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Abstract: Direct microbial oxidation of 2-methoxybiphenyl and 2,3-dimethoxybiphenyl 
by E. coli JM109 (pDTG601) furnished enantiomerically pure 3-(2-methoxyphenyl)- 
(1S,2R)-3,5-cyclohexadiene-l,2-diol (2) and 3-(2,3-dimethoxyphenyl)-(1S,2R)-3,5- 
cyclohexadiene-l,2-diol (3) respectively as the only reaction products. (~) 1997 Elsevier 
Science Ltd 

Although strains of Beijerinckia and Pseudomonas are known to oxidize biphenyl to 3-phenyi- 
(1S,2R)-3,5-cyclohexadiene- 1,2-diol (1), 1 few substituted biphenyl diol metabolites have been isolated 
and fully characterized. Most of the work in this class of compounds has been done on mono- 
and polychlorinated diols derived from the biooxidation of PCBs. 2a In addition, Furukawa 2b and 
collaborators have recently reported that strains of Pseudomonas are capable of oxidizing biphenyls 
bearing a wide range subtituents on one ring. Specifically, they found that hydroxylated biphenyls 
were oxidized to the corresponding bis-catechols and that the oxidation took place exclusively on the 
non-substituted aromatic ring. 3 

As a part of our ongoing program in practical chemoenzymatic synthesis of natural products we 
became interested in diols 2 and 3 as asymmetric synthons (Scheme 1). 4,5 We have found that these 
interesting metabolites can be cleanly prepared on multigram scale by direct microbial oxidation of 
the corresponding aromatic substrates with E. coli JM109 (pDTG601), a recombinant microorganism 
introduced by Gibson and collaborators that overexpresses the genetic information for the enzyme 
toluene dioxygenase from several Pseudomonas strains (Scheme 1). 6,7 
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I : R I  = H, R==H (3.0 g/l.) 
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3: R~ = MeO, R= = MeO ( 0.8 g/L) 

Scheme 1. 

Although derivatives of diols such as 2 and 3 can be obtained by chemical modification of diol 4 
by means of palladium mediated cross-coupling methodology, 8 the yields are frequently low and the 
procedures involve the use of environmentally unacceptable reagents and large amounts of expensive 
catalysts (Scheme 2). However, because the absolute stereochemistry of diol 4 is known, 9 the chemical 
process was used here to determine the absolute configuration of the new metabolites. 

Diols 2 and 3 were isolated from the microbial broth by extraction with ethyl acetate and purified by 
flash chromatography. 7,1°A1 To minimize the tendency toward aromatizacion the disubstituted olefin 
in both 2 and 3 was reduced with diimide generated from PAD (potassium azodicarboxilate) in the 
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Scheme  2. 

presence of acetic acid. Independently, diol 4, derived from iodobenzene, was converted to its tributyltin 
derivative according to Ley's procedure 8 and coupled with either 2-bromodimethylcathechol to give 
5 or with 2-bromoanisol to furnish 6, for comparison with the reduced metabolite. 

The absolute stereochemistry of diols 2 I° and 311 was thus unequivocally proven by comparison 
of the optical rotation of the reduced derivatives 511 and 61° respectively to the corresponding value 
obtained for the same compounds prepared from the known diol 4 (Scheme 2). Since the values 
obtained in either cases were identical within the experimental error we assigned the stereochemistry 
of 2 and 3 as shown. 

In summary, two new metabolites from the microbial oxidation of oxygen-containing biphenyls are 
reported. The resulting diols are obtained as the sole product of the biotransformation and constitute, 
to our knowledge, the first example of this class of metabolites isolated from oxygenated biphenyls. 
Their use in new synthetic ventures will be reported in due course. 
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