m, 2 H, H-3, H-4a), 3.90–4.01 (m, 2 H, H-2, H-4b), 3.97 (d, 1 H, CHPh, J = 10.9 Hz), 4.27 and 4.39 (AB, $J_{gem} = 11.6$ Hz, 2 H, CH₂Ph), 4.32 and 4.54 (AB, $J_{gem} = 11.5$ Hz, 2 H, CH₂Ph), 4.49–4.61 (very br. d, 2 H, CHPh), 4.95 (br. s, 1 H, H-1), 6.68 (br. s, 1 H, H-5'), 7.15–7.29 (m, 15 H, CH arom.), 9.2, 9.4 (2×br. s, 1 H, NH) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 10.0$, 13.5 (CH₃, rotamers), 59.9 (C-4), 71.7 (CH₂Ph), 71.9 (CH₂Ph), 74.9 (CH₂Ph), 75.3 (C-1), 78.8 (C-3), 80.7 (C-2), 112.1 and 125.2 (C-5' rotamers), 127.6–128.3 (C-4', CH of phenyls), 137.4, 137.8, 138.1 (3× $C_{quat.}$ of phenyls of benzyls), 145.7 and 145.9 (C-2', rotamers) ppm. HR-MS: calcd. for [M + H]⁺ (C₂₉H₃₃N₂O₄) 473.2440; found 473.2433.

(2S,3R,4S)-2,3,4-Tris(benzyloxy)-4-(4,5,6,7-tetrahydro-1H-benzimidazol-2-yl)butan-1-ol (14): This compound was prepared from 11 (1.191 g, 1.58 mmol), dioxane (20 mL) and 4 M HCl analogously to 12. It was isolated as a colourless foam (712 mg, 88%). M.p. 162-163 °C (EtOAc/hexane). $[\alpha]_D^{20} = +33$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 1.77 (m, 4 H, H-7' and H-8'), 2.40, 2.59 (2×m, 4 H, H-6', H-9'), 3.82-3.90 (m, 2 H, 2×H-4), 4.13 (dd, 1 H, H-2), 4.33 (ddd, 1 H, H-3), 4.50 and 4.57 (AB, $J_{gem} = 11.9$ Hz, 2 H, CH₂Ph), 4.63 and 4.85 (AB, $J_{gem} = 12.1$ Hz, 2 H, CH₂Ph), 4.64 and 4.69 (AB, J_{gem} = 12.4 Hz, 2 H, CH₂Ph), 4.69 (d, 1 H, H-1), 7.21–7.35 (m, 15 H, H arom.) ppm; $J_{1,2} = 3.7$, $J_{2,3} = 1.8$, $J_{3,4} =$ 8.7 and 7.5 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 20.1, 22.7, 23.3, 24.1 (C-6', C-7', C-8', C-9'), 42.1 (C-4), 71.1 (C-1), 71.3 (CH₂Ph), 71.4 (CH₂Ph), 72.0 (C-3), 72.4 (CH₂Ph), 74.1 (C-2), 125.4 (C-4' or C-5'), 127.3-128.4 (CH arom.), 136.7 (C-4' or C-5'), 137.6, 137.8 and 138.3 ($3 \times C_{quat.}$ of phenyls), 139.8 (C-2') ppm. C₃₂H₃₆N₂O₄ (512.65): calcd. C 74.97, H 7.08, N 5.46; found C 74.8, H 7.1, N 5.3.

(6S,7S,8S)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (18): MsCl (1.8 mL, 23 mmol) was added to a stirred solution of 12 (3.00 g, 6.57 mmol) in anhydrous pyridine (60 mL) at 0 °C under argon. After 10 min, the reaction mixture was warmed up slowly to 80 °C, stirred at this temperature for 2 h, cooled to room temperature and then quenched with MeOH. The solvent was evaporated and the residue was dissolved in CH2Cl2. The organic phase was washed with H₂O and brine, dried (MgSO₄), filtered and the solvent evaporated in vacuo. The residue was purified by flash chromatography (EtOAc/cyclohexane, 5:5) to give 18 (2.24 g, 77%). $[\alpha]_D^{20} = +36 (c = 1, \text{ CHCl}_3)$. ¹H NMR (400 MHz, CDCl₃): δ = 4.08 (dd, 1 H, H-5a), 4.12 (dd, 1 H, H-5b), 4.12 (dd, 1 H, H-7), 4.34 (ddd, 1 H, H-6), 4.53 and 4.59 (AB, J_{gem} = 12.0 Hz, 2 H, CH₂Ph), 4.63 and 4.68 (AB, $J_{gem} = 12.4$ Hz, 2 H, CH₂Ph), 4.71 and 4.86 (AB, J_{gem} = 12.0 Hz, 2 H, CH₂Ph), 4.81 (d, 1 H, H-8), 6.84 (s, 1 H, H-3), 7.11 (s, 1 H, H-2), 7.22-7.36 (m, 15 H, H arom.) ppm; $J_{5a,6} = 6.8$, $J_{5b,6} = 8.8$, $J_{5a,5b} = 11.6$, $J_{6,7} = 2.0$, $J_{7,8} =$ 3.6 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 44.6 (C-5), 70.2 (C-8), 71.6 (CH₂ Ph), 71.7 (C-6), 71.8 (CH₂Ph), 72.4 (CH₂Ph), 74.6 (C-7), 119.1 (C-3), 127.6-128.5 (C-2, CH of phenyls), 137.5, 137.7, 137.9 ($3 \times C_{quat.}$ of phenyls), 150.3 (C-8a) ppm. HR-MS: calcd. for $[M + H]^+$ (C₂₈H₂₉N₂O₃) 441.2178; found 441.2172.

(6*S*,7*S*,8*S*)-6,7,8-Tris(benzyloxy)-3-methyl-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine (19): This compound was prepared from 13 (310 mg, 0.66 mmol), pyridine (6 mL) and MsC1 (153 μL, 1.97 mmol) analogously to 18. It was isolated after chromatography (EtOAc/cyclohexane, 4:6). (243 mg, 81%). [α]_D²⁰ = +59 (*c* = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 2.14 (s, 3 H, CH₃), 3.86 (dd, 1 H, *H*-5*a*), 3.93 (dd, 1 H, H-5b), 4.12 (dd, 1 H, H-7), 4.35 (ddd, 1 H, H-6), 4.52 and 4.59 (AB, J_{gem} = 11.9 Hz, 2 H, CH₂Ph), 4.62 and 4.68 (AB, J_{gem} = 12.2 Hz, 2 H, CH₂Ph), 4.70 and 4.83 (AB, J_{gem} = 11.9 Hz, 2 H, CH₂Ph), 4.78 (d, 1 H, *H*-8), 6.85 (s, 1 H, H-2), 7.21–7.37 (m, 15 H, CH arom.) ppm; $J_{5a,6}$ = 9.7, $J_{5b,6}$ =

5.9, $J_{5a,5b} = 11.6$, $J_{6,7} = 1.6$, $J_{7,8} = 3.8$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 8.9$ (*C*H₃), 42.5 (*C*-5), 70.1 (*C*-8), 71.5 (*C*H₂Ph), 71.6 (*C*H₂Ph), 71.9 (*C*-6), 72.4 (*C*H₂Ph), 73.7 (*C*-7), 124.9 (*C*-2), 127.4 (*C*-3), 127.6–128.5 (*C*H arom.), 137.5, 137.7, 138.0 ($3 \times C_{quat.}$ of phenyls), 141.5 (*C*-8a) ppm.

(2S,3S,4S)-2,3,4-Tris(benzyloxy)-1,2,3,4,6,7,8,9-octahydrobenz[4,5]imidazo[1,2-a]pyridine (20): This compound was prepared from 17 (300 mg, 0.585 mmol), pyridine (10 mL) and MsCl (160 µL, 2.06 mmol) analogously to 18. It was isolated after chromatography (EtOAc/cyclohexane, 4:6) (270 mg, 93%). $[\alpha]_{D}^{20} = +34$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.76$ (m, 4 H, H-10, H-11), 2.40, 2.58 (2×m, 4 H, H-9, H-12), 3.82–3.88(m, 2 H, 2×H-5), 4.13 (dd, 1 H, H-7), 4.33 (ddd, 1 H, H-6), 4.49 and 4.56 (AB, J_{gem} = 11.9 Hz, 2 H, CH_2Ph), 4.63 and 4.84 (AB, J_{gem} = 12.0 Hz, 2 H, CH₂Ph), 4.64 and 4.69 (AB, J_{gem} = 12.3 Hz, 2 H, CH₂Ph), 4.70 (d, 1 H, H-8), 7.21–7.35 (m, 15 H, CH arom.) ppm; J_{5.6} = 8.8 and 7.0, $J_{6.7} = 1.8$, $J_{7.8} = 3.7$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 20.0$ (C-12), 22.7 and 23.2 (C-10 and C-11), 24.0 (C-9), 42.0 (C-5), 71.0 (C-8), 71.2 (CH₂Ph), 71.3 (CH₂Ph), 71.9 (C-6), 72.3 (CH₂Ph), 74.1 (C-7), 125.4 (C-2), 127.3-128.4 (CH of phenyls), 136.6 (C-3), 137.6, 137.8, 138.3 ($3 \times C_{quat.}$ of phenyls), 139.7 (C-8a) ppm.

(6S,7S,8S)-3-Methyl-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-6,7,8triol (21): A solution of 19 (190 mg, 0.418 mmol) in EtOH/AcOH (1:1, 6 mL) was stirred under H₂ (1 bar) at room temperature in the presence of Pd(OH)₂/C (150 mg) for 18 h. The suspension was centrifuged and the catalyst rinsed several times with hot MeOH. The combined organic solutions were concentrated to dryness in vacuo. The residue was purified by flash chromatography (EtOAc/ MeOH, 6:4) to give 21 (62 mg, 78%) as a colourless syrup. $[\alpha]_D^{20} =$ +25 (c = 1, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 2.17 (d, 3 H, CH₃), 3.75 (dd, 1 H, H-5a), 3.98 (dd, 1 H, H-5b), 3.99 (dd, 1 H, H-7), 4.39 (ddd, 1 H, H-6), 4.68 (d, 1 H, H-8), 6.67 (br. s, 1 H, H-2) ppm; $J_{5a,6} = 7.7$, $J_{5b,6} = 5.2$, $J_{5a,5b} = 12.1$, $J_{6,7} = 2.1$, $J_{7,8} = 2.1$ 4.9 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 8.8 (CH₃), 45.5 (C-5), 66.5 (C-6), 67.9 (C-8), 73.9 (C-7), 126.2 (C-2), 128.5 (C-3), 145.6 (C-8a) ppm. HR-MS: calcd. for [M]⁺ (C₈H₁₂N₂O₃) 184.0848; found 184.0844.

(2*S*,3*S*,4*S*)-1,2,3,4,6,7,8,9-Octahydrobenz[4,5]imidazo[1,2-*a*]pyridine-2,3,4-triol (22): This compound was prepared from 20 (257 mg, 0.53 mmol), EtOH/AcOH (1:1, 6 mL) and Pd(OH)₂/C (200 mg) analogously to 21. It was isolated as a colourless syrup (84 mg, 72%). [α]_D²⁰ = +2.5 (*c* = 1, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 1.88 (m, 4 H, H-10, H-11), 2.61 (m, 4 H, H-9, H-12), 3.98 (dd, 1 H, H-7), 4.00 (dd, 1 H, H-5a), 4.18 (dd, 1 H, H-5b), 4.40 (ddd, 1 H, H-6), 4.87 (d, 1 H, H-8) ppm; *J*_{5a,6} = 4.8, *J*_{5b,6} = 4.0, *J*_{5a,5b} = 13.0, *J*_{6,7} = 2.1, *J*_{7,8} = 6.9 Hz. ¹³C NMR (CD₃OD, 100.6 MHz): δ = 20.1, 21.7 (C-9, C-12), 22.8, 23.0 (C-10, C-11), 48.2 (C-5), 66.3 (C-8), 67.4 (C-6), 73.4 (C-7), 129.4, 130.7 (C-2, C-3), 144.1 (C-8a) ppm. HR-MS: calcd. for [M + H]⁺ (C₁₁H₁₇N₂O₃) 225.1234; found 225.1232.

(2*S*,3*R*,4*S*)-2,3,4-Tris(benzyloxy)-4-(5-iodo-4-methyl-1*H*-imidazol-2-yl)butan-1-ol (23): A solution of 13 (1.387 g, 3.02 mmol) and NIS (1.00 g, 4.50 mmol) in CH₃CN (40 mL) was stirred at room temperature in the dark for 12 h. The reaction mixture was then concentrated in vacuo. The residue was dissolved in EtOAc (90 mL) and an aqueous solution of Na₂S (70 mL) was added and the heterogeneous mixture vigorously stirred for 15 min. The organic phase was extracted and washed twice with brine (2 × 80 mL), dried (MgSO₄), filtered and the solvent evaporated in vacuo. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 3:7) to give 23 as a colourless oil (1.468 g, 82%). [a]₂₀²⁰ = +32 (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 2.03 (s, 3 H, CH₃), 2.20 (br. s, 1 H, OH), 3.76–3.85 (m, 2 H, H-3 H-4a), 3.90 (dd, 1 H, H-2), 3.97 (m, 1 H, H-4b), 4.04 and 4.65 (AB, $J_{gem} = 11.1$ Hz, 2 H, CH_2 Ph), 4.29 and 4.40 (AB, $J_{gem} = 11.8$ Hz, 2 H, CH_2 Ph), 4.32 and 4.52 (AB, $J_{gem} = 11.4$ Hz, 2 H, CH_2 Ph), 4.89 (d, 1 H, H-1), 7.12–7.31 (m, 15 H, CH arom.), 9.14 (br. s, 1 H, NH) ppm; $J_{1,2} = 2.5$, $J_{2,3} = 7.6$, $J_{4a,4b} = 11.6$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 11.2$ (CH₃), 59.9 (C-4), 71.7 (CH₂Ph), 72.0 (CH₂Ph), 75.1 (C-1), 75.1 (CH₂Ph), 78.6 (C-3), 80.6 (C-2), 81.7 (C-1), 127.5–128.5 (CH of phenyls), 129.4 (C-CH₃), 137.2, 137.5, 137.8 (3 × $C_{quat.}$ of phenyls), 147.4 (C-2') ppm. $C_{29}H_{31}IN_2O_4$ (566.44): calcd. C 58.20, H 5.22, I 21.20, N 4.68; found C 57.9, H 5.3, I 20.9, N 4.5.

(6S,7S,8S)-6,7,8-Tris(benzyloxy)-2-methyl-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (26) and 19: MsCl (400 µL, 5.2 mmol) was added to a stirred solution of 23 (622 mg, 1.04 mmol) in anhydrous pyridine (20 mL) at 0 °C under argon. After 10 min, the reaction mixture was warmed up slowly to 80 °C, stirred at this temperature for 30 min, cooled to room temperature and then quenched with MeOH. The solvent was evaporated and the residue dissolved in CH₂Cl₂. This solution was washed with H₂O and brine, dried (MgSO₄), filtered, concentrated and dried in vacuo. The crude mixture was dissolved in anhydrous THF (20 mL), and treated with EtMgBr (3 m in ether, 1.7 mL, 5.1 mmol) at 0 °C. After 10 min, the reaction was quenched with MeOH (1 mL) and concentrated to dryness. The residue was dissolved in CH₂Cl₂, washed with aqueous NH₄Cl, dried (MgSO₄), filtered and the solvent evaporated in vacuo. The residue, which gave 26/19 (83:17) as determined by ¹H NMR spectroscopy, was purified by chromatography (EtOAc/cyclohexane, 3:7) to give 26 (255 mg) and a mixture of 26 and 19 (78 mg; overall yield 70%). **26:** $[\alpha]_{D}^{20} = +29$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 2.21 (s, 3 H, CH₃), 4.01 (dd, 1 H, H-5a), 4.06 (dd, 1 H, H-5b), 4.12 (dd, 1 H, H-7), 4.33 (ddd, 1 H, H-6), 4.51 and 4.58 (AB, $J_{gem} = 11.9$ Hz, 2 H, CH_2Ph), 4.62 and 4.86 (AB, $J_{\text{gem}} = 11.9 \text{ Hz}$, 2 H, CH_2Ph), 4.65 and 4.68 (AB, J_{gem} = 12.3 Hz, $\overline{2}$ H, CH₂Ph), 4.66 (d, 1 H, H-8), 6.54 (s, 1 H, H-3), 7.24–7.36 (m, 15 H, CH arom.) ppm; $J_{5a,6} = 6.3$, $J_{5b,6} = 9.4$, $J_{5a,5b}$ = 11.5, $J_{6,7}$ = 1.9, $J_{7,8}$ = 3.6 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 13.7 (CH₃), 44.2 (C-5), 71.1 (C-8), 71.5 ($2 \times CH_2Ph$), 72.0 (C-6), 72.4 (CH₂Ph), 74.6 (C-7), 115.5 (C-3), 127.4–128.4 (CH arom.), 137.6, 137.9,138.2 ($3 \times C_{quat.}$ of phenyls), 138.4 (C-2), 141.4 (C-8a) ppm.

(6*S*,7*S*,8*S*)-2-Methyl-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-6,7,8triol (27): This compound was prepared from 26 (229 mg, 0.503 mmol) and EtOH/AcOH (1:1, 8 mL) and Pd(OH)₂/C under H₂ analogously to 21. It was isolated after chromatography (EtOAc/MeOH, 6:4) as a colourless syrup (64 mg, 69%). [α]_D²⁰ = +11 (*c* = 1.0, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 2.19 (d, 3 H, CH₃), 3.97 (dd, 1 H, H-5a), 3.98 (dd, 1 H, H-7), 4.12 (dd, 1 H, H-5b), 4.36 (ddd, 1 H, H-6), 4.75 (d, 1 H, H-8), 6.82 (br. s, 1 H, H-3) ppm; *J*_{5a,6} = 6.5, *J*_{5b,6} = 4.5, *J*_{5a,5b} = 12.6, *J*_{6,7} = 2.1, *J*_{7,8} = 5.8 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 12.2 (CH₃), 48.6 (C-5), 67.0 (C-6), 67.3 (C-8), 74.1 (C-7), 117.3 (C-3), 136.9 (C-2), 145.7 (C-8a) ppm. HR-MS: calcd. for [M + Na]⁺ (C₈H₁₂N₂O₃Na)⁺ 207.0740; found 207.0739.

(6*S*,7*S*,8*S*)-6,7,8-Tris(benzyloxy)-3-iodo-5,6,7,8-tetrahydroimidazo-[1,2-*a*]pyridine (28) and (6*S*,7*S*,8*S*)-6,7,8-Tris(benzyloxy)-2,3-diiodo-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine (29): A solution of 18 (1.554 g, 3.53 mmol) and NIS (1.59 g, 7.06 mmol) in CH₃CN (40 mL) was stirred at 80 °C in the dark for 12 h. More NIS (1.90 g, 8.44 mmol) was then added and the reaction mixture stirred at 80 °C for 12 h. The reaction mixture was then concentrated in vacuo. The residue was dissolved in EtOAc (80 mL), an aqueous solution of Na₂S (60 mL) was added, and the heterogeneous mixture vigorously stirred for 15 min. The organic phase was extracted and washed twice with brine $(2 \times 80 \text{ mL})$, dried (MgSO₄), filtered and the solvent evaporated in vacuo. The residue, which gave a mixture of two products 28/29 (82:18) according to ¹H NMR spectroscopy, was separated by chromatography (EtOAc/cyclohexane, 1: 9) to afford 28 as a colourless oil (1.137 g, 57%) and 29 (307 mg, 13%, identified below). **28:** $[\alpha]_D^{20} = +69$ (c = 1, CH₂Cl₂). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta = 3.86 \text{ (dd, 1 H, H-5a)}, 4.00 \text{ (dd, 1 H, H-5a)}$ 5b), 4.13 (dd, 1 H, H-7), 4.34 (ddd, 1 H, H-6), 4.56 and 4.61 (AB, $J_{\text{gem}} = 11.9 \text{ Hz}, 2 \text{ H}, \text{C}H_2\text{Ph}), 4.64 \text{ and } 4.80 \text{ (AB, } J_{\text{gem}} = 12.0 \text{ Hz},$ 2 H, CH₂Ph), 4.65 (d, 1 H, H-8), 4.64 and 4.68 (AB, $J_{\text{gem}} \approx$ 13.6 Hz, 2 H, CH₂Ph), 7.16 (s, 1 H, H-2), 7.24–7.38 (m, 15 H, CH arom.) ppm; $J_{5a,6} = 9.7$, $J_{5b,6} = 5.8$, $J_{5a,5b} = 11.7$, $J_{6,7} = 1.7$, $J_{7,8} = 1.7$ 3.7 Hz. ¹³C NMR (100.6, MHz, CDCl₃): δ = 45.9 (C-5), 70.1 (C-3), 70.9 (C-8), 71.4 (CH₂Ph), 71.8 (CH₂Ph), 72.5 (C-6), 72.7 (CH₂Ph), 74.7 (C-7), 127.6–128.5 (CH arom.), 136.2 (C-2), 137.6, 137.8, 137.9 (3× $C_{\text{quat.}}$ of phenyls of benzyls), 145.8 (C-8a) ppm. $C_{28}H_{27}IN_2O_3$ (566.44): calcd. C 59.37, H 4.80, N 4.95; found C 59.2, H 4.8, N 5.0.

(2S,3R,4S)-2,3,4-Tris(benzyloxy)-4-(4,5-diiodo-1H-imidazol-2-yl)butan-1-ol (30): This compound was prepared from 12 (2.653 g, 5.78 mmol), CH₃CN (72 mL) and NIS (3.254 g, 14.5 mmol) analogously to 23. It was isolated after chromatography (EtOAc/cyclohexane, 4:6) as a colourless foam (3.855 g, 94%). $[\alpha]_{D}^{20} = +19$ (c = 1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 3.72–3.77 (m, 2 H, H-4a and H-3), 3.86 (dd, 1 H, H-2), 3.92 (dd, 1 H, H-4b), 3.94 and 4.57 (AB, $J_{gem} = 10.6$ Hz, 2 H, CH_2Ph), 4.26 and 4.38 (AB, J_{gem} = 11.6 Hz, 2 H, CH_2Ph), 4.26 and 4.49 (AB, J_{gem} = 11.5 Hz, 2 H, CH₂Ph), 4.92 (d, 1 H, H-1), 7.02–7.32 (m, 15 H, CH arom.) ppm; $J_{1,2} = 2.5, J_{2,3} = 7.6, J_{3,4b} = 4.0, J_{4a,4b} \approx 10.5$ Hz. ¹³C NMR (400 MHz, CDCl₃): δ = 59.6 (C-4), 71.6 (CH₂Ph), 72.4 (CH₂Ph), 75.1, 75.2 (CH₂Ph and C-1), 78.4 (C-3), 79.9 (C-2), 127.5–128.7 (CH arom.), 136.7, 136.9, 137.7 (3 \times $C_{\rm quat.}$ of phenyls), 152.7 (C-2') ppm. C₂₈H₂₈I₂N₂O₄ (710.36): calcd. C 47.34, H 3.97, N 3.94; found C 47.2, H 4.0, N 4.0.

(6*S*,7*S*,8*S*)-6,7,8-Tris(benzyloxy)-2,3-diiodo-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine (29): This compound was prepared from 30 (3.295 g, 4.63 mmol), pyridine (68 mL) and MsCl (1.26 mL, 16.23 mmol) analogously to 18. It was isolated after chromatography (EtOAc/cyclohexane, 2:8) (2.80 g, 87%). [α]_D²⁰ = +37 (*c* = 1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 3.96 (dd, 1 H, H-5a), 4.05 (dd, 1 H, H-5b), 4.17 (dd, 1 H, H-7), 4.39 (ddd, 1 H, H-6), 4.61 and 4.66 (AB, *J*_{gem} = 11.9 Hz, 2 H, CH₂Ph), 4.69 and 4.88 (AB, *J*_{gem} = 11.9 Hz, 2 H, CH₂Ph), 4.71 and 4.73 (AB, *J*_{gem} ≈ 12.9 Hz, 2 H, CH₂Ph), 4.73 (d, 1 H, H-8), 7.19–7.58 (m, 15 H, CH phenyls) ppm; *J*_{5a,6} = 9.9, *J*_{5b,6} = 6.0, *J*_{5a,5b} = 11.7, *J*_{6,7} = 1.5, *J*_{7,8} = 3.4 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 47.2 (C-5), 70.8 (C-8), 71.6 (CH₂Ph), 71.8 (CH₂Ph), 72.2 (C-6), 72.7 (CH₂Ph), 74.2 (C-7), 82.6 (C-3), 95.35 (C-2), 127.6–128.5 (CH arom.), 137.4, 137.5, 137.6 (3 × *C*_{quat.} of phenyls), 148.0 (C-8a) ppm.

(6*S*,7*S*,8*S*)-6,7,8-Tris(benzyloxy)-2-iodo-5,6,7,8-tetrahydroimidazo-[1,2-*a*]pyridine (31): A solution of EtMgBr (3 M in Et₂O, 265 µL, 0.79 mmol) was added dropwise to a stirred solution of **29** (500 mg, 0.72 mmol) in anhydrous CH₂Cl₂ (10 mL) at 0 °C. After 10 min, the reaction mixture was warmed up to room temperature. After 30 min, it was quenched with a concd. solution of NH₄Cl (15 mL). The organic phase was extracted with CH₂Cl₂, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography (EtOAc/cyclohexane, 3:7) to give **31** (355 mg, 87%) as a slightly yellow oil. $[a]_{D}^{20} = +15$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.05$ (dd, 1 H, H-5a), 4.11 (dd, 1 H, H-5b), 4.15 (dd, 1 H, H-7), 4.34 (ddd, 1 H, H-6), 4.55 and 4.62 (AB, $J_{gem} = 11.9$ Hz, 2 H, CH_2 Ph), 4.69 and 4.89 (AB, $J_{gem} = 11.9$ Hz, 2 H, CH_2 Ph), 4.68 and 4.70 (AB, $J_{gem} = 12.5$ Hz, 2 H, CH_2 Ph), 4.73 (d, 1 H, H-8), 6.9 (s, 1 H, H-3), 7.24–7.40 (m, 15 H, CH_2 Ph), 4.73 (d, 1 H, H-8), 6.9 (s, 1 H, H-3), 7.24–7.40 (m, 15 H, CH_2 Ph), ppm; $J_{5a,6} = 6.1$, $J_{5b,6} = 9.3$, $J_{5a,5b} = 11.7$, $J_{6,7} = 1.5$, $J_{7,8} = 3.8$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 44.4$ (C-5), 70.5 (C-8), 71.4 (CH_2 Ph), 71.5 (C-6), 71.6 (CH_2 Ph), 72.5 (CH_2 Ph), 74.6 (C-7), 82.2 (C-2), 124.5 (C-3), 126.9–128.9 (CH arom.), 137.4, 137.5, 137.8 ($3 \times C_{quat.}$ of phenyls), 144.6 (C-8a) ppm. $C_{28}H_{27}$ IN₂O₃ (566.44): calcd. C 59.37, H 4.80, N 4.95; found C 59.4, H 4.8, N 5.1.

(6S,7S,8S)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-3-carbaldehyde (32): EtMgBr (3 m in Et_2O , 102 µL, 0.30 mmol) was added dropwise to a stirred solution of 28 (133 mg, 0.234 mmol) in anhydrous THF (4 mL) at 0 °C. After 20 min, DMF (1 mL, excess) was added. The reaction mixture was warmed up to room temperature, stirred for 2 h, hydrolysed with aqueous NH₄Cl and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ and the solution washed with aqueous NH₄Cl. The organic phase was extracted, dried (MgSO₄), filtered and concentrated in vacuo. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 3:7) to give 32 (55 mg, 50%) as a colourless oil. $[\alpha]_{D}^{20} = +103$ (c = 1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 4.08 (dd, 1 H, H-7), 4.27 (ddd, 1 H, H-6), 4.35 (dd, 1 H, H-5a), 4.61 (ddd, 1 H, H-5b), 4.62 (s, 2 H, CH₂Ph), 4.66 and 4.70 (AB, $J_{\text{gem}} = 12.1 \text{ Hz}, 2 \text{ H}, CH_2\text{Ph}), 4.73 \text{ and } 4.91 \text{ (AB, } J_{\text{gem}} = 11.8 \text{ Hz},$ 2 H, CH₂Ph), 4.74 (d, 1 H, H-8), 7.25–7.37 (m, 15 H, CH arom.), 7.79 (s, 1 H, H-2), 9.72 (s, 1 H, CHO) ppm; $J_{5a,6} = 8.5$, $J_{5b,6} = 4.9$, $J_{5a,5b} = 13.1, J_{6,7} = 1.6, J_{7,8} = 4.3$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 45.5 (C-5), 71.5 (C-8), 71.7 (C-6), 71.8 (CH₂Ph), 72.4 (CH₂Ph), 72.9 (CH₂Ph), 75.0 (C-7), 127.7–128.5 (CH arom.), 131.3 (C-3), 137.5, and 137.6, 137.7 ($3 \times C_{quat.}$ of phenyls), 143.0 (C-2), 149.4 (C-8a), 179.3 (CHO) ppm. HR-MS: calcd. for [M + H]⁺ (C₂₉H₂₉N₂O₄) 469.2127; found 469.2131.

(6S,7S,8S)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-2-carbaldehyde (33): Compound 33 was prepared from 31 (333 mg, 0.59 mmol), THF (4 mL), EtMgBr in Et₂O (236 µL, 0.70 mmol) and DMF (1 mL, excess) analogously to 32. It was isolated after chromatography (EtOAc/cyclohexane, 4:6) (230 mg, 84%) as a colourless oil. $[\alpha]_{D}^{20} = +26$ (c = 1, CHCl₃). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta = 4.13 \text{ (dd, 1 H, H-5a)}, 4.14 \text{ (dd, 1 H, H-7)},$ 4.18 (dd, 1 H, H-5b), 4.36 (ddd, 1 H, H-6), 4.54 and 4.62 (AB, J_{gem}) = 11.8 Hz, 2 H, CH_2Ph), 4.66 (s, 2 H, CH_2Ph) 4.68 and 4.86 (AB, $J_{\text{gem}} = 11.8 \text{ Hz}, 2 \text{ H}, CH_2\text{Ph}), 4.71 \text{ (d, 1 H, H-8)}, 7.24-7.38 \text{ (m, 15)}$ H, CH arom.), 7.52 (s, 1 H, H-3), 9.87 (s, 1 H, CHO) ppm; $J_{5a,6} =$ 6.3, $J_{5b,6} = 9.0$, $J_{5a,5b} = 11.8$, $J_{6,7} = 1.8$, $J_{7,8} = 4.0$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 45.2 (C-5), 70.8 (C-8), 71.6 (C-6), 71.7 (CH₂Ph), 71.9 (CH₂Ph), 72.8 (CH₂Ph), 74.6 (C-7), 124.7 (C-3), 127.7–128.6 (CH arom.), 137.4, 137.5, 137.6 ($3 \times C_{\text{quat.}}$ of phenyls), 142.2 (C-2), 144.7 (C-8a), 186.0 (C-9) ppm.

(6*S*,7*S*,8*S*)-6,7,8-Tris(benzyloxy)-2-iodo-5,6,7,8-tetrahydroimidazo-[1,2-*a*]pyridine-3-carbaldehyde (34): This compound was prepared from 29 (690 mg, 0.99 mmol), THF (7 mL), EtMgBr (3 m in Et₂O, 366 µL, 1.09 mmol) and DMF (2 mL, excess) analogously to 32. It was isolated after chromatography (EtOAc/cyclohexane, 2:8) (522 mg, 88%) as a colourless oil. $[\alpha]_D^{20} = +60$ (c = 1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.04$ (dd, 1 H, H-7), 4.23 (ddd, 1 H, H-6), 4.30 (dd, 1 H, H-5a), 4.58 (s, 2 H, CH₂Ph), 4.60 (dd, 1 H, H-5b), 4.63 and 4.67 (AB, $J_{gem} = 12.5$ Hz, 2 H, CH₂Ph), 4.69 (d, 1 H, H-8), 4.68 and 4.89 (AB, $J_{gem} = 11.8$ Hz, 2 H, CH₂Ph), 7.22–7.35 (m, 15 H, CH arom.), 9.58 (s, 1 H, CHO) ppm; $J_{5a,6} = 8.8$, $J_{5b,6} = 4.8$, $J_{5a,5b} = 13.2$, $J_{6,7} = 1.5$, $J_{7,8} = 4.3$ Hz. ¹³C NMR

(100.6 MHz, CDCl₃): δ = 45.2 (C-5), 71.2 (C-6), 71.3 (C-8), 71.7 (CH₂Ph), 72.5 (CH₂Ph), 72.9 (CH₂Ph), 74.5 (C-7), 100.4 (C-2), 127.7–128.5 (CH arom.), 129.4 (C-3), 137.3, 137.4, 137.4 (3× $C_{quat.}$ of phenyls), 150.5 (C-8a), 180.9 (C-9) ppm.

{(6S,7S,8S)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-3-yl}methanol (35): LiAlH₄ (4 mg, 0.11 mmol) was added under argon to a stirred solution of 32 (33 mg, 0.07 mmol) in THF at -78 °C. After 1.5 h at -30 °C, the reaction was quenched with MeOH/CH₂Cl₂ and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ and washed with a solution of NH₄Cl. The organic phase was dried (MgSO₄), filtered and concentrated in vacuo. The crude product was purified by flash chromatography (CH₂Cl₂/ MeOH, 95:5) to afford **35** (28 mg, 85%) as a colourless oil. $[\alpha]_D^{20} =$ +24 (c = 1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 3.99$ (dd, 1 H, H-5a), 4.03 (dd, 1 H, H-7), 4.14 (dd, 1 H, H-5b), 4.26 (ddd, 1 H, H-6), 4.46 (s, 2 H, CH_2 OH), 4.48 and 4.53 (AB, $J_{gem} =$ 12.0 Hz, 2 H, CH₂Ph), 4.59 (s, 2 H, CH₂Ph), 4.62 (d, 1 H, H-8), 4.60 and 4.77 (AB, J_{gem} = 12.1 Hz, 2 H, CH₂Ph), 6.81 (s, 1 H, H-2), 7.18–7.29 (m, 15 H, CH arom.) ppm; $J_{5a,6} = 9.4$, $J_{5b,6} = 5.6$, $J_{5a,5b} = 11.9, J_{6,7} = 1.8, J_{7,8} = 4.0$ Hz.

{(6*S*,7*S*,8*S*)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridin-2-yl}methanol (36): Compound 36 was prepared from 33 (230 mg, 0.49 mmol), THF (5 mL) and LiAlH₄ (28 mg, 0.73 mmol) analogously to 35. It was isolated after chromatography (CH₂Cl₂/ MeOH, 95:5) as a colourless oil (191 mg, 83%). $[\alpha]_{D}^{20} = +31$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 3.76 (dd, 1 H, H-5a), 3.91 (dd, 1 H, H-5b), 3.98 (dd, 1 H, H-7), 4.11 (ddd, 1 H, H-6), 4.37 and 4.44 (AB, $J_{gem} = 11.9$ Hz, 2 H, CH_2Ph), 4.44 and 4.51 (AB, $J_{gem} = 11.8$ Hz, 2 H, CH_2 Ph), 4.52 and 4.56 (AB, $J_{gem} =$ 12.3 Hz, 2 H, CH₂Ph), 4.47 and 4.56 (AB, 2 H, CH₂OH, $J_{\text{gem}} \approx$ 13 Hz), 4.57 (d, 1 H, H-8), 5.16 (br. s, 1 H, OH), 6.64 (s, 1 H, H-3), 7.10–7.27 (m, 15 H, CH phenyls) ppm; $J_{5a,6} = 5.8$, $J_{5b,6} = 9.8$, $J_{5a,5b} = 11.5, J_{6,7} = 1.8, J_{7,8} = 3.7$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 44.4 (C-5), 58.1 (CH₂OH), 70.9 (C-8), 71.6 (2 CH₂Ph), 71.9 (C-6), 72.4 (CH₂Ph), 74.7 (C-7), 116.4 (C-3), 127.4–128.4 (CH arom.), 137.7, 137.8, 138.2 (3×C_{quat.} of phenyls), 142.2, 142.5 (C-8a and C-2) ppm. HR-MS: calcd. for $[M + H]^+$ (C₂₉H₃₁N₂O₄) 471.2284; found 471.2285.

{(6S,7S,8S)-6,7,8-Tris(benzyloxy)-2-iodo-5,6,7,8-tetrahydroimidazo-[1,2-a]pyridin-3-yl}methanol (37): Compound 37 was prepared from 34 (200 mg, 0.34 mmol), THF (4 mL) and LiAlH₄ (19 mg, 0.73 mmol) analogously to 35. It was isolated after chromatography (EtOAc/cyclohexane, 3:7) (137 mg, 68%). $[\alpha]_D^{20} = +24$ (c = 1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 4.04 (dd, 1 H, H-7), 4.12 (dd, 1 H, H-5a), 4.28-4.34 (m, 2 H, H-6 and H-5b), 4.51 (s, 2 H, CH2OH), 4.55 (s, 2 H, CH2Ph), 4.62 (s, 2 H, CH2Ph), 4.66 and 4.84 (AB, J_{gem} = 11.8 Hz, 2 H, CH₂Ph), 4.76 (dd, 1 H, H-8), 7.24-7.35 (m, 15 H, CH arom.) ppm; $J_{5a,6} = 11.0$, $J_{5a,5b} = 13.8$, $J_{6,7} =$ 1.3, $J_{7,8}$ = 4.0 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 43.6 (C-5), 54.5 (CH₂OH), 70.6 (C-8), 71.5, 71.7 (C-6 and CH₂Ph), 72.2 (CH₂Ph), 72.7 (CH₂Ph), 74.2 (C-7), 82.7 (C-2), 127.7-128.5 (CH arom.), 133.3 (C-3), 137.4, 137.5, 137.6 (3 × C_{quat.} of phenyls), 145.5 (C-8a) ppm. HR-MS: calcd. for $[M + H]^+$ (C₂₉H₃₀IN₂O₄) 597.1250; found 597.1250.

(65,75,85)-3-(Hydroxymethyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-6,7,8-triol (38): A solution of 35 (60 mg, 0.127 mmol) in EtOH/AcOH (1:1, 2 mL) was stirred under H₂ (1 bar) at room temperature in the presence of Pd(OH)₂/C (53 mg) for 12 h. The suspension was centrifuged and the catalyst rinsed several times with hot MeOH. The combined organic solutions were concentrated to dryness in vacuo. The residue, dissolved in MeOH, was purified on an ion-exchange column (IRA, 400, OH⁻, MeOH). After concentration in vacuo, the crude product was purified by chromatography (CH₂Cl₂/MeOH/MeOH–NH₃, 6:3:1) to afford **38** (22 mg, 87%) as a colourless oil. $[\alpha]_{578}^{20} = +21$ (c = 0.9, MeOH), $[\alpha]_{546}^{20} =$ +24 (c = 0.9, MeOH). ¹H NMR (400 MHz, CD₃OD): $\delta = 3.98$ (dd, 1 H, H-5a), 3.99 (dd, 1 H, H-7), 4.18 (dd, 1 H, H-5b), 4.39 (ddd, 1 H, H-6), 4.56 (s, 2 H, CH₂OH), 4.71 (d, 1 H, H-8), 6.97 (s, 1 H, H-2) ppm; $J_{5a,6} = 7.4$, $J_{5b,6} = 5.0$, $J_{5a,5b} = 12.5$, $J_{6,7} = 2.1$, $J_{7,8} =$ 5.2 Hz. ¹³C NMR (100.6 MHz, CD₃OD): $\delta = 46.3$ (C-5), 54.1 (CH₂OH), 66.6 (C-6), 67.8 (C-8), 73.9 (C-7), 127.5 (C-2), 132.3 (C-3), 147.3 (C-8a) ppm. HR-MS: calcd. for [M]⁺ (C₈H₁₂N₂O₄) 200.0797; found 200.0792.

(6*S***,7***S***,8***S***)-2-(Hydroxymethyl)-5,6,7,8-tetrahydroimidazol1,2-***a***]pyridine-6,7,8-triol (39): Compound 39 was prepared from 36 (90 mg, 0.53 mmol), EtOH/AcOH (1:1, 4 mL), H₂ and Pd(OH)₂/C (97 mg) analogously to 38. It was isolated as a colourless oil (26 mg, 68%). [α]_D²⁰ = +11 (***c* **= 1, MeOH). ¹H NMR (400 MHz, CD₃OD): \delta = 3.95 (dd, 1 H, H-5a), 3.98 (dd, 1 H, H-7), 4.11 (dd, 1 H, H-5b), 4.36 (ddd, 1 H, H-6), 4.49 (s, 2 H, CH₂OH), 4.69 (d, 1 H, H-8), 6.94 (s, 1 H, H-3) ppm;** *J***_{5a,6} = 7.3,** *J***_{5b,6} = 4.9,** *J***_{5a,5b} = 12.4,** *J***_{6,7} = 2.1,** *J***_{7,8} = 5.1 Hz. ¹³C NMR (100.6 MHz, CD₃OD): \delta = 47.9 (C-5), 58.7 (CH₂OH), 66.7 (C-6), 67.8 (C-8), 74.3 (C-7), 117.7 (C-3), 143.0, 147.0 (C-2, C-8a) ppm. HR-MS: calcd. for [M]⁺ (C₈H₁₂N₂O₄) 200.0797; found 200.0793.**

Phenyl{(6S,7S,8S)-6,7,8-tris(benzyloxy)-5,6,7,8-tetrahydroimidazo-[1,2-a]pyridin-3-yl}methanone (40): BnMgBr (2 m in Et₂O, 441 µL, 0.88 mmol) was added dropwise to a stirred solution of 28 (100 mg, 0.18 mmol) in anhydrous THF (2 mL) at 0 °C. After 20 min, benzaldehyde (1 mL, 9.8 mmol) was added. The reaction mixture was warmed up to room temperature, stirred for 48 h, hydrolysed with an aqueous solution of NH₄Cl and the THF evaporated in vacuo. The residue was dissolved in CH₂Cl₂ and H₂O. The organic phase was extracted, dried (MgSO₄), filtered and concentrated in vacuo. The crude product was purified by flash chromatography (EtOAc/ cyclohexane, 2:8) to give 40 (92 mg, 84%) as a colourless oil. $[\alpha]_D^{20}$ = +64 (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 4.11 (dd, 1 H, H-7), 4.32 (ddd, 1 H, H-6), 4.49 (dd, 1 H, H-5a), 4.63 and 4.66 (AB, J_{gem} = 12.1 Hz, 2 H, CH₂Ph), 4.72 (dd, 1 H, H-5b), 4.70 and 4.73 (AB, J_{gem} = 12.1 Hz, 2 H, CH_2Ph), 4.75 and 4.95 (AB, $J_{\text{gem}} = 11.8 \text{ Hz}, 2 \text{ H}, CH_2\text{Ph}), 4.78 \text{ (d, 1 H, H-8)}, 7.25-7.37, 7.47-$ 7.50, 7.57-7.60, 7.82-7.84 (m, 20 H, CH arom.), 7.60 (s, 1 H, H-2) ppm; $J_{5a,6} = 8.7$, $J_{5b,6} = 5.2$, $J_{5a,5b} = 13.4$, $J_{6,7} = 1.7$, $J_{7,8} = 4.4$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 45.7 (C-5), 71.8, 71.8 (CH₂Ph and C-8), 71.9 (C-6), 72.4 (CH₂Ph), 72.9 (CH₂Ph), 75.0 (C-7), 127.7-129.9 (CH arom. and C-3), 132.4 (CH of phenyl), 137.7, 137.8, 137.8, 138.8, $(4 \times C_{quat.} \text{ of phenyls})$, 140.9 (C-2), 148.7 (C-8a), 185.5 (COPh) ppm. HR-MS: calcd. for [M + H]⁺ (C₃₅H₃₃N₂O₄) 545.2440; found 545.2433.

Phenyl{(6*S*,7*S*,8*S*)-6,7,8-tris(benzyloxy)-5,6,7,8-tetrahydroimidazo-[1,2-*a*]pyridin-2-yl}methanol (42) and Phenyl{(6*S*,7*S*,8*S*)-6,7,8-tris-(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridin-2-yl}methanone (43): EtMgBr (3 M in Et₂O, 110 μ L, 0.32 mmol) was added dropwise to a stirred solution of **31** (154 mg, 0.272 mmol) in anhydrous THF (2 mL) at 0 °C. After 20 min, benzaldehyde (290 μ L, 2.84 mmol) was added. The reaction mixture was warmed up to room temperature. It was then stirred for 3 h, hydrolysed with an aqueous solution of NH₄Cl and the THF evaporated in vacuo. The residue was dissolved in CH₂Cl₂ and H₂O. The organic phase was extracted, dried (MgSO₄), filtered and concentrated in vacuo. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 2:8) to give **43** (39 mg, 0.07 mmol) as a colourless oil and a mixture of **42** and **43** (105 mg, 0.19 mmol) with a global yield of 97%. This mixture was used directly for the next reaction (see **44** below). **43**: $[\alpha]_{D}^{20} = +27$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.11$ (dd, 1 H, H-5a), 4.15 (dd, 1 H, H-7), 4.16 (dd, 1 H, H-5b), 4.37 (ddd, 1 H, H-6), 4.53 and 4.61 (AB, $J_{gem} = 12.0$ Hz, 2 H, C H_2 Ph), 4.64 and 4.67 (AB, $J_{gem} = 12.4$ Hz, 2 H, C H_2 Ph), 4.72 and 4.90 (AB, $J_{gem} = 12.0$ Hz, 2 H, C H_2 Ph), 4.78 (d, 1 H, H-8), 7.22–7.56 (m, 18 H, CH of phenyls), 7.55 (s, 1 H, H-3), 8.18 (d, 2 H, H arom.) ppm; $J_{5a,6} = 6.4$, $J_{5b,6} = 9.4$, $J_{5a,5b} = 11.9$, $J_{6,7} = 1.4$, $J_{7,8} = 4.0$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 45.0$ (C-5), 70.6 (C-8), 71.6, 71.7 71.8 (C-6 and 2×CH₂Ph), 72.6 (CH₂Ph), 74.7 (C-7), 126.5–130.1 (C-3 and CH arom.), 132.1 (CH of phenyl), 137.4, 137.4, 137.6, 138.0 (4× $C_{quat.}$ of phenyls), 141.5, 143.6 (C-8a and C-2), 187.8 (COPh) ppm.

(6*S*,7*S*,8*S*)-3-Benzyl-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-6,7,8-triol (41): This compound was prepared from 40 (81 mg, 0.148 mmol), EtOH/AcOH (1:1, 2 mL) and Pd(OH)₂/C (80 mg) under H₂ analogously to 21. It was isolated after chromatography (CH₂Cl₂/MeOH/MeOH–NH₃, 6:3.5:0.5) as a colourless oil (23 mg, 60%). [a]²⁰₅₇₈ = +8.0 (*c* = 1.0, MeOH), [a]²⁰₅₄₆ = +8.2 (*c* = 1.0, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 3.66 (dd, 1 H, H-5a), 3.86 (dd, 1 H, H-5b), 3.94 (dd, 1 H, H-7), 3.96 (s, 2 H, CH₂Ph), 4.3 (ddd, 1 H, H-6), 4.70 (d, 1 H, H-8), 6.79 (s, 1 H, H-2), 7.18–7.31 (m, 5 H, CH arom.) ppm; *J*_{5a,6} = 7.6, *J*_{5b,6} = 5.2, *J*_{5a,5b} = 12.0, *J*_{6,7} = 2.1, *J*_{7,8} = 5.2 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 30.8 (CH₂Ph), 46.1 (C-5), 66.4 (C-6), 67.8 (C-8), 73.8 (C-7), 126.8 (C-2), 127.7, 129.6, 129.7 (CH of phenyls), 131.9 (C-3), 139.0 (*C*_{quat.} of phenyls), 146.4 (C-8a) ppm. HR-MS: calcd. for [M]⁺ (C₁₄H₁₆N₂O₃) 260.1161; found 260.1167.

(6*S*,7*S*,8*S*)-2-Benzyl-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-6,7,8-triol (44): This compound was prepared from the mixture 42 + 43 (86 mg, 0.158 mmol) and EtOH/AcOH (1:1, 2 mL) and Pd(OH)₂/C (90 mg) under H₂ analogously to **21**. It was isolated after chromatography (CH₂Cl₂/MeOH/MeOH–NH₃, 6:3.5:0.5) as a colourless oil (30 mg, 73%). [α]_D²⁰ = +3 (*c* = 1, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 3.83 (s, 2 H, CH₂Ph), 3.89 (dd, 1 H, H-5a), 3.97 (dd, 1 H, H-7), 4.05 (dd, 1 H, H-5b), 4.34 (ddd, 1 H, H-6), 4.67 (d, 1 H, H-8), 6.63 (s, 1 H, H-3) 7.13–7.23 (m, 5 H, H arom.) ppm; *J*_{5a,6} = 7.6, *J*_{5b,6} = 5.0, *J*_{5a,5b} = 12.3, *J*_{6,7} = 2.1, *J*_{7,8} = 5.0 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 35.3 (CH₂Ph), 47.6 (C-5), 66.5 (C-6), 67.8 (C-8), 74.4 (C-7), 117.2 (C-3), 127.1, 129.3, 129.8 (CH of phenyl), 141.5, 143.0 145.9 (*C*_{quat.} of phenyl, C-2, C-8a) ppm. HR-MS: calcd. for [M]⁺ (C₁₄H₁₆N₂O₃) 260.1161; found 260.1155.

(6S,7S,8S)-6,7,8-Tris(benzyloxy)-3-(phenylethynyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine (45): Phenylacetylene (224 µL, 2.04 mmol), NEt₃ (340 µL, 2.45 mmol), [Pd(PPh₃)₄] (32 mg, 0.20 mmol) and copper(I) iodide (8 mg, 0.04 mmol) were added to a solution of 28 (231 mg, 0.41 mmol) in DMF (8 mL). The mixture was heated at 80 °C whilst stirring under argon for 3 h and concentrated in vacuo. The residue was purified by chromatography (EtOAc/cyclohexane, 1:9) to afford 45 (204 mg, 92%) as a yellowish oil. $[\alpha]_{D}^{20} = +81$ (c = 1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta =$ 4.07 (dd, 1 H, H-5a), 4.14 (dd, 1 H, H-7), 4.21 (dd, 1 H, H-5b), 4.36 (ddd, 1 H, H-6), 4.56 and 4.63 (AB, $J_{\text{gem}} = 11.9$ Hz, 2 H, CH₂Ph), 4.69 and 4.86 (AB, J_{gem} = 11.9 Hz, 2 H, CH₂Ph), 4.68 (s, 2 H, CH₂Ph), 4.71 (d, 1 H, H-8), 7.24–7.35, 7.47–7.49 (m, 21 H, CH arom. and H-2) ppm; $J_{5a,6} = 9.6$, $J_{5b,6} = 5.7$, $J_{5a,5b} = 12.1$, $J_{6,7}$ = 1.6, $J_{7.8}$ = 3.7 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 43.3 (C-5), 70.8 (C-8), 71.5 (CH₂Ph), 71.8 (CH₂Ph), 72.3 (C-6), 72.6 (CH₂Ph), 74.7 (C-7), 77.0 (CCPh), 96.5 (CCPh), 115.3 (C-3), 122.5 (C_{quat.} of phenyl), 127.6–128.5, 131.3 (CH of phenyls), 134.1 (C-2), 137.6, 137.8, 137.9 ($3 \times C_{quat.}$ of phenyls), 143.5 (C-8a) ppm. HR-MS: calcd. for $[M]^+$ (C₃₆H₃₂N₂O₃) 540.2413; found 540.2416.

(6S,7S,8S)-6,7,8-Tris(benzyloxy)-2-(phenylethynyl)-5,6,7,8-tetrahy**droimidazo**[1,2-*a*]**pyridine** (46): This compound was prepared from a solution of 31 (200 mg, 0.353 mmol) in DMF (6 mL) and phenylacetylene (178 µL, 1.62 mL), NEt₃ (225 µL, 1.62 mmol), [Pd-(PPh₃)₄] (25 mg, 0.16 mmol) and CuI (7 mg, 0.04 mmol) by heating for 12 h analogously to 45. It was isolated after chromatography (EtOAc/cyclohexane, 1:9) as a brownish oil (143 mg, 75%). $[\alpha]_D^{20}$ = -8 (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 4.07 (dd, 1 H, H-5a), 4.12 (dd, 1 H, H-5b), 4.14 (dd, 1 H, H-7), 4.37 (ddd, 1 H, H-6), 4.54 and 4.61 (AB, 2 H, CH_2Ph , $J_{gem} = 11.9$), 4.66 (s, 2 H, CH₂Ph), 4.68 and 4.87 (AB, $J_{gem} = 11.9$ Hz, 2 H, CH₂Ph), 4.70 (d, 1 H, H-8), 7.08 (s, 1 H, H-3), 7.24-7.40, 7.50-7.53 (m, 20 H, CH arom.) ppm; $J_{5a,6} = 6.5$, $J_{5b,6} = 9.1$, $J_{5a,5b} = 11.6$, $J_{6,7} = 1.7$, $J_{7,8} = 3.7$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 44.7$ (C-5), 70.7 (C-8), 71.6 (CH₂Ph), 71.7 (CH₂Ph), 71.8 (C-6), 72.6 (CH₂Ph), 74.7 (C-7), 83.1, 89.3 (CCPh), 123.0 (C-3), 123.3, 124.5 (C-2 and C_{quat.} of phenyl), 127.7-128.5 and 131.5 (CH of phenyls), 137.5, 137.7, 138.0 (3× $C_{\text{quat.}}$ of phenyls), 142.9 (C-8a) ppm. HR-MS: calcd. for $[M]^+$ (C₃₆H₃₂N₂O₃) 540.2413; found 540.2410.

(6S,7S,8S)-6,7,8-Tris(benzyloxy)-2-(3-phenylprop-1-ynyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (47): This compound was prepared from a solution of 31 (342 mg, 0.604 mmol) in DMF (3 mL) and 3phenyl-1-propyne (420 µL, 3.02 mmol), NEt₃ (420 µL, 3.02 mmol), [Pd(PPh₃)₄] (47 mg, 0.302 mmol) and CuI (23 mg, 0.12 mmol) by heating for 12 h analogously to 45. It was isolated after chromatography (EtOAc/cyclohexane, 2:8) as a brownish oil (252 mg, 75%). $[\alpha]_{546}^{20} = +50 \ (c = 1, \text{CHCl}_3)$. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.81$ (s, 2 H, CCCH₂Ph), 3.85–3.96 (m, 2 H, H-5a, H-6), 4.07–4.14 (m, 2 H, H-5b, H-7), 4.54 and 4.73 (AB, J_{gem} = 11.8 Hz, 2 H, CH_2Ph), 4.60 and 4.70 (AB, $J_{gem} = 11.4$ Hz, 2 H, CH_2Ph), 4.71 (broad signal, 1 H, H-8), 4.82 and 5.12 (AB, $J_{gem} = 11.7$ Hz, 2 H, CH_2 Ph), 6.93 (s, 1 H, H-3), 7.19–7.8 (m, 20 H, CH arom.) ppm. ¹³C NMR $(100.6 \text{ MHz}, \text{CDCl}_3): \delta = 25.8 (\text{CCCH}_2\text{Ph}), 46.2 (\text{C}-5), 71.8, 71.9,$ 72.1, 73.2 (C-8, 3×CH₂Ph), 74.1 (C-6), 79.1 (C-7), 87.6 (CCCH₂Ph), 121.9 (C-3), 124.5 (CCCH₂Ph), 127.4–128.6, 128.9 (CH of phenyl, C-2), 136.6, 137.5, 137.6, 138.2 ($4 \times C_{quat.}$ of phenyls), 143.3 (C-8a) ppm.

(6S,7S,8S)-6,7,8-Tris(benzyloxy)-3-(cyclohex-1-enylethynyl)-5,6,7,8tetrahydroimidazo[1,2-a]pyridine (48): This compound was prepared from a solution of 28 (316 mg, 0.56 mmol) in DMF (11 mL) and ethynylcyclohexene (330 µL, 2.80 mmol), NEt₃ (390 µL, 2.80 mmol), [Pd(PPh₃)₄] (44 mg, 0.28 mmol) and CuI (11 mg, 0.06 mmol) by heating for 12 h analogously to 45. It was isolated after chromatography (EtOAc/cyclohexane, 1:9) as a brownish oil (274 mg, 94%) and used directly for the next step. $[\alpha]_{D}^{20} = +76$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 1.60–1.70 (m, 4 H, CH₂ cyclohexene), 2.15 (m, 4 H, CH₂ cyclohexene), 3.99 (dd, 1 H, H-5a), 4.12 (dd, 1 H, H-7), 4.13 (dd, 1 H, H-5b), 4.33 (ddd, 1 H, H-6), 4.57 and 4.62 (AB, J_{gem} = 11.9 Hz, 2 H, CH₂Ph), 4.66 and 4.83 (AB, $J_{gem} = 11.9$ Hz, 2 H, CH_2 Ph), 4.66 (s, 2 H, CH_2 Ph), 4.68 (d, 1 H, H-8), 6.19 (m, 1 H, H-2'), 7.23-7.37 (m, 16 H, H-2 and CH arom.) ppm; $J_{5a,6} = 9.7$, $J_{5b,6} = 5.7$, $J_{5a,5b} = 12.1$, $J_{6,7} = 1.8$, $J_{7.8} = 3.9$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 21.4, 22.2, 25.7,$ 29.0 (CH₂ of cyclohexene), 43.2 (C-5), 70.8 (C-8), 71.5 (CH₂Ph), 71.7 (CH₂Ph), 72.3 (C-6), 72.6 (CH₂Ph), 74.2 (CC-cyclohex.), 74.7 (C-7), 98.3 (CC-cyclohex.), 115.8 (C-1'), 120.2 (C-3), 127.6-128.5 (CH of phenyls), 133.3 (C-2), 135.7 (C-2'), 137.7, 137.8, 137.9 (C_{quat.} of phenyls), 143.0 (C-8a) ppm.

(65,75,85)-6,7,8-Tris(benzyloxy)-2-(cyclohex-1-enylethynyl)-5,6,7,8tetrahydroimidazo[1,2-*a*]pyridine (49): This compound was prepared from a solution of 31 (347 mg, 0.61 mmol) in DMF (12 mL) and 1ethynylcyclohexene (360 µL, 3.06 mmol), NEt₃ (430 µL, 3.1 mmol), [Pd(PPh₃)₄] (48 mg, 0.30 mmol) and CuI (12 mg, 0.06 mmol) by heating for 12 h analogously to 45. It was isolated after chromatography (EtOAc/cyclohexane, 1:9) as a brownish oil (299 mg, quant.) and used directly for the next step. $[\alpha]_D^{20} = -24$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 1.50–1.65 (m, 4 H, CH₂ of cyclohexene), 2.1 (m, 2 H, CH₂ of cyclohexene), 2.2 (m, 2 H, CH₂ of cyclohexene), 4.00 (dd, 1 H, H-5a), 4.05 (dd, 1 H, H-5b), 4.11 (dd, 1 H, H-7), 4.32 (ddd, 1 H, H-6), 4.50 and 4.56 (AB, $J_{gem} = 11.9$ Hz, 2 H, CH₂Ph), 4.61 and 4.64 (AB, J_{gem} = 12.5 Hz, 2 H, CH₂Ph), 4.67 (d, 1 H, H-8), 4.65 and 4.85 (AB, $J_{gem} = 11.9$ Hz, 2 H, CH_2 Ph), 6.17 (m, 1 H, H-2'), 6.94 (s, 1 H, H-3), 7.21-7.34 (m, 15 H, CH arom.) ppm; $J_{5a,6} = 6.4$, $J_{5b,6} = 8.5$, $J_{5a,5b} = 11.7$, $J_{6,7} = 1.5$, $J_{7,8} = 1.5$ 3.6 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 21.4, 22.2, 25.6, 28.9 (CH₂ of cyclohexene), 44.5 (C-5), 70.5 (C-8), 71.4, 71.5, 71.7, 72.3 (3×CH₂Ph, C-6), 74.7 (C-7), 80.2, 90.9 (CC-cyclohex.), 120.5 (C-1'), 122.2 (C-3), 124.7 (C-2), 127.4-128.3 (CH of phenyls), 134.6 (C-2'), 137.5, 137.6, 137.9 (C_{quat.} of phenyls), 142.4 (C-8a) ppm.

(6S,7S,8S)-6,7,8-Tris(benzyloxy)-3-(pyridin-2-ylethynyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (50): This compound was prepared from a solution of 28 (222 mg, 0.39 mmol) in DMF (8 mL) and 2-ethynylpyridine (198 µL, 1.96 mmol), NEt₃ (275 µL, 1.96 mmol), [Pd(PPh₃)₄] (31 mg, 0.19 mmol) and CuI (22 mg, 0.12 mmol) by heating for 3 h analogously to 45. It was isolated after chromatography (EtOAc/cyclohexane, 4:6) as a brownish oil (220 mg, quant.). $[\alpha]_{578}^{20} = +86 \ (c = 0.9, \text{ CHCl}_3), \ [\alpha]_{546}^{20} = +92 \ (c = 0.9, \text{ CHCl}_3).$ ¹H NMR (400 MHz, CDCl₃): δ = 4.13 (dd, 1 H, H-7), 4.14 (dd, 1 H, H-5a), 4.28 (dd, 1 H, H-5b), 4.35 (ddd, 1 H, H-6), 4.58 and 4.61 (AB, J_{gem} = 12.0 Hz, 2 H, CH₂Ph), 4.68 (s, 2 H, CH₂Ph), 4.71 and 4.88 (AB, $J_{gem} = 11.9$ Hz, 2 H, CH_2Ph), 4.78 (d, 1 H, H-8), 7.17– 7.23 (m, 1 H, H-5'), 7.25-7.36 (m, 15 H, CH arom.), 7.43-7.49 (m, 2 H, H-2, H-3'), 7.57-7.65 (m, 1 H, H-4'), 8.56-8.59 (m, 1 H, H-6') ppm; $J_{5a,6} = 9.3$, $J_{5b,6} = 5.5$, $J_{5a,5b} = 12.1$, $J_{6,7} = 1.5$, $J_{7,8} = 1.5$ 4.0 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 43.5 (C-5), 70.9 (C-8), 71.6 (2×CH₂Ph), 72.0 (C-6), 72.6 (CH₂Ph), 74.6 (C-7), 80.9 (CH₂CH₂-pyr.), 96.0 (CH₂CH₂-pyr.), 114.5 (C-3), 122.8 (C-5'), 126.8 (C-3'), 127.7-128.4 (CH phenyls), 135.6 (C-2), 136.1 (C-4'), 137.5, 137.6, 137.7 (C_{quat.} of phenyls), 142.8 (C-2'), 144.0 (C-8a), 150.0 (C-6') ppm. HR-MS: calcd. for $[M + H]^+$ (C₃₅H₃₂N₃O₃) 542.2444; found 542.2447.

(6S,7S,8S)-6,7,8-Tris(benzyloxy)-2-(pyridin-2-ylethynyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (51): This compound was prepared from a solution of 31 (209 mg, 0.37 mmol) in DMF (8 mL) and 2-ethynylpyridine (187 µL, 1.84 mmol), NEt₃ (260 µL, 1.84 mmol), [Pd(PPh₃)₄] (29 mg, 0.18 mmol) and CuI (21 mg, 0.11 mmol) by heating for 5 h analogously to 45. It was isolated after chromatography (EtOAc/cyclohexane, 4:6) as a brownish foam (165 mg, 82%). $[\alpha]_{D}^{20} = -9$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 4.08 (dd, 1 H, H-5a), 4.12 (dd, 1 H, H-5b), 4.14 (dd, 1 H, H-7), 4.35 (ddd, 1 H, H-6), 4.54 and 4.60 (AB, $J_{gem} = 12.0$ Hz, 2 H, CH₂Ph), 4.66 (s, 2 H, CH₂Ph), 4.68 and 4.87 (AB, J_{gem} = 11.9 Hz, 2 H, H-9), 4.70 (d, 1 H, H-8), 7.16 (s, 1 H, H-3), 7.17 (ddd, 1 H, H-5'), 7.2-7.4 (m, 15 H, CH arom.), 7.52 (dt, 1 H, H-3'), 7.62 (td, 1 H, H-4'), 8.57 (ddd, 1 H, H-6') ppm; $J_{5a,6} = 6.7$, $J_{5b,6} = 8.7$, $J_{5a,5b}$ = 11.8, $J_{6,7}$ = 1.6, $J_{7,8}$ = 3.9, $J_{3',4'}$ = 7.7, $J_{3',5'}$ = 1.3, $J_{4',5'}$ = 7.6, $J_{4',6'} = 1.8, J_{5',6'} = 5.0, J_{6',3'} = 1.2$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 44.7 (C-5), 70.5 (C-8), 71.5, 71.6, 71.7 (C-6 and 2×CH₂Ph), 72.5 (CH₂Ph), 74.7 (C-7), 83.3 (CC-pyr.), 88.7 (CCpyr.), 122.4 (C-5'), 123.6 (C-2), 124.3 (C-3), 126.9 (C-3'), 127.5-128.5 (CH of phenyls), 136.0 (C-4'), 137.5, 137.6, 137.8 (C_{guat.} of phenyls), 143.1, 143.4 (C-8a, C-2'), 149.8 (C-6') ppm. HR-MS: calcd. for $[M + H]^+$ (C₃₅H₃₂N₃O₃) 542.2444; found 542.2448.

(65,75,85)-6,7,8-Tris(benzyloxy)-2,3-bis(phenylethynyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine (52): This compound was prepared from a solution of 29 (474 mg, 0.68 mmol) in DMF (15 mL) and phenylacetylene (375 µL, 3.42 mmol), NEt₃ (480 µL, 3.42 mmol), [Pd(PPh₃)₄] (53 mg, 0.34 mmol) and CuI (13 mg, 0.068 mmol) by heating for 12 h analogously to 45. It was isolated after chromatography (EtOAc/cyclohexane, 1:9) as a brownish oil (311 mg, 71%). $[\alpha]_{D}^{20} = +40 \ (c = 1, CH_2Cl_2).$ ¹H NMR (400 MHz, CDCl₃): $\delta = 4.07$ (dd, 1 H, H-5a), 4.15 (dd, 1 H, H-7), 4.20 (dd, 1 H, H-5b), 4.38 (ddd, 1 H, H-6), 4.57 and 4.63 (AB, J_{gem} = 11.9 Hz, 2 H, CH₂Ph), 4.68 (s, 2 H, CH₂Ph), 4.70 and 4.90 (AB, $J_{gem} = 11.9$ Hz, 2 H, CH₂Ph), 4.73 (br. d, 1 H, H-8), 7.21–7.40, 7.50–7.54 (m, 25 H, CH arom.) ppm; $J_{5a,6} = 9.8$, $J_{5b,6} = 5.8$, $J_{5a,5b} = 12.1$, $J_{6,7} = 1.8$, $J_{7,8} =$ 3.8 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 43.8 (C-5), 70.7 (C-8), 71.8 (CH₂Ph), 71.8 (CH₂Ph), 71.9 (C-6), 72.6 (CH₂Ph), 74.4 (C-7), 76.5 (C-3-CCPh), 82.5 (C-2-CCPh), 92.7 (C-3-CCPh), 99.9 (C-2-CCPh), 119.3 (C-3), 122.3, 123.1 ($2 \times C_{quat.}$ of phenyls), 127.6– 128.9 (CH of phenyls of benzyls, C-2), 131.5, 131.6 (CH of phenyls), 137.6, 137.7, 137.8 (3× $C_{quat.}$ of phenyls of benzyls), 143.5 (C-8a) ppm. HR-MS: calcd. for [M]⁺ (C₄₄H₃₆N₂O₃) 640.2726; found 640.2723.

{(6S,7S,8S)-6,7,8-Tris(benzyloxy)-2-(phenylethynyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-3-yl}methanol (53): This compound was prepared from a solution of 37 (100 mg, 0.167 mmol) in DMF (3 mL) and phenylacetylene (93 μ L, 0.84 mmol), NEt₃ (117 μ L, 0.84 mmol), [Pd(PPh₃)₄] (13 mg, 0.08 mmol) and CuI (3 mg, 0.02 mmol) by heating for 12 h analogously to 45. It was isolated after chromatography (EtOAc/cyclohexane, 3:7) as a brownish oil (72 mg, 75%). $[\alpha]_{D}^{20} = +11 (c = 0.7, \text{CH}_2\text{Cl}_2)$. ¹H NMR (400 MHz, $CDCl_3$): $\delta = 4.08$ (dd, 1 H, H-5a), 4.11 (dd, 1 H, H-7), 4.24 (dd, 1 H, H-5b), 4.33 (ddd, 1 H, H-6), 4.54 and 4.57 (AB, J_{gem} = 11.9 Hz, 2 H, CH₂Ph), 4.62 and 4.65 (AB, $J_{gem} = 12.2$ Hz, 2 H, CH₂Ph), 4.68 (d, 1 H, H-8), 4.70 and 4.76 (AB, 2 H, CH₂OH, J_{gem} = 13.5 Hz), 4.66 and 4.86 (AB, J_{gem} = 11.9 Hz, 2 H, CH₂Ph), 7.24– 7.36, 7.48–7.52 (m, 20 H, CH of phenyls) ppm; $J_{5a,6} = 9.6$, $J_{5b,6} =$ 5.7, $J_{5a,5b} = 12.0$, $J_{6,7} = 1.8$, $J_{7,8} = 4.0$ Hz. ¹³C NMR (100.6 MHz, $CDCl_3$): $\delta = 43.2$ (C-5), 53.8 (CH₂OH), 70.9 (C-8), 71.6 (CH₂Ph), 71.7, 71.8 (C-6, CH₂Ph), 72.5 (CH₂Ph), 74.5 (C-7), 82.1, 91.5 (C-9, C-10), 123.1, 123.2 (C-2, C-3), 127.6-128.5 (CH of phenyls), 131.5 (CH of phenyls), 133.9 ($C_{\text{quat.}}$ of phenyl),137.6, 137.7, 137.9 $(3 \times C_{\text{quat.}} \text{ of phenyls of benzyls})$, 143.4 (C-8a) ppm. HR-MS: calcd. for [M]⁺ (C₃₇H₃₄N₂O₄) 570.2519; found 570.2517.

(6S,7S,8S)-3-(2-Phenylethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-6,7,8-triol (54): This compound was prepared from 45 (184 mg, 0.34 mmol) and EtOH/AcOH (1:1, 6 mL) and Pd(OH)₂/ C (200 mg) under H_2 analogously to **38**. It was isolated after chromatography (CH₂Cl₂/MeOH, 8:2) as a colourless oil (63 mg, 68%). $[\alpha]_{578}^{20} = +27 (c = 1.0, \text{MeOH}), [\alpha]_{546}^{20} = +30 (c = 1.0, \text{MeOH}).$ ¹H NMR (400 MHz, CD₃OD): δ = 2.82–2.96 (m, 4 H, CH₂CH₂), 3.73 (dd, 1 H, H-5a), 3.84 (dd, 1 H, H-5b), 3.95 (dd, 1 H, H-7), 4.33 (ddd, 1 H, H-6), 4.69 (d, 1 H, H-8), 6.72 (s, 1 H, H-2), 7.15-7.19 (m, 3 H, CH arom.), 7.24–7.27 (m, 2 H, CH arom.) ppm; $J_{5a,6}$ = 7.6, $J_{5b,6}$ = 5.1 Hz, $J_{5a,5b}$ = 12.1, $J_{6,7}$ = 2.0, $J_{7,8}$ = 5.1 Hz. ¹³C NMR (100.6 MHz, CD₃OD): $\delta = 27.02$ (CH₂CH₂Ph), 36.2 (CH₂CH₂Ph), 46.2 (C-5), 66.9 (C-6), 68.2 (C-8), 74.2 (C-7), 126.5 (C-2), 127.7 and 129.9 (CH of phenyls), 132.9 (C-3), 142.6 (C_{quat.} of phenyl), 146.3 (C-8a) ppm. HR-MS: calcd. for [M + H]⁺ $(C_{15}H_{19}N_2O_3)$ 275.1390; found 275.1389.

(6*S*,7*S*,8*S*)-2-(2-Phenylethyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-6,7,8-triol (55): This compound was prepared from 46 (213 mg, 0.39 mmol) and EtOH/AcOH (1:1, 6 mL) and Pd(OH)₂/ C (200 mg) under H₂ analogously to 38. It was isolated after chromatography (CH₂Cl₂/MeOH, 95:5) as a colourless oil (60 mg, 56%). $[\alpha]_{578}^{20} = +3.6$ (*c* = 1.1, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 2.79 (t, 2 H, CH₂CH₂Ph), 2.89 (t, 2 H, CH₂CH₂Ph), 3.89 (dd, 1 H, H-5a), 3.99 (dd, 1 H, H-7), 4.04 (dd, 1 H, H-5b), 4.35 (m, 1 H, H-6), 4.69 (d, 1 H, H-8), 6.65 (s, 1 H, H-3), 7.11–7.25 (m, 5 H, CH arom.) ppm; $J_{5a,6}$ = 7.9, $J_{5b,6}$ = 4.8, $J_{5a,5b}$ = 11.9, $J_{6,7}$ = 2.0, $J_{7,8}$ = 4.7, $J_{CH_2CH_2Ph}$ = 7.5 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 31.6 (CH₂CH₂Ph), 37.3 (CH₂CH₂Ph), 48.1 (C-5), 67.0 (C-6), 68.3 (C-8), 74.9 (C-7), 117.0 (C-3), 127.4, 129.8–129.9 (CH of phenyl), 143.4, 143.6 ($C_{quat.}$ of phenyl, C-2), 146.1 (C-8a) ppm. HR-MS: calcd. for [M]⁺ (C₁₅H₁₈N₂O₃) 274.1317; found 274.1311.

(6S,7S,8S)-2-(3-Phenylpropyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-6,7,8-triol (56): This compound was prepared from 47 (112 mg, 0.20 mmol) and EtOH/AcOH (1:1, 4 mL) and Pd(OH)₂/ C (138 mg) under H₂ analogously to 38. It was isolated after chromatography (CH₂Cl₂/MeOH, 9:1) as a colourless oil (38 mg, 66%). $[\alpha]_{D}^{20} = -42$ (*c* = 1.0, MeOH). ¹H NMR (400 MHz, CD₃OD): $\delta = 1.87 - 1.95$ (m, 2 H, CH₂CH₂CH₂Ph), 2.53 (t, 2 H, CH₂CH₂CH₂Ph), 2.63 (t, 2 H, CH₂CH₂CH₂Ph), 3.81 (dd, 1 H, H-5a), 3.86 (dd, 1 H, H-7), 4.01 (ddd, 1 H, H-6), 4.17 (dd, 1 H, H-5b), 4.51 (d, 1 H, H-8), 6.7 (s, 1 H, H-3), 7.10-7.17, 7.21-7.25 (m, 5 H, CH arom.) ppm; $J_{5a,6} = 6.6$, $J_{5b,6} = 4.7$, $J_{5a,5b} = 12.5$, $J_{6,7} =$ 7.5, $J_{7,8} = 5.7$, $J_{CH_2CH_2CH_2Ph} = 7.5$, $J_{CH_2CH_2CH_2Ph} = 7.6$ Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 28.5 (CH₂CH₂CH₂Ph), 32.4 (CH₂CH₂CH₂Ph), 36.5 (CH₂CH₂CH₂Ph), 49.0 (C-5), 68.8 (C-6), 69.4 (C-8), 75.2 (C-7), 116.2 (C-3), 126.7, 129.3-129.5 (CH of phenyl), 143.3, 143.6 (C_{quat.} of phenyl, C-2), 146.0 (C-8a) ppm. HR-MS: calcd. for $[M + H]^+$ (C₁₆H₂₁N₂O₃) 289.1547; found 289.1545.

(6S,7S,8S)-3-(2-Cyclohexylethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-6,7,8-triol (57): This compound was prepared from 48 (246 mg, 0.50 mmol) and EtOH/AcOH (1:1, 6 mL) and Pd(OH)₂/ C (250 mg) under H_2 analogously to **38**. It was isolated after chromatography (CH_2Cl_2/MeOH, 9:1) as a colourless oil (70 mg, 55%). $[\alpha]_{D}^{20} = +19$ (c = 1, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 0.96 (m, 2 H, H-2', H-6'), 1.12–1.38 (m, 4 H, H-1', H-3', H-5', H-4'), 1.50 (q, 2 H, CH₂CH₂-cyclohex.), 1.65-1.85 (m, 5 H, H-2', H-6', H-3', H-5', H-4'), 2.55 (m, 1 H, CH₂CH₂-cyclohex.), 3.77 (dd, 1 H, H-5a), 3.98 (dd, 1 H, H-5b), 3.99 (dd, 1 H, H-7), 4.38 (ddd, 1 H, H-6), 4.69 (d, 1 H, H-8), 6.72 (s, 1 H, H-2) ppm; J_{5a,6} = 7.8, $J_{5b,6}$ = 5.0, $J_{5a,5b}$ = 12.0, $J_{6,7}$ = 2.0, $J_{7,8}$ = 5.0 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 22.0 (CH₂CH₂-cyclohex.), 27.4 (C-3', C-5'), 27.7 (C-4'), 34.3, 34.3 (C-2', C-6'), 36.8 (CH₂CH₂-cyclohex.), 38.5 (C-1'), 45.7 (C-5), 66.5 (C-6), 67.9 (C-8), 73.9 (C-7), 125.4 (C-2), 133.3 (C-3), 145.6 (C-8a) ppm. HR-MS: calcd. for [M + H]⁺ (C₁₅H₂₅N₂O₃) 281.1865; found 281.1862. C₁₅H₂₄N₂O₃ (280.37): calcd. C 64.26, H 8.63, N 9.99; found C 64.2, H 8.6, N 9.6.

(6*S*,7*S*,8*S*)-2-(2-Cyclohexylethyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-6,7,8-triol (58): This compound was prepared from 49 (248 mg, 0.50 mmol) and EtOH/AcOH (1:1, 6 mL) and Pd(OH)₂/ C (220 mg) under H₂ analogously to 38. It was isolated after chromatography (CH₂Cl₂/MeOH, 9:1) as a colourless oil (62 mg, 48%). [α]₂⁰ = +3.6 (*c* = 0.8, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 0.92 (m, 2 H, H-2', H-6'), 1.12–1.31 (m, 4 H, H-1', H-3', H-5', H-4'), 1.49 (dd, 2 H, CH₂CH₂-cyclohex.), 1.62–1.80 (m, 5 H, H-2', H-6',H-3', H-5', H-4'), 2.51 (t, 2 H, CH₂CH₂-cyclohex.), 3.91 (dd, 1 H, H-5a), 3.99 (dd, 1 H, H-7), 4.06 (dd, 1 H, H-5b), 4.36 (ddd, 1 H, H-6),4.68 (d, 1 H, H-8), 6.69 (s, 1 H, H-3) ppm; J_{5a,6} = 7.7, J_{5b,6} = 5.0, J_{5a,5b} = 12.3, J_{6,7} = 1.8, J_{7,8} = 5.0 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 26.3 (CH₂CH₂-cyclohex.), 27.4 (C-3', C-5'), 27.8 (C-4'), 34.4 (C-2', C-6'), 38.2 (CH₂CH₂cyclohex.), 38.5 (C-1'), 47.6 (C-5), 66.6 (C-6), 67.7 (C-8), 74.4 (C-

7), 116.1 (C-3), 143.9 (C-2), 145.4 (C-8a) ppm. HR-MS: calcd. for $[M + H]^+$ (C₁₅H₂₅N₂O₃) 281.1865; found 281.1860.

(6S,7S,8S)-2,3-Bis(2-phenylethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-6,7,8-triol (59): This compound was prepared from 52 (146 mg, 0.23 mmol) and EtOH/AcOH (1:1, 8 mL) and Pd(OH)₂/ C (100 mg) under H₂ analogously to 38. It was isolated after chromatography (CH₂Cl₂/MeOH, 9:1) as a colourless oil (36 mg, 42%). $[\alpha]_{578}^{20} = +21$ (*c* = 1, MeOH), $[\alpha]_{546}^{20} = +23$ (*c* = 1, MeOH). ¹H NMR (400 MHz, CD₃OD): $\delta = 2.50-2.70$ (m, 8 H, 2×CH₂CH₂Ph), 3.65–3.75 (m, 2 H, 2×H-5), 3.96 (dd, 1 H, H-7), 4.30 (ddd, 1 H, H-6), 4.71 (d, 1 H, H-8), 6.99-7.00, 7.08-7.23 (m, 10 H, CH arom.) ppm; $J_{5,6} = 7.4$, $J_{5,6} = 5.3$, $J_{6,7} = 2.1$, $J_{7,8} = 3.1$ 5.0 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 25.9 (C-2-CH₂CH₂Ph), 29.9 (C-3-CH₂CH₂Ph), 36.6 (C-2-CH₂CH₂Ph) 37.7 (C-3-CH₂CH₂Ph) 45.8 (C-5), 66.6 (C-6), 67.8 (C-8), 73.9 (C-7), 126.8, 127.2 (CH of phenyl), 127.3 (C-3), 129.3-129.7 (CH of phenyl), 138.1 (C-2), 142.2, 143.3 (C_{quat.} of phenyls), 144.5 (C-8a) ppm. HR-MS: calcd. for [M]⁺ (C₂₃H₂₆N₂O₃) 378.1943; found 378.1949.

(6*S*,7*S*,8*S*)-3-(Hydroxymethyl)-2-(2-phenylethyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-6,7,8-triol (60): This compound was prepared from 53 (73 mg, 0.13 mmol) and EtOH/AcOH (1:1, 2 mL) and Pd(OH)₂/C (60 mg) under H₂ analogously to 38. It was isolated after chromatography (EtOAc/MeOH, 6:4) as a colourless oil (19 mg, 49%). [α]_D²⁰ = +2.4 (*c* = 0.8, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 2.75–2.90 (m, 4 H, CH₂CH₂Ph), 3.89 (dd, 1 H, H-5a), 4.00 (dd, 1 H, H-7), 4.10 (dd, 1 H, H-5b), 4.30 (s, 2 H, CH₂OH), 4.39 (ddd, 1 H, H-6), 4.71 (d, 1 H, H-8), 7.12–7.15, 7.21– 7.24 (m, 5 H, CH arom.) ppm; J_{5a,6} = 7.7, J_{5b,6} = 5.0, J_{5a,5b} = 12.1, J_{6,7} = 2.2, J_{7,8} = 4.8 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 30.2, 37.7 (CH₂CH₂Ph), 45.9 (C-5), 52.8 (CH₂OH), 66.4 (C-6), 67.9 (C-8), 74.0 (C-7), 126.9 (CH of phenyl), 127.2 (C-3), 129.3, 129.5 (CH of phenyl), 140.4 (C-2), 143.2 (C_{quat.} of phenyl), 145.7 (C-8a) ppm. HR-MS: calcd. for [M]⁺ (C₁₆H₂₀N₂O₄) 304.1423; found 304.1430.

(6S,7S,8S)-3-[2-(Pyridin-2-yl)ethyl]-5,6,7,8-tetrahydroimidazo-[1,2-a]pyridine-6,7,8-triol (61) and (6S,7S,8S)-3-[2-(Piperidin-2-yl)ethyl]-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-6,7,8-triol (62): A solution of 50 (250 mg, 0.462 mmol) in EtOH/AcOH (1:1, 6 mL) was stirred under H_2 (1 bar) at room temperature in the presence of Pd(OH)₂/C (300 mg) for 48 h. The suspension was centrifuged and the catalyst rinsed several times with hot MeOH. The combined organic solutions were concentrated to dryness in vacuo. The residue was then dissolved in anhydrous CH₂Cl₂ (8 mL) and cooled to -78 °C. BCl₃ (1 M in CH₂Cl₂, 6.93 mL, 6.93 mmol) was added with stirring. After 1 h, the reaction mixture was placed in a freezer at -20 °C for 12 h, then cooled to -78 °C, hydrolysed with MeOH (10 mL), warmed up to room temp. and concentrated in vacuo. The residue was purified by flash chromatography (CH₂Cl₂/MeOH, 8:2) to give 61 (37 mg) and a mixture of 61 and 62 (62 mg) (for the analysis of **62** see below). **61:** $[\alpha]_{D}^{20} = +20$ (*c* = 1, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 2.97 (m, 2 H, CH₂CH₂-pyr.), 3.10 (m, 2 H, CH₂CH₂-pyr.), 3.77 (dd, 1 H, H-5a), 3.97 (dd, 1 H, H-5b), 3.98 (dd, 1 H, H-7), 4.37 (ddd, 1 H, H-6), 4.68 (d, 1 H, H-8), 6.68 (s, 1 H, H-2), 7.26 (ddd, 1 H, H-5'), 7.30 (dt, 1 H, H-3'), 7.73 (td, 1 H, H-4'), 8.45 (ddd, 1 H, H-6') ppm; $J_{5a,6} = 7.8$, $J_{5b,6} = 5.1$, $J_{5a,5b} =$ 12.1, $J_{6,7} = 2.0$, $J_{7,8} = 5.0$, $J_{3',4'} = 7.8$, $J_{3',5'} \approx 1$, $J_{4',5'} = 7.8$, $J_{4',6'}$ = 1.8, $J_{5',6'}$ = 5.0, $J_{6',3'}$ = 1.0 Hz. ³C NMR (100.6 MHz, CDCl₃): $\delta = 24.7$ (CH₂CH₂-pyr.), 37.3 (CH₂CH₂-pyr.), 45.7 (C-5), 66.6 (C-6), 68.0 (C-8), 74.0 (C-7), 123.1 (C-5'), 124.9 (C-3'), 126.3 (C-2), 131.3 (C-3), 138.8 (C-4'), 146.0 (C-8a), 149.8 (C-6'), 161.6 (C-2') ppm. HR-MS: calcd. for $[M + H]^+$ (C₁₄H₁₈N₃O₃) 276.1343; found 276.1343.

(6S,7S,8S)-2-[2-(Pyridin-2-yl)ethyl]-5,6,7,8-tetrahydroimidazo-[1,2-*a*]pyridine-6,7,8-triol (63): A solution of 51 (410 mg, 0.757 mmol) in EtOAc (15 mL) was stirred under H_2 (1 bar) at room temperature in the presence of 5% Pd/C (240 mg) for 6 h. The suspension was centrifuged and the catalyst rinsed several times with hot EtOAc. The combined organic solutions were concentrated to dryness in vacuo. The residue was dissolved in anhydrous CH₂Cl₂ (15 mL) and cooled to -78 °C. BCl₃ (1 M in CH₂Cl₂, 11.4 mL, 11.4 mmol) was added with stirring. The reaction mixture was left at -40 °C for 4 h and then placed in a freezer at -20 °C for 12 h, cooled again to -78 °C, hydrolysed with MeOH (5 mL), warmed up to room temp. and concentrated in vacuo. The residue was purified by flash chromatography (CH₂Cl₂/MeOH, 8:2) to give 63 (181 mg, 87%) as a yellowish oil. $[\alpha]_D^{20} = -9$ (c = 1, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 2.96 (m, 2 H, CH₂CH₂-pyr.), 3.09 (m, 2 H, CH₂CH₂-pyr.), 3.97 (dd, 1 H, H-5a), 3.98 (dd, 1 H, H-7), 4.11 (dd, 1 H, H-5b), 4.36 (ddd, 1 H, H-6), 4.74 (d, 1 H, H-8), 6.79 (s, 1 H, H-3), 7.25 (ddd, 1 H, H-5'), 7.30 (br. d, 1 H, H-3'), 7.74 (td, 1 H, H-4'), 8.43 (br. d, 1 H, H-6') ppm; $J_{5a,6} = 6.2$, $J_{5b,6} = 4.5$, $J_{5a,5b} = 12.6, J_{6,7} = 2.0, J_{7,8} = 5.8, J_{3',4'} = 7.8, J_{4',5'} = 7.8, J_{4',6'}$ = 1.8, $J_{5',6'}$ = 5.0 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 28.5 (CH₂CH₂-pyr.), 38.1 (CH₂CH₂-pyr.), 48.5 (C-5), 67.0 (C-6), 67.5 (C-8), 74.2 (C-7), 117.1 (C-3), 123.0 (C-5'), 124.8 (C-3'), 138.8 (C-4'), 141.1 (C-2), 145.9 (C-8a), 149.6 (C-6'), 162.0 (C-2') ppm. HR-MS: calcd. for $[M + H]^+$ (C₁₄H₁₈N₃O₃) 276.1343; found 276.1347.

(6S,7S,8S)-3-[2-(Piperidin-2-yl)ethyl]-5,6,7,8-tetrahydroimidazo-[1,2-a]pyridine-6,7,8-triol (62): This compound was prepared from the mixture 61 + 62 (see above, 62 mg, $\approx 0.22 \text{ mmol}$), EtOH/AcOH (1:1, 2 mL) and Pd(OH)₂/C (60 mg) under H₂ analogously to 38. Compound 62 was isolated after chromatography (CH₂Cl₂/MeOH-NH₃, 8:2, then MeOH/NH₃) as a colourless oil and as a mixture of diastereomers (30 mg, 47%). $[\alpha]_{578}^{20} = +11$ (c = 1.0, MeOH), $[\alpha]_{546}^{20} = +12 \ (c = 1.0, \text{ MeOH}).$ ¹H NMR (400 MHz, CD₃OD): $\delta =$ 1.25-1.37, 1.41-1.62, 1.72-1.96 (m, 8 H, CH₂CH₂-pip., 2×H-3', 2×H-4', 2×H-5'), 2.65 (m, 1 H,CH₂CH₂-pip.), 2.75–2.90 (m, 2 H, H-6' and H-2'), 3.20 (br. d, 1 H, H6'), 3.78, 3.79 (2×dd, 2 H, 2×H-5a)*, 3.98-4.04 (m, 2 H, H-7, H-5b)*, 4.39 (ddd, 1 H, H-6), 4.68 (d, 1 H, H-8), 6.76 (s, 1 H, H-2) ppm; $J_{5a,6} = 7.8$, $J_{5b,6} =$ 5.1, $J_{5a,5b} = 12.1$, $J_{6,7} = 2.0$, $J_{7,8} = 5.0$ Hz. ¹³C NMR (100.6 MHz, CD₃OD): $\delta = 20.7 (CH_2CH_2-pip.)^{**}$, 24.3, 25.1 (C-4', C-5'), 31.1 (C-3'), 34.5 (CH₂CH₂-pip.), 45.7 (C-5)**, 46.8 (C-6'), 57.4 (C-2'), 66.5 (C-6)**, 67.9 (C-8), 73.9 (C-7), 125.9 (C-2)**, 131.9 (C-3), 146.1 (C-8a) ppm; *one signal for each diastereomer; **two very close signals were detected for this C atom because of the presence of the two diastereomers. HR-MS: calcd. for $[M + H]^+$ (C₁₄H₂₄N₃O₃) 282.1812; found 282.1811.

(6S,7S,8S)-2-[2-(Piperidin-2-yl)ethyl]-5,6,7,8-tetrahydroimidazo-[1,2-a]pyridine-6,7,8-triol (64): This compound was prepared from a mixture of 63 (64 mg, 0.232 mmol) and EtOH/AcOH (1:1, 4 mL) and Pd(OH)₂/C (70 mg) under H₂ analogously to 38. It was isolated after chromatography on TLC plates (CH₂Cl₂/MeOH/NH₄OH, 5:4:1) as a colourless oil (30 mg, 47%). $[\alpha]_{578}^{20} = +1.4$ (c = 1.1, MeOH). ¹H NMR (400 MHz, CD₃OD): δ = 1.11–1.23 (m, 1 H, H-3'), 1.28-1.53 (m, 2 H, H-5', H-4'), 1.58-1.83 (m, 3 H, H-3', H-4', H-5') 1.70 (br. quint, 2 H, CH₂CH₂-pip.), 2.52-2.60 (m, 2 H, CH₂CH₂-pip., H-2'), 2.63 (m, 1 H, H-6'), 3.06 (m, 1 H, H-6'), 3.91 (dd, 1 H, H-5a), 3.98 (dd, 1 H, H-7), 4.07 (dd, 1 H, H-5b), 4.36 (ddd, 1 H, H-6), 4.67 (d, 1 H, H-8), 6.74 (s, 1 H, H-3) ppm; J_{5a,6} = 7.6, $J_{5b,6}$ = 5.0, $J_{5a,5b}$ = 12.3, $J_{6,7}$ = 2.0, $J_{7,8}$ = 5.1 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 25.2 (CH₂CH₂-pip., C-4'), 26.2 (C-5'), 32.5 (C-3'), 37.1 (CH₂CH₂-pip.), 47.3 (C-6'), 47.7 (C-5), 57.4 (C-2'), 66.7 (C-6), 67.8 (C-8), 74.4 (C-7), 116.4 (C-3), 143.0 (C-2),

147.8 (C-8a) ppm. HR-MS: calcd. for $[M + H]^+$ (C₁₄H₂₄N₃O₃) 282.1812; found 282.1813.

(1R,2S,3R)-1-(1,3-Dithian-2-yl)butane-1,2,3,4-tetraol (66): D-Xylose (25.00 g, 0.166 mol) was added portionwise to a stirred solution of propanedithiol (16 mL) in concentrated HCl (37%) (12.5 mL) at 0 °C. The reaction mixture was warmed up to room temperature, stirred overnight and basified with concentrated NH₄OH (\approx 20 mL). The reaction mixture was then concentrated in vacuo. The residue was co-evaporated with toluene and *n*-butanol three times and crystallised from MeOH (5.94 g). The mother liquor, after concentration in vacuo, was purified by chromatography (EtOAc/MeOH, 9:1) to afford pure 66 (31.70 g). Total yield: 94%. A small quantity was recrystallised from MeOH. M.p. 88-90 °C (ref.^[22] 76–77 °C). $[\alpha]_D^{20} = -4.4$ (c = 1.0, MeOH) {ref.^[22] $[\alpha]_D^{20} =$ -2.3 (c = 1, MeOH)}. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.84-1.94$, 2.01-2.09 (m, 2 H, SCH₂CH₂CH₂), 2.73-2.84, 2.88-2.96 (m, 4 H, 2×SCH₂), 3.60 (dd, 1 H, H-5a), 3.66 (dd, 1 H, H-5b), 3.77 (td, 1 H, H-4), 3.91 (dd, 1 H, H-2), 3.97 (dd, 1 H, H-3), 4.18 (d, 1 H, H-1) ppm; $J_{1,2} = 7.6$, $J_{2,3} = 3.4$, $J_{3,4} = 4.0$, $J_{4,5a} = 6.1$, $J_{4,5b} = 4.7$, $J_{5a,5b} = 11.3 \text{ Hz}$. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 27.1$ (SCH₂CH₂CH₂), 29.1, 29.6 (2×SCH₂CH₂CH₂), 50.2 (C-1), 64.3 (C-5), 71.6 (C-3), 74.0 (C-2), 74.5 (C-4) ppm. C₈H₁₆O₄S₂ (240.34): calcd. C 39.98, H 6.71, S 26.68; found C 40.1, H 6.9, S 26.4.

(1*R*,2*S*,3*R*)-1-(1,3-Dithian-2-yl)-4-(trityloxy)butane-1,2,3-triol (67): This compound was prepared from 66 (13.00 g, 54.1 mmol), TrCl (19.6 g, 70.3 mmol) and DMAP (cat.) in pyridine (250 mL) analogously to 6. It was purified by chromatography (EtOAc/cyclohexane, 3:7) as a yellowish foam (23.2 g, 89%). [α]_D²⁰ = -23 (*c* = 1.0, MeOH). ¹H NMR (400 MHz, CDCl₃): δ = 1.89–2.06 (m, 2 H, SCH₂CH₂CH₂), 2.55–2.64 (m, 2 H, SCH₂CH₂CH₂), 2.76–2.86 (m, 2 H, SCH₂CH₂CH₂CH₂), 3.29 (dd, 1 H, H-5a), 3.36 (dd, 1 H, H-5b), 3.89 (dd, 1 H, H-2), 3.91 (ddd, 1 H, H-4), 4.02 (d, 1 H, H-1), 4.18 (dd, 1 H, H-3), 7.18–7.31, 7.42–7.46 (m, 15 H, CH arom.) ppm; $J_{1,2}$ = 9.0, $J_{2,3}$ = 1.8, $J_{3,4}$ = 3.5, $J_{4,5a}$ = 5.3, $J_{4,5b}$ = 4.8, $J_{5a,5b}$ = 9.8 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 25.2 (SCH₂CH₂CH₂), 26.3, 27.0 (SCH₂CH₂CH₂), 46.7 (C-1), 64.8 (C-5), 69.6 (C-3), 72.2 (C-2), 72.8 (C-4), 86.9 (CPh₃), 127.1, 127.9, 128.6 (CH of phenyls), 143.6 (C_{quat} of phenyls) ppm.

2-[(1R,2S,3R)-1,2,3-Tris(benzyloxy)-4-(trityloxy)butyl]-1,3-dithiane (68): This compound was prepared from 67 (10.00 g, 20.7 mmol), nBu₄NI (cat.), NaH (60% in oil, 4.00 g, 103.6 mmol) and BnBr (8.4 mL, 70.4 mmol) in DMF (100 mL) analogously to 7. It was purified by flash chromatography (EtOAc/cyclohexane, 5:95) as a yellow oil (14.47 g, 93%). $[\alpha]_{D}^{20} = -22$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 1.81–2.03 (m, 2 H, SCH₂CH₂CH₂), 2.57 (m, 2 H, SCH₂CH₂CH₂), 2.77 (m, 2 H, SCH₂CH₂CH₂S), 3.33 (dd, 1 H, H-5a), 3.43 (dd, 1 H, H-5b), 3.77 (ddd, 1 H, H-4), 3.83 (t, 1 H, H-2), 3.89 (d, 1 H, H-1), 4.19 (t, 1 H, H-3), 4.39 and 4.78 (AB, $J_{\text{gem}} = 11.1 \text{ Hz}, 2 \text{ H}, \text{ C}H_2\text{Ph}$), 4.50 and 4.69 (AB, $J_{\text{gem}} = 11.8 \text{ Hz}$, 2 H, CH₂Ph), 4.63 and 4.73 (AB, $J_{gem} = 11.2$ Hz, 2 H, CH₂Ph), 7.12–7.14, 7.21–7.36, 7.44–7.46 (m, 30 H, CH arom.) ppm; $J_{1,2}$ = 5.2, $J_{2,3} = 5.2$ Hz; $J_{3,4} = 5.0$, $J_{4,5a} = 5.1$, $J_{4,5b} = 4.0$, $J_{5a,5b} = 10.0$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 26.0 (SCH₂CH₂CH₂S), 29.5, 29.9 (SCH₂CH₂CH₂S), 49.3 (C-1), 62.8 (C-5), 72.2 (CH₂Ph), 74.6 (CH₂Ph), 75.2 (CH₂Ph), 78.0 (C-4), 79.4 (C-3), 81.3 (C-2), 86.8 (CPh₃), 126.9–128.7 (CH of phenyls), 138.3, 138.4, 138.6 (C_{guat.} of phenyls of benzyls), 143.9 ($C_{quat.}$ of phenyls of trityl) ppm. C₄₈H₄₈O₄S₂ (753.02): calcd. C 76.56, H 6.42, S 8.52; found C 76.7, H 6.5, S 7.8.

(2*R*,3*S*,4*R*)-2,3,4-Tris(benzyloxy)-5-(trityloxy)pentanal (69): This compound was prepared from 68 (10.00 g, 1.32 mmol), 2,6-lutidine (1.25 mL, 10.6 mmol) and NBS (942 mg, 5.30 mmol) in acetone

(33 mL) and H_2O (4 mL) analogously to 8. After evaporation of the acetone, the aqueous phase was extracted with CH_2Cl_2 , and after the same treatment as for 8, the residue was purified by flash chromatography (EtOAc/cyclohexane, 5:95) to give 69 (393 mg, 45%) as a yellowish oil. $[\alpha]_{D}^{20} = +7$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 3.25 (dd, 1 H, H-5a), 3.36 (dd, 1 H, H-5b), 3.78 (d, 1 H, H-2), 3.84 (ddd, 1 H, H-4), 4.08 (t, 1 H, H-3), 4.27 and 4.59 (AB, $J_{gem} = 11.7$ Hz, 2 H, CH_2Ph), 4.46 and 4.54 (AB, $J_{\text{gem}} = 11.6 \text{ Hz}$, 2 H, CH_2Ph), 4.47 and 4.52 (AB, $J_{\text{gem}} =$ 11.4 Hz, 2 H, CH₂Ph), 7.14–7.40 (m, 30 H, CH arom.), 9.59 (s, 1 H, H-1) ppm; $J_{1,2} \approx 0$, $J_{2,3} \approx 4.8$, $J_{3,4} \approx 4.5$, $J_{4,5a} = 5.3$, $J_{4,5b} = 5.3$ 5.4 Hz; $J_{5a,5b}$ = 9.9 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 62.4 (C-5), 73.0 (CH₂Ph), 73.2 (CH₂Ph), 74.1 (CH₂Ph), 77.4 (C-4), 79.1 (C-3), 81.8 (C-2), 86.9 (CPh₃), 127.1-128.6 (CH of phenyls), 137.2, 137.6, 137.9 ($C_{\text{quat.}}$ of phenyls of benzyls), 143.8 ($C_{\text{quat.}}$ of phenyls of trityl), 201.2 (C-1) ppm.

(2R,3R,4S)-2,3,4-Tris(benzyloxy)-4-(1H-imidazol-2-yl)butan-1-ol (70): This compound was prepared from 69 (5.26 g, 7.93 mmol), MeOH/NH₃ (130 mL) and glyoxal (40% in H₂O; 13.5 mL, 119 mmol) analogously to 9. The crude product obtained after extraction was not purified by chromatography but directly dissolved in dioxane (100 mL) and treated with aq. 4 M HCl (100 mL) analogously to 12. The residue was purified by flash chromatography (EtOAc) to give 70 (2.65 g, 73%) as a colourless solid. M.p. 118-119 °C (CH₂Cl₂/pentane). $[\alpha]_D^{20} = +25$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 1.95, 2.48 (2×s very br, 1 H, OH), 3.56 (dd, 1 H, H-4a), 3.73 (dd, 1 H, H-4b), 3.85 (dt, 1 H, H-3), 3.93 (dd, 1 H, H-2), 4.22 and 4.59 (AB, $J_{gem} = 11.0$ Hz, 2 H, CH_2Ph), 4.36 and 4.47 (AB, $J_{gem} = 11.6$ Hz, 2 H, CH_2Ph), 4.65 and 4.68 (AB, $J_{gem} = 11.4 \text{ Hz}, 2 \text{ H}, CH_2Ph$), 4.93 (d, 1 H, H-1), 6.92, 7.04 (2×br. s, 2×H, H-4', H-5'), 7.13-7.16, 7.26-7.34 (m, 15 H, CH arom.), 9.60 (br. s, 1 H, NH) ppm; $J_{1,2} = 3.7$, $J_{2,3} = 6.3$, $J_{3,4a} =$ 4.6, $J_{3,4b} = 4.3$, $J_{4a,4b} = 11.9$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 61.5$ (C-4), 71.7 (CH₂Ph), 73.1 (CH₂Ph), 74.6 (C-1), 74.8 (CH₂Ph), 79.5 (C-3), 81.3 (C-2), 116.2 (C-4' and C-5'), 127.9–129.2 (CH of phenyls), 137.1, 137.6, 138.1 ($3 \times C_{\text{quat.}}$ of phenyls of benzyls), 145.9 (C-2') ppm. C₂₈H₃₀N₂O₄ (358.54): calcd. C 73.34, H 6.59, N 6.11; found C 73.6, H 6.7, N 6.1.

(2R,3R,4S)-2,3,4-Tris(benzyloxy)-4-(4,5-diiodo-1H-imidazol-2-yl)butan-1-ol (71): This compound was prepared from 70 (3.15 g, 6.86 mmol) and NIS (3.71 mg, 16.5 mmol) in acetonitrile (90 mL) analogously to 23. It was purified by flash chromatography (EtOAc/cyclohexane, 4:6) as a colourless solid (4.06 g, 83%). M.p. $161-162 \text{ °C} (CH_2Cl_2/\text{hexane}). [\alpha]_D^{20} = +23 (c = 1.0, CHCl_3).$ ¹H NMR (400 MHz, CD₃OD): δ = 3.53 (ddd, 1 H, H-3), 3.58 (dd, 1 H, H-4a), 3.71 (dd, 1 H, H-4b), 3.95 (dd, 1 H, H-2), 4.36 and 4.47 (AB, $J_{gem} = 11.5$ Hz, 2 H, CH_2 Ph), 4.48 and 4.60 (AB, $J_{gem} =$ 11.1 Hz, 2 H, CH₂Ph), 4.49 and 4.57 (AB, J_{gem} = 11.4 Hz, 2 H, CH₂Ph), 4.77 (d, 1 H, H-1), 7.15–7.30 (m, 15 H, CH arom.) ppm; $J_{1,2} = 5.6, J_{2,3} = 4.9, J_{3,4a} = 5.5, J_{3,4b} = 4.2, J_{4a,4b} = 11.3$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 61.4$ (C-4), 72.1 (CH₂Ph), 73.2 (CH₂Ph), 74.4 (C-1), 74.6 (CH₂Ph), 75.7 (C-4' or C-5'), 79.2, 80.3 (C-2, C-3), 94.4 (C-4' or C-5'), 127.8-128.7 (CH of phenyls), 136.7, 136.9, 137.7 (3× $C_{\text{quat.}}$ of phenyls of benzyls), 151.9 (C-2') ppm. C₂₈H₂₈I₂N₂O₄ (710.34): calcd. C 47.34, H 3.97, I 35.73, N 3.94; found C 47.1, H 3.9, I 35.9, N 3.9.

(6*R*,7*S*,8*S*)-6,7,8-Tris(benzyloxy)-2,3-diiodo-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine (72) and (6*R*,7*S*,8*S*)-6,7,8-Tris(benzyloxy)-2-iodo-5,6,7,8-tetrahydroimidazopyridine (73): Compound 72 was prepared from 71 (1.500 g, 2.11 mmol), pyridine (32 mL) and MsCl (570 μ L, 7.4 mmol) analogously to 18. It was purified by flash chromatography (EtOAc/cyclohexane, 2:8) (1.215 g, 83%) and was used directly for the deiodination. 72: ¹H NMR (400 MHz, CDCl₃): δ = 3.80-3.88 (m, 2 H, H-5a, H-6), 3.96 (m, 1 H, H-5b), 4.09 (dd, 1 H, H-7), 4.49 and 4.67 (AB, J_{gem} = 11.6 Hz, 2 H, CH₂Ph), 4.52 and 4.61 (AB, $J_{gem} = 11.6$ Hz, 2 H, CH_2Ph), 4.66 (d, 1 H, H-8), 4.77 and 5.05 (AB, J_{gem} = 11.6 Hz, 2 H, CH₂Ph), 7.20–7.28, 7.34–7.36 (m, 15 H, CH arom.) ppm; $J_{6,7} = 5.6$, $J_{7,8} = 3.2$ Hz. ¹³C NMR $(100.6 \text{ MHz}, \text{CDCl}_3): \delta = 48.8 \text{ (C-5)}, 71.9 \text{ (C-8, CH}_2\text{Ph}), 72.3$ (CH₂Ph), 72.9 (CH₂Ph), 73.4 (C-6), 77.3 (C-7), 82.2 (C-2), 95.4 (C-3), 127.4–128.4 (CH of phenyls), 137.1, 137.1, 137.7 ($3 \times C_{quat}$ of phenyls of benzyls), 148.2 (C-8a) ppm. Compound 73 was prepared from 72 (1.082 g, 1.56 mmol), EtMgBr (3 м in Et₂O; 575 μL, 1.72 mmol) and CH₂Cl₂ (12 mL) analogously to 31. It was purified by flash chromatography (EtOAc/cyclohexane, 2:8) (771 g, 87%) as a yellowish oil. $[\alpha]_{D}^{20} = +20$ (c = 1.2, CH₂Cl₂). ¹H NMR (400 MHz, $CDCl_3$): $\delta = 3.86$ (td, 1 H, H-6), 3.93 (dd, 1 H, H-5a), 4.10 (dd, 1 H, H-7), 4.11 (dd, 1 H, H-5b), 4.53 and 4.72 (AB, $J_{gem} = 11.6$ Hz, 2 H, CH₂Ph), 4.58 and 4.68 (AB, 2 H, CH₂Ph, $J_{gem} = 11.6$), 4.69 (d, 1 H, H-8), 4.80 and 5.09 (AB, $J_{gem} = 11.6$ Hz, 2 H, CH_2 Ph), 6.86 (s, 1 H, H-3), 7.21-7.34, 7.39-7.40 (m, 15 H, CH arom.) ppm; $J_{5a,6} = 6.0, J_{5b,6} = 4.6, J_{5a,5b} = 12.4, J_{6,7} = 6.4, J_{7,8} \approx 4.0$ Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 46.1 (C-5), 72.2, 72.3, 72.4 (2×CH₂Ph, C-8), 73.2 (CH₂Ph), 73.8 (C-6), 78.7 (C-7), 82.1 (C-2), 124.2 (C-3), 127.5-128.4 (CH of phenyls), 137.4, 137.5, 138.1 $(3 \times C_{\text{quat.}} \text{ of phenyls benzyls})$, 145.4 (C-8a) ppm. $C_{28}H_{27}IN_2O_3$ (566.43): calcd. C 59.37, H 4.80, I 22.40, N 4.95; found C 59.0, H 4.9, I 22.4, N 5.0.

(6R,7S,8S)-6,7,8-Tris(benzyloxy)-2-(phenylethynyl)-5,6,7,8-tetrahydroimidazopyridine (74): This compound was prepared from a solution of 73 (390 mg, 0.69 mmol) in DMF (12 mL) and 3-phenyl-1propyne (378 µL, 3.44 mmol), NEt₃ (480 µL, 3.44 mmol), [Pd(PPh₃)₄] (54 mg, 0.34 mmol) and CuI (14 mg, 0.07 mmol) by heating for 12 h analogously to 45. It was isolated after flash chromatography (EtOAc/cyclohexane, 2:8) as a brownish oil (265 mg, 71%) which was used directly for the next step. ¹H NMR (400 MHz, CDCl₃): δ = 3.90 (td, 1 H, H-6), 3.95 (dd, 1 H, H-5a), 4.13 (dd, 1 H, H-5b), 4.14 ("dd", 1 H, H-7), 4.53 and 4.73 (AB, $J_{\text{gem}} = 11.8 \text{ Hz}, 2 \text{ H}, CH_2\text{Ph}), 4.60 \text{ and } 4.71 \text{ (AB, } J_{\text{gem}} = 11.6 \text{ Hz},$ 2 H, CH₂Ph), 4.81 (s very b, 1 H, H-8), 4.85 and 5.15 (AB, $J_{gem} =$ 11.6 Hz, 2 H, CH₂Ph), 7.03 (s, 1 H, H-3), 7.20-7.32, 7.35-7.40, 7.45–7.50 (m, 20 H, CH arom.) ppm; $J_{5a,6} = 5.9$, $J_{5b,6} = 4.2$, $J_{5a,5b}$ = 12.4, $J_{6,7}$ = 5.8 Hz. ¹³C NMR (100.6 MHz, CDCl₃): δ = 46.3 (C-5), 72.2 (CH₂Ph, C-8), 72.5 (CH₂Ph), 73.1 (CH₂Ph), 73.8 (C-6), 78.5 (C-7), 82.9 (CCPh), 89.5 (CCPh), 122.5 (C-3), 123.1 (C_{quat.} of phenyl), 124.3 (C-2), 127.5-128.4 (CH of phenyls), 137.4, 137.5, 138.1 ($3 \times C_{\text{quat.}}$ of phenyls of benzyls), 131.4 (CH of phenyl), 143.7 (C-8a) ppm.

(6R,7S,8S)-2-(2-Phenylethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-6,7,8-triol (75): A solution of 74 (145 mg, 0.27 mmol) in EtOH/ AcOH (1:1, 4 mL) was stirred under H₂ (1 bar) at room temperature in the presence of Pd(OH)₂/C (185 mg) for 12 h. The suspension was centrifuged and the catalyst rinsed several times with hot MeOH. The combined organic solutions were concentrated to dryness in vacuo. The residue was dissolved in anhydrous CH₂Cl₂ (3.5 mL) and cooled to -78 °C. BCl₃ (1 M in CH₂Cl₂, 3.5 mL, 3.48 mmol) was added to the stirred reaction mixture, which after 1 h was placed in a freezer at -20 °C for 12 h, cooled again to -78 °C, quenched with MeOH (5 mL) and concentrated in vacuo. The residue was purified by flash chromatography (CH₂Cl₂/MeOH, 9:1) to give 75 (41 mg, 56%) as a yellowish oil. $[\alpha]_{D}^{20} = -46$ (c = 0.5, MeOH).¹H NMR (400 MHz, CD₃OD): $\delta = 2.78-2.84$, 2.87-2.92 (m, 4 H, CH₂CH₂Ph), 3.80 (dd, 1 H, H-5a), 3.86 (dd, 1 H, H-7), 4.01 (ddd, 1 H, H-6), 4.16 (dd, 1 H, H-5b), 4.53 (d, 1 H, H-8), 6.67 (s, 1 H, H-3), 7.10–7.24 (m, 5 H, CH arom.) ppm; $J_{5a,6} = 6.8$, $J_{5b,6}$

= 4.6, $J_{5a,5b}$ = 12.8, $J_{6,7}$ = 7.6, $J_{7,8}$ = 5.6 Hz. ¹³C NMR (100.6 MHz, CD₃OD): δ = 31.0 (CH₂CH₂Ph), 36.7 (CH₂CH₂Ph), 49.1 (C-5), 68.8 (C-6), 69.3 (C-8), 75.1 (C-7), 116.5 (C-3), 126.9, 129.3, 129.4 (CH of phenyl), 142.7, 143.1 (C-2, $C_{quat.}$ of phenyl), 146.1 (C-8a) ppm. HR-MS: calcd. for [M + H]⁺ (C₁₅H₁₉N₂O₃) 275.1390; found 275.1392.

- M. S. M. Pearson, M. Mathé-Allainmat, V. Fargeas, J. Lebreton, *Eur. J. Org. Chem.* 2005, 2159–2191.
- [2] T. M. Gloster, S. Roberts, V. M.-A. Ducros, G. Perugino, M. Rossi, R. Hoos, M. Moracci, A. Vasella, G. J. Davies, *Biochemistry* 2004, 43, 6101–6109.
- [3] M. Hrmova, R. De Gori, B. J. Smith, A. Vasella, J. N. Varghese, G. B. Fincher, J. Biol. Chem. 2004, 279, 4970–4980.
- [4] A. Vasella, G. J. Davies, M. Böhm, Curr. Opin. Chem. Biol. 2002, 6, 619–629.
- [5] T. D. Heightman, A. T. Vasella, Angew. Chem. Int. Ed. 1999, 38, 750–770.
- [6] F. Gessier, T. Tschamber, C. Tarnus, M. Neuburger, W. Huber, J. Streith, *Eur. J. Org. Chem.* 2001, 4111–4125.
- [7] N. Panday, Y. Canac, A. Vasella, *Helv. Chim. Acta* 2000, 83, 58–79.
- [8] E. Dubost, T. Tschamber, J. Streith, *Tetrahedron Lett.* 2003, 44, 3667–3670.

- [9] D. Horton, P. Norris, in *Preparative Carbohydrate Chemistry* (Ed.: S. Hanessian), Marcel Dekker, Inc., New York, **1997**, p. 43.
- [10] C. Génu-Dellac, G. Gosselin, J.-L. Imbach, *Carbohydr. Res.* 1991, 216, 249–255.
- [11] K.-I. Tadamo, H. Maeda, M. Hoshino, Y. Iimura, T. Suami, J. Org. Chem. 1987, 52, 1946–1956.
- [12] M. Miljkovic, D. Dropkin, P. Hagel, M. Habash-Marino, Carbohydr. Res. 1984, 128, 11–20.
- [13] A. S. Rothenberg, D. L. Dauplaise, H. P. Panzer, Angew. Chem. 1983, 95, 573–574; Angew. Chem. Int. Ed. Engl. 1983, 22, 560.
- [14] K. Sonogashira, Y. Tohda, N. Hagihara, *Tetrahedron Lett.* 1975, 16, 4467–4470.
- [15] B. Iddon, *Heterocycles* **1985**, 23, 417–443.
- [16] M. R. Grimmet, Adv. Heterocycl. Chem. 1993, 57, 356.
- [17] K. Tatsuta, S. Muira, H. Gunji, Bull. Chem. Soc. Jpn. 1997, 70, 427–436.
- [18] E. Gelens, W. J. Koot, W. M. P. B. Menge, H. C. J. Ottenheijm, H. Timmerman, *Bioorg. Med. Chem. Lett.* **2000**, *10*, 1935– 1938.
- [19] N. Panday, A. Vasella, Synthesis 1999, 1459–1468.
- [20] Y.-T. La, J. Biol. Chem. 1967, 242, 5474-5480.
- [21] I. H. Segel, *Enzyme Kinetics*, John Wiley & Sons, New York, 1975, p. 109–144.
- [22] O. Kölln, H. Redlich, Synthesis 1996, 963–969.

Received: June 8, 2005 Published Online: November 17, 2005