Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Original article

1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1*H*-1,2,4-triazole-3-carboxamides: Synthesis, molecular modeling, evaluation of their anti-inflammatory activity and ulcerogenicity

癯

Mohamed Abdel-Aziz^a, Eman A. Beshr^a, Islam M. Abdel-Rahman^a, Keriman Ozadali^b, Oya Unsal Tan^b, Omar M. Aly^{a,*}

^a Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt ^b Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sihhiye, Ankara, Turkey

ARTICLE INFO

Article history: Received 17 September 2013 Received in revised form 26 February 2014 Accepted 2 March 2014 Available online 3 March 2014

Keywords: 1,2,4-Triazole Anti-inflammatory Ulcerogenicity Histopathological investigation Cyclooxygenase activity Docking study

ABSTRACT

A series of novel 1-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1*H*-1,2,4-triazole-3-carboxamides were synthesized and confirmed with different spectroscopic techniques. The prepared compounds exhibited remarkable anti-inflammatory activity that represents 38%-100% of indomethacin activity and 44%-115% of celecoxib activity after 3 h. The anilides **5a**-**I** and hydrazide **6** exhibit low incidence of gastric ulceration compared to indomethacin which was confirmed with histopathological investigation. *In vitro* COX-1/COX-2 inhibition studies showed compounds **4b** (COX-1 IC₅₀ = 45.9 μ M; COX-2 IC₅₀ = 68.2 μ M) and **6** (COX-1 IC₅₀ = 39.8 μ M; COX-2 IC₅₀ = 46.3 μ M) are the most potent COX inhibitors in the tested compounds. The binding mode for some of the tested compounds to the enzymes was predicted using docking studies.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most useful clinical therapies for the treatment of pain, fever, and inflammation [1]. The major mechanism by which NSAIDs exert their anti-inflammatory activity is through inhibition of cyclooxygenase-derived prostaglandin synthesis, which is also responsible for the gastrointestinal [2–6], renal [7–9], and hepatic side effects [10] that are observed mainly in chronic use of NSAIDs. Diaryl-heterocycles have become the major class of selective COX-2 inhibitors, such as celecoxib, rofecoxib, parecoxib and valdecoxib (Fig. 1), which display improved gastrointestinal safety profile compared to the traditional NSAIDs [11-13]. However, the cardiovascular risk associated with "-coxibs" has become a concern since rofecoxib and valdecoxib were withdrawn from the market [14]. Therefore, the challenge still exists for the pharmaceutical industry to develop, effective anti-inflammatory agents with enhanced safety profile. The considerable biological importance of triazoles

http://dx.doi.org/10.1016/j.ejmech.2014.03.001 0223-5234/© 2014 Elsevier Masson SAS. All rights reserved. has stimulated a lot of interest, 1,2,4-triazoles and their heterocyclic derivatives have a wide range of therapeutic properties like antibacterial [15–17], antifungal [16–18] antitubercular [19–21], antiviral [22,23], analgesic [24,25], anti-inflammatory [25-27], anticonvulsant [28,29], antidepressant [30], anticancer [31,32], antihypertensive [33], hypoglycemic [34], insecticidal [35,36] and plant growth activities [37]. Besides, studies that described simple chemical derivatization (esterification or amidation) of the carboxylic function of representative NSAIDs showed that this approach resulted not only in the reduction of the ulcerogenic effect but also in an increased anti-inflammatory activity [38-40]. Various oxadiazole, triazole, thiadiazole and triazine derivatives of indomethacin have been synthesized and tested for antiinflammatory activity. The test compounds inhibited the induction of gastric mucosal lesions which may be related to inhibition of lipid peroxidation in gastric mucosa [41]. Promoted with the abovementioned studies and as a continuation of our research interest in the synthesis and biological activities of novel NSAIDs derivatives with lower ulcerogenic liability [42–44], the present study is concerned with the synthesis of novel 1-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1*H*-1,2,4-triazole-3-carboxamides with the objective of discovering novel and potent anti-inflammatory

^{*} Corresponding author. E-mail addresses: omarsokkar@yahoo.com, omarsokkar@mu.edu.eg (O.M. Aly).

Fig. 1. Selective COX-2 inhibitors.

agents. The ability of the prepared compounds to induce gastric toxicity has been also evaluated. Among the synthesized series, some selected derivatives were tested for their inhibitory activity against COX-2 and COX-1 enzymes and their binding mode to the enzymes were predicted using docking studies.

2. Results and discussions

2.1. Chemistry

The synthetic route used to synthesized 1-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazole-3-carboxamides 4a-c, 5a-l and 6 is outlined in Scheme 1. Key starting compound, 2-(3,4,5-trimethoxybenzamido)acetic acid 1 was prepared in good yield (85%) by the reaction of glycine with 3,4,5trimethoxybenzoyl chloride in 10% NaOH. Heating of compound 1 with acetic anhydride afforded the corresponding compound 2. The synthesis of the key intermediate 3 was carried out using Kuskov like reaction through coupling of the diazonium salt of 4methoxyaniline with the active methylene of 2 in presence of sodium acetate. According to Sawdey rearrangement [45], reaction of **3** with ammonia or appropriate amine in methanol gave the corresponding amides **4a**–**c** in 55–71% yield. Also, treatment of **3** with primary aromatic amines in acidic medium formed the target anilides **5a-1** in 35–62% yield. Moreover, reaction of **3** with hydrazine monohydrate in methanol afforded hydrazide 6 in 65% yield. The physical and spectral data are listed in the experimental part.

2.2. Biological investigations

2.2.1. Screening of anti-inflammatory activity

The synthesized compounds **4a–c**, **5a–l** and **6** were evaluated for their anti-inflammatory activity using carrageenan-induced paw edema method in rats described by Winter *et* al [46]. The test compounds, celecoxib and indomethacin (reference drugs)

were administered orally at a dose level of (0.28 mmol/kg) 30 min before carrageenan injection at the right hind paw of Albino male rats. The thickness of both paws was measured at different time intervals of 1, 2, 3, 4 and 5 h after carrageenan injection. The antiinflammatory activity of the tested compounds, celecoxib and indomethacin was calculated as the percentage decrease in edema thickness induced by carrageenan and was determined using the following formula:

% of edema inhibition =
$$\frac{(V_{\rm R} - V_{\rm L})_{\rm control} - (V_{\rm R} - V_{\rm L})_{\rm treated}}{(V_{\rm R} - V_{\rm L})_{\rm control}} \times 100$$

where $V_{\rm R}$ represents the mean right paw thickness and $V_{\rm L}$ represents the mean left paw thickness.

 $(V_{\rm R}-V_{\rm L})_{\rm control}$ represents the mean increase in paw thickness in the control group of rats.

 $(V_{\rm R}-V_{\rm L})_{\rm treated}$ represents the mean increase in paw thickness in rats treated with the test compounds.

The results listed in Table 1 show the percentage of edema inhibition induced by carrageenan for all of the test compounds and indomethacin versus time in h. The obtained results listed in Table 1 indicated that most of the test compounds showed significant (p < 0.01) inhibition against carrageenan-induced paw edema in rats and the maximum anti-inflammatory activity was obtained after 3 h which is the time required for reaching the maximum activity and then the activity decreased gradually for the next 2 h. Indomethacin showed an inhibitory activity of 78% against carrageenan-induced paw edema after 3 h while celecoxib exhibited an inhibitory activity of 68% against carrageenan-induced paw edema after 3 h. Compounds **4a**-**c** exhibited good antiinflammatory activity of 72%, 74% and 69%, respectively, which represents 92%, 95% and 88% of indomethacin activity and 106%, 109% and 101% of celecoxib activity, respectively, after 3 h (Table 2).

4a: R₁ = H, 4b: R₁ = CH₃, 4c: R₁ = CH₂CH₃. 5a: R₂ = 4-OCH₃, 5b: R₂ = 2-OCH₃, 5c: R₂ = 4-CH₃, 5d: R₂ = 2-CH₃, 5e: R₂ = 4-Br, 5f: R₂ = 4-Cl, 5g: R₂ = 3-F, 5h: R₂ = 4-CF₃, 5i: R₂ = 3,4-Di-OCH₃, 5j: R₂ = 4-COOH, 5k: R₂ = 4-OH, 5l: R₂ = H.

Scheme 1. Synthesis of the target compounds 4a-c, 5a-l and 6.

The anti-inflammatory activity of amide derivatives **4a**–**c** revealed that the unsubstituted amide **4a** was found to possess good antiinflammatory activity (72%). The substitution on the amide nitrogen by methyl group **4b** lead to a slight increase of the antiinflammatory activity (74%), while substitution on the amide nitrogen by ethyl group **4c** lead to a slight decrease of the antiinflammatory activity (69%). The anilides **5a–1** showed a variable anti-inflammatory activity ranging from 30% to 78% and these results represent 38%–100% of indomethacin activity and 44%–115% of celecoxib activity, respectively (Table 2). The results indicated that substitution on the amide nitrogen by phenyl **5l**, 4methoxyphenyl **5a**, 2-methoxyphenyl **5b**, 4-methylphenyl **5c**, 2methylphenyl **5d**, 4-bromophenyl **5e**, 3-trifluoromethylphenyl **5h** and 4-hydroxyphenyl **5k** moiety resulted in a dramatic decrease of the anti-inflammatory activity (30%–67%), while substitution on the amide nitrogen by 4-fluorophenyl moiety **5g** and 4carboxyphenyl **5j** moieties increases the anti-inflammatory activity (72%–74%). Moreover, substitution on the amide nitrogen by 4chlorophenyl **5f**, 3,4-dimethoxyphenyl **5i** moieties resulted in an increase of the anti-inflammatory activity of the test compounds and resulted in equipotent activity compared to indomethacin (78%). The hydrazide derivative **6** showed an anti-inflammatory activity of 57% which represents 73% and 84% of indomethacin and celecoxib activity, respectively.

Table	-1
Tanie	
IUNIC	

The anti-inflammator	v activit	y at different	time interva	ls and ulco	er indices o	f compounds	4a-c, 5a	—I and 6 co	mpared to	celecoxib	and indomethacin.
----------------------	-----------	----------------	--------------	-------------	--------------	-------------	----------	-------------	-----------	-----------	-------------------

Compound	% Of edema inhibitio	UI mean \pm S.E.M				
	1 h	2 h	3 h	4 h	5 h	
Control	0	0	0	0	0	0.5 ± 0.06
4a	$40.00 \pm 1.45^{***}$	$59.00 \pm 2.07^{***}$	$72.00 \pm 1.08^{***}$	$71.00 \pm 2.52^{***}$	$64.00 \pm 2.21^{***}$	$9.0 \pm 1.03^{**}$
4b	$56.00 \pm 1.18^{***}$	$74.00 \pm 2.62^{***}$	$74.00 \pm 2.31^{***}$	$65.00 \pm 1.16^{***}$	$50.00 \pm 1.13^{***}$	$7.5 \pm 0.18^{**}$
4c	$60.00 \pm 2.07^{***}$	$68.00 \pm 1.22^{***}$	$69.00 \pm 1.24^{***}$	$58.00 \pm 1.24^{***}$	$52.00\pm1.20^{***}$	$9.0 \pm 0.79^{***}$
5a	$39.00 \pm 1.72^{***}$	$45.00 \pm 1.47^{***}$	$67.00 \pm 2.10^{***}$	$63.00 \pm 2.75^{***}$	$51.00 \pm 2.51^{***}$	$4.5 \pm 0.92^{***}$
5b	$52.00 \pm 1.07^{***}$	$57.00 \pm 1.13^{***}$	$30.00 \pm 2.44^{***}$	$24.00 \pm 1.94^{***}$	$10.00 \pm 2.32^{***}$	$5.0 \pm 1.31^{**}$
5c	$38.00 \pm 1.16^{***}$	$60.00\pm1.63^{***}$	$60.00 \pm 3.41^{***}$	$58.00 \pm 2.31^{***}$	$42.00\pm1.73^{***}$	$5.5 \pm 1.63^{**}$
5d	$19.00 \pm 1.12^{***}$	$30.00 \pm 2.16^{***}$	$50.00 \pm 2.60^{***}$	$46.00 \pm 1.20^{***}$	$47.00\pm1.16^{***}$	$1.5 \pm 0.86^{**}$
5e	$40.00 \pm 2.38^{***}$	$50.00 \pm 2.11^{***}$	$66.00 \pm 1.71^{***}$	$59.00 \pm 1.08^{***}$	$57.00 \pm 3.69^{***}$	$1.8 \pm 0.18^{***}$
5f	$55.00 \pm 1.26^{***}$	$70.00 \pm 2.02^{***}$	$78.00 \pm 2.05^{***}$	$75.00 \pm 1.57^{***}$	$70.00\pm1.80^{***}$	$5.0 \pm 0.47^{***}$
5g	$48.00 \pm 2.16^{***}$	$67.00 \pm 1.47^{***}$	$72.00 \pm 1.89^{***}$	$70.00 \pm 1.47^{***}$	$53.00 \pm 2.11^{***}$	$13 \pm 0.25^{***}$
5h	$48.00 \pm 1.41^{***}$	$55.00 \pm 1.46^{***}$	$65.00 \pm 1.42^{***}$	$56.00 \pm 2.03^{***}$	$50.00 \pm 2.16^{***}$	$5.0 \pm 0.50^{***}$
5i	$57.00 \pm 1.41^{***}$	$68.00 \pm 2.25^{***}$	$78.00 \pm 3.34^{***}$	$70.00 \pm 2.23^{***}$	$61.00\pm3.09^{***}$	$7.0 \pm 0.70^{***}$
5j	$50.00 \pm 1.38^{***}$	$57.00 \pm 3.08^{***}$	$74.00 \pm 1.65^{***}$	$69.00 \pm 1.86^{***}$	$60.00\pm1.18^{***}$	$12 \pm 1.46^{**}$
5k	$36.00 \pm 1.69^{***}$	$35.00 \pm 1.49^{***}$	$50.00 \pm 2.71^{***}$	$37.00 \pm 4.47^{***}$	$27.00\pm1.64^{***}$	$1.0 \pm 1.0^{***}$
51	$45.00\pm1.60^{**}$	$51.00\pm1.79^{***}$	$54.00 \pm 2.39^{***}$	$50.00 \pm 2.44^{***}$	$46.00 \pm 2.06^{***}$	$4.0\pm2.0^{**}$
6	$36.00 \pm 1.80^{***}$	$47.00\pm1.07^{***}$	$57.00 \pm 1.98^{***}$	$54.00 \pm 2.53^{***}$	$56.00 \pm 2.24^{***}$	$2.0 \pm 2.67^{**}$
Celecoxib	$42.00 \pm 1.60^{***}$	$48.00\pm0.60^{***}$	$68.00 \pm 1.20^{***}$	$57.00 \pm 0.80^{***}$	$51.00 \pm 1.40^{***}$	$0.50 \pm 0.60^{***}$
Indomethacin	$55.00 \pm 0.78^{***}$	$68.00 \pm 2.23^{***}$	$78.00 \pm 1.14^{***}$	$81.00 \pm 2.36^{***}$	$86.00 \pm 1.47^{***}$	$41\pm0.38^{***}$

**Significantly different from control group at P < 0.01.

***Significantly different from control group at P < 0.001.

Note. One way ANOVA test was applied to determine the significance of the difference between the control group and rats treated with the tested compounds. (n = 4), **p < 0.01, **p < 0.001, significant difference from control group.

2.2.2. Screening of ulcerogenicity

The *in vivo* ulcerogenic liability was evaluated for the synthesized compounds **4a–c**, **5a–l** and **6** relative to both celecoxib and indomethacin according to a reported procedure [47]. Ulcers were classified into levels, level I, ulcer area less than 1 mm², level II, ulcer area from 1 to 3 mm² and level III, ulcer area more than 3 mm², and the ulcer index (UI) was calculated as follows:

$UI = 1 \times (number of ulcers level I) + 2$

- \times (number of ulcers level II) + 3
- \times (number of ulcers level III), etc...

The UI of compounds $4\mathbf{a}-\mathbf{c}$, $5\mathbf{a}-\mathbf{l}$ and $\mathbf{6}$ were calculated and listed in Table 1 as (mean \pm S.E.M). The results of ulcerogenic liability revealed that indomethacin caused significant ulcerogenic toxicity with UI of **41**, while celecoxib exhibited very low UI of 0.5. The majority of the synthesized compounds exhibited much lower

Table 2

% Activity of the tested compounds **4a–c**, **5a–l** and **6** relative to **celecoxib** and **indomethacin** after 3 h.

Compound	% Activity relative to indomethacin after 3 h	% Activity relative to celecoxib after 3 h		
Control	0	0		
4a	92.00	106.00		
4b	95.00	109.00		
4c	88.00	101.00		
5a	86.00	99.00		
5b	38.00	44.00		
5c	77.00	88.00		
5d	64.00	74.00		
5e	85.00	97.00		
5f	100.00	115.00		
5g	92.00	106.00		
5h	83.00	96.00		
5i	100.00	115.00		
5j	95.00	109.00		
5k	64.00	74.00		
51	69.00	79.00		
6	73.00	84.00		
Celecoxib		100.00		
Indomethacin	100.00			

UIs compared to indomethacin. Compounds $4\mathbf{a}-\mathbf{c}$ exhibited lower ulcerogenic liability relative to indomethacin with UIs of 9, 7.5 and 9, respectively, (Fig. 2A). The anilides $5\mathbf{a}-\mathbf{l}$ also exhibited lower gastric toxicity relative to indomethacin with UI ranging from 1 to 13 (Fig. 2B–D). The hydrazide derivative **6** showed lower gastric toxicity relative to indomethacin with UI of 2 (Fig. 2A). The obtained results revealed that all of the tested compounds exhibit safer ulcerogenic liability relative to indomethacin.

2.2.3. Histopathological investigation

Different stomach sections of the ulcers including the control and the treated groups were stained by standard hematoxylin and eosin stains. The produced slides were subjected to microscopical examination and pictures were picked for these slides.

The control (Fig. 3A) showed no lesions and characterized by the presence of continuous mucosal layer. Indomethacin (Fig. 3B) exhibited marked loss of mucosal membrane at the areas of ulceration where certain areas of fundic glands were totally degenerated and cellular details were lost. Capillary inflammatory cells were also found and apoptotic glandular epithelial cells could be detected. The stomach sections of the ulcers treated with anilide 5d showed normal morphology for the fundic glands and the results are in consistence with the previous results [42-44]. The edema was very minimal and also the vasodilatation of blood capillaries was not marked and this was confirmed by the low UI of 1.5 (Fig. 3C). A very low incidence of gastric ulceration was induced by the anilide 5k (Fig. 3D) where a continuous mucosal layer was observed with the absence of capillary inflammatory cells and the ulcerative damage of the gastric mucosa was markedly decreased which was proved by the very low UI of 1.

2.3. Cyclooxygenase inhibitory activity

Compounds **4b**, **5e**, **5i**, **5f** and **6** were evaluated for their ability to inhibit COX-1 and COX-2 enzymatic activity using COX Inhibitor Screening Assay Kit. The potency (IC_{50} values) of test compounds was determined and compared to that of reference molecules NS-398 and indomethacin; their IC_{50} values and selectivity indices (SI) are given in Table 3.

Fig. 2. A. UI of compounds 4a–c and 6 compared to indomethacin and celecoxib expressed as mean ± S.E.M. B. UI of compounds 5a–d compared to indomethacin and celecoxib expressed as mean ± S.E.M. D. UI of compounds 5i–l compared to indomethacin and celecoxib expressed as mean ± S.E.M. D. UI of compounds 5i–l compared to indomethacin and celecoxib expressed as mean ± S.E.M. D. UI of compounds 5i–l compared to indomethacin and celecoxib expressed as mean ± S.E.M. D. UI of compounds 5i–l compared to indomethacin and celecoxib expressed as mean ± S.E.M. D. UI of compounds 5i–l compared to indomethacin and celecoxib expressed as mean ± S.E.M. D. UI of compounds 5i–l compared to indomethacin and celecoxib expressed as mean ± S.E.M. D. UI of compounds 5i–l compared to indomethacin and celecoxib expressed as mean ± S.E.M. D. UI of compounds 5i–l compared to indomethacin and celecoxib expressed as mean ± S.E.M. D. UI of compounds 5i–l compared to indomethacin and celecoxib expressed as mean ± S.E.M.

In vitro COX-1/COX-2 inhibition studies showed that the most potent COX inhibitors in this series were **4b** (COX-1 IC₅₀ = 45.9 μ M; COX-2 IC₅₀ = 68.2 μ M) and **6** (COX-1 IC₅₀ = 39.8 μ M; COX-2 IC₅₀ = 46.3 μ M) whereas they did not have selectivity (SI ~ 1). Compounds **5e**, **5f** and **5i** did not inhibit cyclooxygenase enzymes at the highest test compound concentration (100 μ M).

2.4. Docking studies

With the aim of getting insights into the structural basis for their activities, compound **4b**, **5e**, **5i**, **5f** and **6** were docked into the active site of COX-1 and COX-2 enzyme by using MOE software program. Docking studies in COX-2 showed that the trimethoxyphenyl ring of all the compounds fitted into the hydrophobic cavity formed by Phe381, Leu384, Tyr385, Trp387, Phe518 and Ser530. In the crystal structure of COX-2, this hydrophobic cavity was occupied by bromophenyl ring of SC-558. **4b** and **6** were oriented so that their methoxyphenyl group fitted into the adjunct pocket which is responsible for COX-2 inhibitory activity (Fig. 4A). The oxygen atom of methoxy group of **4b** and **6** formed weak bonds with Arg513 and His90 approximately at distances of 3.8 and 3.1 Å respectively. Furthermore, hydrogen bonds were observed between Arg120 and C=O group of **4a** and **6** at distances of 2.24 and 2.12 Å respectively.

On the other hand, it was seen that **5e**, **5i** and **5f** oriented in a different way compared to **4a** and **6**. These compounds were unable to fill the adjunct pocket because of their bulky groups (Fig. 4B). This may explain why **4b** and **6** are the active derivatives whereas **5e**, **5i** and **5f** are not.

In COX-1 enzyme, it was observed that the methoxy group, at meta position of trimethoxyphenyl ring of **4a** and **6**, formed strong hydrogen bonds with hydroxyl group of Ser530. It can be assumed that the increase in COX-1 potency of **4a** and **6** (Fig. 4C) is due to the presence of this interaction.

3. Conclusions

A group of novel 1-(4-methoxyphenyl)-5-(3,4,5trimethoxyphenyl)-1H-1,2,4-triazole-3-carboxamide derivatives was prepared and characterized by different spectroscopic and elemental analysis techniques. Most of the synthesized compounds showed significant anti-inflammatory activity using carrageenaninduced rat paw edema method and the tested compounds exhibit safer UI relative to indomethacin. Histopathological examination indicated that the novel anilides **5a**–**1** have very low incidence of gastric ulceration. Considering the COX inhibitory activity and docking study together, it is observed that substitution of less

Fig. 3. A. Photomicrograph of the mucosa of fundic stomach of control. B. Photomicrograph of the mucosa of fundic stomach of indomethacin. C. Photomicrograph of the mucosa of fundic stomach of compound 5d. D. Photomicrograph of the mucosa of fundic stomach of compound 5k.

bulky groups such as CH₃ and NH₂ on the amide nitrogen of 1-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazole-3-carboxamide increased the COX activity. In conclusion the prepared 1-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazole-3-carboxamide derivatives looks as a promising approach to improve the safety of NSAIDs without altering their effectiveness.

4. Experimental

4.1. Chemistry

Melting points were determined on Stuart electrothermal melting point apparatus and were uncorrected. IR spectra were

Table 3

In vitro COX-1 and COX-2 enzyme inhibition data for compounds **4b**, **5e**, **5f**, **5i** and **6** compared to **NS-398** and **indomethacin**.

Compound	R	$\text{COX-1 IC}_{50} \left(\mu M\right)^a$	COX-2 $IC_{50} \left(\mu M\right)^a$	SI ^b
4b	CH ₃	45.9	68.2	0.67
5e	4-Br-C ₆ H ₄	>100	>100	nd ^c
5f	4-Cl-C ₆ H ₄	>100	>100	nd ^c
5i	3,4-diOCH ₃ -C ₆ H ₄	>100	>100	nd ^c
6	NH ₂	39.8	46.3	0.86
NS-398		213.2	2.1	101.52
Indomethacin		0.6	18.5	0.03

The result (IC_{50} , μM) is the mean of two determinations acquired using the COX Inhibitor Screening Assay Kit (Catalog No. 560131, Cayman Chemicals Inc., Ann Arbor, MI, USA).

^a The in vitro test compound concentration required to produce 50% inhibition of enzymatic activity.

^b In vitro COX-2 selectivity index (COX-1 IC₅₀/COX-2 IC₅₀).

^c Not determined.

recorded on Nicolet iS5 FT-IR spectrometer at Minia University. NMR spectra were carried out using a Bruker Advance 300 MHz NMR spectrometer and a Bruker Advance 400 MHz NMR spectrometer using TMS as internal reference. Chemical shifts (δ) values are given in parts per million (ppm) relative to CDCl3 (7.29 for proton and 76.9 for carbon) or DMSO-d₆ (2.50 for proton and 39.50 for carbon) and coupling constants (J) in Hertz. Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublet; m, multiplet. Accurate masses were obtained on a Bruker Daltonics BioTOF Mass Spectrometer, in high resolution mode using cesium acetate solution (1 mM) in methanol as internal standard in a positive ion mode with flow injection electron spray ionization (ESI) with a flow rate of 120 µL/h and the EI-MS was carried out using Jeol JMS 600 spectrometers. High resolution mass spectra (HRMS) were obtained on a JEOL JMS D-300 mass spectrometer. The progress of reactions and the purity of the prepared compounds were monitored by thin-layer chromatography (TLC) using Merck 9385 pre-coated aluminum plate silica gel (Kieselgel 60) 5×20 cm plates with a layer thickness of 0.2 mm. The spots were detected by exposure to UV-lamp at $\lambda = 254$ nm. Elemental analysis was performed on Vario El Elementar CHN Elemental analyzer, organic microanalysis section, national research center, Giza, Egypt and the results were within $\pm 0.4\%$ of the theoretical values.

4.1.1. Synthesis of 4-[(4-methoxyphenyl)hydrazono]-2-(3,4,5trimethoxyphenyl)-4H-oxazol-5-one 3

Trimethoxyhippuric acid **1** (0.13 mol, 35.00 g) in acetic anhydride (75 mL) was heated until a clear solution of **2** was obtained; this solution was cooled to room temperature (solution A). To a cold solution of p-methoxyaniline (0.1 mol, 12.31 g) in 5N HCl (35 mL) in

Fig. 4. A. The orientation of compounds **4b**, **6** and **SC-558** (shown as blue, yellow and purple respectively) in COX-2 active site. B. The orientation of **5e**, **5f**, **5i** and **SC-558** (shown as yellow, blue, green and purple respectively) in COX-2 active site. C. The orientation of **4b** and **6** (shown as blue and yellow respectively) in COX-1 active site. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

an ice-salt bath -5 to 0 °C, a solution of sodium nitrite (0.13 mol, 8.97 g) in water (15 mL) was added in a dropwise manner. The reaction mixture was left for 10 min (solution B). Solution A was added to solution B in presence of anhydrous sodium acetate

(0.18 mol, 15 g). The reaction mixture was stirred at 0-10 °C for 2 h, the formed precipitate was filtered off and dried (yield 70%).

4.1.2. General procedure for the synthesis of 1-(4-methoxyphenyl)-5-(3,4,5-trimethoxy-phenyl)-1H-1,2,4-triazole-3-carboxamides (**4a**-**c**)

A suspension of compound **3** (0.01 mol, 3.85 g) in methanol (30 mL) was treated with aqueous solution of ammonium hydroxide (25%, 50 mL) or methyl amine solution 41% (0.02 mol, 0.62 g) or ethyl amine (0.02 mol, 0.90 g) was refluxed for 30 min. The solvent was evaporated in vacuo. The formed precipitate solid was crystallized from ethanol.

4.1.2.1. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] triazole-3-carboxylic acid amide **4a**. Pale yellow crystals (2.53 g; 65.90% yield); mp 180 °C; IR (KBr, cm⁻¹): 3329 (NH₂), 1669 (C=O) 1588 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 3.69 (s, 6H, 2OCH₃), 3.86 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 6.65 (br.s, 2H, CONH₂), 6.78 (s, 2H, Ar–H), 6.98 (d, 2H, *J* = 9.00 Hz, Ar–H), 7.35 (d, 2H, *J* = 9.00 Hz, Ar–H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 57.68 (CH₃), 58.04 (2CH₃), 62.85 (CH₃), 107.74 (CH), 115.88 (CH), 122.81 (C), 128.36 (CH), 131.79 (C), 140.85 (C), 153.91 (C), 155.67 (C), 156.18 (C), 161.08 (C), 162.00 (CO); EI-MS (70 eV) m/z (%): 384 (100) (M⁺), 372 (13), 371 (31), 340 (54), 339 (30), 324 (30); Anal. Calcd for C₁₉H₂₀N₄O₅ (384.14): C, 59.37; H, 5.24; N, 14.58. Found: C, 59.40; H, 5.22; N, 14.33.

4.1.2.2. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] triazole-3-carboxylic acid methylamide **4b**. Yellowish brown powder (2.82 g; 70.85% yield); mp 175 °C; IR (KBr, cm⁻¹): 3359 (NH), 1676 (C=O) 1584 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 3.04 (d, 3H, *J* = 5.1 Hz, NH–<u>CH₃</u>), 3.66 (s, 6H, 2OCH₃), 3.83 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 6.73 (s, 2H, Ar–H), 6.95 (d, 2H, *J* = 9.00 Hz, Ar–H), 7.31 (d, 2H, *J* = 9.00 Hz, Ar–H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 28.46 (CH₃), 57.65 (CH₃), 57.66 (CH₃), 57.98 (CH₃), 62.82 (CH₃), 107.63 (CH), 115.81 (CH), 122.99 (C), 128.37 (CH), 131.85 (C), 140.74 (C), 153.86 (C), 155.34 (C), 156.75 (C), 160.50 (C), 161.00 (C=O); EI-MS (70 eV) m/z (%): 398 (17) (M⁺), 388 (40), 386 (100), 370 (15), 367 (14), 340 (33); Anal. Calcd for C₂₀H₂2N4O₅ (398.16): C, 60.29; H, 5.57; N, 14.06. Found: C, 59.90; H, 5.60; N, 13.80.

4.1.2.3. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] triazole-3-carboxylic acid ethylamide **4c**. Brown powder (2.27 g; 55.10% yield); mp 155 °C; IR (KBr, cm⁻¹): 3350 (NH), 1675 (CO), 1586 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.29 (t, 3H, J = 7.50 Hz, CH₃), 3.56 (p, 2H, CH₂), 3.69 (s, 6H, 2OCH₃), 3.85 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 6.75 (s, 2H, Ar–H), 6.97 (d, 2H, J = 8.50 Hz, A-H), 7.20 (t, 1H, J = 8.00 Hz, NH), 7.33 (d, 2H, J = 9.00 Hz, ArH); ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm): 15.25 (CH₃), 34.04 (CH₂), 56.09 (CH₃), 56.16 (CH₃), 60.59 (CH₃), 106.70 (CH), 115.08 (CH), 122.50 (C), 128.32 (CH), 131.00 (C), 139.36 (C), 153.07 (C), 154.68 (C), 156.53 (C), 158.98 (C), 160.42 (C=O); HRMS (FAB) m/z Calcd for C₂₁H₂₅N₄O₅ (M⁺ + 1): 413.1825; found: 413.1846; Anal. Calcd for C₂₁H₂₄N₄O₅ (412.17): C, 61.15; H, 5.87; N, 13.58. Found: C, 61.00; H, 5.70; N, 13.40.

4.1.3. General procedure for the synthesis of 1-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazole-3-carboxyanilides (**5a**–**l**)

A mixture of compound **3** (3.85 g, 0.01 mol) and appropriate primary aromatic amine (0.01 mol) was refluxed in acetic acid (50 mL) in the presence of anhydrous sodium acetate (1.5 g, 0.018 mol) for 2 h. The reaction mixture was cooled and poured into ice water (50 mL). The formed precipitate was filtered off, dried and recrystallized from aqueous methanol.

4.1.3.1. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] triazole-3-carboxylic acid (4-methoxyphenyl)amide **5a**. Dark brown crystals (2.40 g, 48.98% yield); mp 190 °C; IR (KBr, cm⁻¹): 3380 (NH), 1686 (CO), 1588 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 3.75 (s, 6H, 2OCH₃), 3.86 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 6.83 (s, 2H, Ar-H), 6.94-7.04 (m, 4H, Ar-H), 7.41 (d, 2H, *J* = 9.00 Hz, Ar-H), 7.71 (d, 2H, *J* = 9.00 Hz, Ar-H), 9.03 (s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 57.40 (CH₃), 58.10 (CH₃), 62.90 (CH₃), 107.78 (CH), 115.56 (CH), 115.91 (CH), 122.80 (CH), 128.41 (CH), 131.72 (C), 131.81 (C), 141.50 (C), 154.01 (C), 156.50 (C), 157.10 (C), 157.41 (C), 161.13 (C=O); EI-MS (70 eV) m/z (%): 490 (15) (M⁺), 451 (14), 444 (20), 422 (15), 421 (29), 403 (31), 389 (100), 374 (16); Anal. Calcd for C₂₆H₂₆N₄O₆ (490.19): C, 63.66; H, 5.34; N, 11.42. Found: C, 63.54; H, 5.60; N, 11.20.

4.1.3.2. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] triazole-3-carboxylic acid (2-methoxyphenyl)amide **5b**. Golden yellow crystals (2.69 g, 54.90% yield); mp 131–132 °C; IR (KBr, cm⁻¹): 3381 (NH), 1696 (CO), 1588 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 3.75 (s, 6H, 2OCH₃), 3.91 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 3.98 (s, 3H, OCH₃), 6.84 (s, 2H, Ar–H), 6.97–7.17 (m, 5H, Ar–H), 7.41 (d, 2H, *J* = 9.00 Hz, Ar–H), 8.63 (dd, 1H, *J* = 7.80 and 1.80 Hz, Ar–H), 9.62 (s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 57.71 (CH₃), 57.83 (CH₃), 58.08 (CH₃), 62.89 (CH₃), 107.87 (CH), 111.38 (CH), 115.86 (CH), 121.51 (CH), 122.37 (CH), 123.14 (C), 125.40 (C), 128.39 (CH), 128.48 (CH), 131.97 (C), 140.85 (C), 149.23 (C), 153.94 (C), 155.69 (C), 157.23 (C), 157.50 (C), 161.07 (C=O); EI-MS (70 eV) m/z (%): 490 (12) (M⁺), 403 (67), 388 (22), 387 (100), 371 (13), 339 (12); Anal. Calcd for C₂₆H₂₆N₄O₆ (490.19): C, 63.66; H, 5.34; N, 11.42. Found: C, 63.50; H, 5.20; N, 11.10.

4.1.3.3. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4]triazole-3-carboxylic acid p-tolylamide **5c**. Pale brown powder (2.60 g, 54.85% yield); mp 167 °C; IR (KBr, cm⁻¹): 3351 (NH), 1691 (CO), 18589 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 2.39 (s, 3H, CH₃), 3.74 (s, 6H, 2OCH₃), 3.90 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 6.82 (s, 2H, Ar-H), 7.01 (d, 2H, J = 8.70 Hz, Ar-H), 7.21 (d, 2H, J = 8.10 Hz, Ar-H), 7.40 (d, 2H, J = 8.70 Hz, Ar-H), 7.68 (d, 2H, J = 8.10 Hz, Ar-H), 9.01 (s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 23.37 (CH₃), 57.71 (CH₃), 58.09 (CH₃), 62.89 (CH₃), 107.77 (CH), 115.89 (CH), 121.15 (CH), 122.95 (C), 128.40 (CH), 130.69 (CH), 131.86 (C), 135.31 (C), 135.96 (C), 140.91 (C), 153.99 (C), 155.62 (C), 156.92 (C), 157.39 (C), 161.09 (C=O); EI-MS (70 eV) m/z (%): 474 (16) (M⁺), 469 (16), 450 (10), 424 (21), 421 (49), 390 (35), 389 (74), 375 (34), 324 (65); Anal. Calcd for C₂₆H₂₆N₄O₅ (474.19): C, 65.81; H, 5.52; N, 11.81. Found: C, 65.50; H, 5.20; N, 11.60.

4.1.3.4. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] *triazole-3-carboxylic acid o-tolylamide* **5***d*. Yellowish brown powder (2.80 g, 59.10% yield); mp 173 °C; IR (KBr, cm⁻¹): 3386 (NH), 1700 (CO), 1588 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 2.40 (s, 3H, CH₃), 3.70 (s, 6H, 2OCH₃), 3.86 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 6.79 (s, 2H, Ar–H), 6.99 (d, 2H, J = 8.50 Hz, Ar–H), 7.12 (t, 1H, J = 7.50 Hz, Ar-H), 7.23-7.30 (m, 2H, Ar-H), 7.37 (d, 2H, J = 9.00 Hz, Ar-H), 8.13 (d, 1H, J = 8.00 Hz, Ar–H), 8.95 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm): 20.98 (CH₃), 56.13 (CH₃), 56.21 (CH₃), 60.62 (CH₃), 106.83 (CH), 115.12 (CH), 121.09 (CH), 122.39 (C), 128.41 (CH), 129.52 (CH), 130.91 (C), 133.63 (C), 136.20 (C), 139.45 (C), 153.10 (C), 154.99 (C), 156.47 (C), 157.66 (C), 160.51 (C=O); EI-MS (70 eV) m/z (%): 474 (12) (M⁺), 469 (18), 450 (20), 424 (18), 421 (49), 390 (40), 389 (80), 375 (34), 324 (55); HRMS (FAB) m/z Calcd for C₂₆H₂₇N₄O₅ $(M^+ + 1)$: 475.1981; found: 475.1972; Anal. Calcd for C₂₆H₂₆N₄O₅ (474.19): C, 65.81; H, 5.52; N, 11.81. Found: C, 65.70; H, 5.20; N, 11.80.

4.1.3.5. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] triazole-3-carboxylic acid (4-bromophenyl)amide **5e**. Brown powder (3.18 g, 59.10% yield); mp 135 °C; IR (KBr, cm⁻¹): 3310 (NH), 1692 (CO), 1589 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 3.74 (s, 6H, 2OCH₃), 3.91 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 6.82 (s, 2H, Ar–H), 7.02 (d, 2H, *J* = 7.20 Hz, Ar–H), 7.39 (d, 2H, *J* = 7.20 Hz, Ar–H), 7.51 (d, 2H, *J* = 8.10 Hz, Ar–H), 7.72 (d, 2H, *J* = 8.40 Hz, Ar–H), 9.17 (s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 57.75 (CH₃), 58.14 (CH₃), 62.92 (CH₃), 107.83 (CH), 115.62 (C), 115.97 (CH), 118.55 (C), 122.70 (CH), 128.41 (CH), 131.65 (C), 133.15 (CH), 137.55 (C), 141.11 (C), 154.03 (C), 155.64 (C), 157.31 (C), 157.42 (C), 161.22 (C=O); EI-MS (70 eV) m/z (%): 540 (10) (M⁺ + 2), 538 (9) (M⁺), 403 (96), 387 (100); Anal. Calcd for C₂₅H₂₃BrN₄O₅ (538.09): C, 55.67; H, 4.30; N, 10.39. Found: C, 55.40; H, 4.20; N, 10.00.

4.1.3.6. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] triazole-3-carboxylic acid (4-chlorophenyl)amide **5***f*. Dark brown powder (3.06 g, 61.94% yield); mp 120–121 °C; IR (KBr, cm⁻¹): 3360 (NH), 1691 (CO), 1588 (C=N); ¹H NMR (300 MHz, DMSO-d₆) δ (ppm): 3.75 (s, 6H, 2OCH₃), 3.91 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 6.84 (s, 2H, Ar–H), 7.02 (d, 2H, *J* = 8.70 Hz, Ar–H), 7.39–7.45 (m, 4H, Ar–H), 7.81 (d, 2H, *J* = 7.80 Hz, Ar–H), 9.20 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO-d₆) δ (ppm): 57.73 (CH₃), 58.12 (CH₃), 62.91 (CH₃), 107.84 (CH), 115.95 (CH), 121.20 (CH), 122.47 (C), 125.85 (C), 128.42 (C), 130.21 (CH), 131.68 (CH), 138.45 (C), 141.11 (C), 154.03 (C), 155.50 (C), 156.44 (C), 157.19 (C), 161.20 (C=O); ESI-MS: m/z (%) 495 (100) (M⁺ + 1). Anal. Calcd for C₂₅H₂₃ClN₄O₅ (494.14): C, 60.67; H, 4.68; N, 11.32. Found: C, 60.40; H, 4.40; N, 11.10.

4.1.3.7. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] triazole-3-carboxylic acid (3-fluorophenyl)amide **5g**. Pale brown powder (2.96 g, 61.92% yield); mp 126 °C; IR (KBr, cm⁻¹): 3310 (NH), 1693 (CO), 1588 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 3.74 (s, 6H, 20CH₃), 3.90 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 6.81 (s, 2H, Ar–H), 7.01 (d, 2H, *J* = 8.70 Hz, Ar–H), 7.10 (t, 2H, *J* = 8.70 Hz, Ar–H), 7.39 (d, 2H, *J* = 9.00 Hz, Ar–H), 7.74–7.79 (m, 2H, Ar–H), 9.14 (s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 57.71 (CH₃), 58.08 (CH₃), 62.89 (CH₃), 107.76 (CH), 115.92 (CH), 116.90 (C), 117.19 (C), 122.82 (CH), 122.92 (CH), 128.37 (CH), 131.77 (C), 134.53 (C), 140.98 (C), 154.01 (C), 155.71 (C), 156.68 (C), 157.50 (C), 161.15 (CO), 161.88 (C); EI-MS (70 eV) m/z (%): 480 (5) (M⁺ + 2), 478 (10) (M⁺), 405 (10), 386 (87), 371 (100), 352 (24), 332 (22), 325 (41), 275 (18); Anal. Calcd for C₂₅H₂₃FN₄O₅ (478.17): C, 62.76; H, 4.85; N, 11.71. Found: C, 62.50; H, 5.20; N, 11.30.

4.1.3.8. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] triazole-3-carboxylic acid (4-trifluoromethylphenyl)amide **5h**. Yellowish brown crystals (2.42 g, 45.83% yield); mp 151 °C; IR (KBr, cm⁻¹): 3350 (NH), 1696 (CO), 1588 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 3.75 (s, 6H, 2OCH₃), 3.91 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.82 (s, 2H, Ar-H), 7.03 (d, 2H, *J* = 8.70 Hz, Ar-H), 7.39–7.58 (m, 4H, Ar-H), 8.00 (s,1H, Ar-H), 8.10 (d, 1H, *J* = 8.40 Hz, Ar-H), 9.19 (s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 57.72 (CH₃), 58.09 (CH₃), 62.90 (CH₃), 107.77 (CH), 115.94 (CH), 117.78 (C), 122.79 (CH), 124.20 (CH), 128.37 (CH), 130.86 (C), 131.75 (C), 138.97 (C), 141.01 (C), 154.02 (C), 155.84 (C), 156.46 (C), 157.74 (C),161.19 (C=O); EI-MS (70 eV) m/z (%): 528 (14) (M⁺), 403 (42), 387 (40), 370 (12), 300 (16); Anal. Calcd for C₂₆H₂₃F₃N₄O₅ (528.16): C, 59.09; H, 4.39; N, 10.60. Found: C, 58.80; H, 4.10; N, 10.30.

4.1.3.9. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] triazole-3-carboxylic acid (3,4-dimethoxyphenyl)amide **5i**. Pale brown powder (2.91 g, 55.96% yield); mp 175 °C; IR (KBr, cm⁻¹): 3320 (NH), 1686 (CO), 1588 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 3.75 (s, 6H, 2OCH₃), 3.90 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃),

3.92 (s, 3H, OCH₃), 3.96 (s, 3H, OCH₃), 6.83 (s, 2H, Ar–H), 6.89 (d, 1H, J = 8.70 Hz, Ar–H), 7.02 (d, 2 H, J = 8.70 Hz, Ar–H), 7.22 (dd, 1H, J = 6.90 and 1.80 Hz, Ar–H), 7.40 (d, 2H, J = 9.00 Hz, Ar–H), 7.60 (d, 1H, J = 2.40 Hz, Ar–H), 9.08 (s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 57.71 (CH₃), 58.04 (CH₃), 58.10 (CH₃), 61.90 (CH₃), 62.89 (CH₃), 106.21 (CH), 107.80 (CH), 112.73 (CH), 113.25 (CH), 115.93 (CH), 122.62 (C), 128.37 (CH), 131.74 (C), 132.17 (C), 141.05 (C), 147.03 (C), 149.98 (C), 154.02 (C), 155.50 (C), 156.61 (C), 157.14 (C), 161.16 (C=O); EI-MS (70 eV) m/z (%): 520 (14) (M⁺), 403 (100), 387 (91), 371 (14); Anal. Calcd for C₂₇H₂₈N₄O₇ (520.20): C, 62.30; H, 5.42; N, 10.76. Found: C, 62.10; H, 5.40; N, 10.60.

4.1.3.10. $4 - \{[1 - (4 - Methoxyphenyl) - 5 - (3,4,5 - trimethoxyphenyl) - 1H - [1,2,4]triazole-3-carbonyl]amino\}benzoic acid$ **5***j* $. Brown powder (2.72 g, 53.97% yield); mp 259 °C; IR (KBr, cm⁻¹): 3301 (OH), 1696 (CO), 1593 (C=N); ¹H NMR (300 MHz, CDCl₃) <math>\delta$ (ppm): 3.70 (s, 6H, 2OCH₃), 3.86 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 6.78 (s, 2H, Ar–H), 6.86 (d, 2H, *J* = 9.00 Hz, Ar–H), 6.99 (d, 2H, *J* = 9.00 Hz, Ar–H), 7.37 (d, 2H, *J* = 9.50 Hz, Ar–H), 7.62 (d, 2H, *J* = 9.00 Hz, Ar–H), 8.90 (s, 1H, NH), 10.22 (s, 1H, COOH); ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm): 56.13 (CH₃), 56.22 (CH₃), 60.63 (CH₃), 105.76 (CH), 106.86 (CH), 115.13 (CH), 120.36 (CH), 122.29 (C), 126.50 (C), 128.43 (C), 130.67 (CH), 130.84 (CH), 139.50 (C), 142.81 (C), 153.11 (C), 153.93 (C), 155.19 (C), 156.12 (C), 158.12 (C), 160.56 (C=O), 167.42 (C=O); HRMS (FAB) m/z Calcd for C₂₆H₂₅N₄O₇ (M⁺ + 1): 505.1723; found: 505.1751; Anal. Calcd for C₂₆H₂₄N₄O₇ (504.16): C, 61.90; H, 4.80; N, 11.11. Found: C, 61.70; H, 5.20; N, 11.00.

4.1.3.11. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4] triazole-3-carboxylic acid (4-hydroxyphenyl)amide **5k**. Black powder (2.62 g, 55.04% yield); mp 205 °C; IR (KBr, cm⁻¹): 3316 (OH), 1683 (CO), 1588 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 3.69 (s, 6H, OCH₃), 3.85 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 6.76 (s, 2H, Ar–H), 6.98 (d, 2H, *J* = 9.00 Hz, Ar–H), 7.36 (d, 2H, *J* = 8.70 Hz, Ar–H), 7.88 (d, 2H, *J* = 8.40 Hz, Ar–H), 8.13 (d, 2H, *J* = 8.70 Hz, Ar–H), 9.19 (s, 1H, NH), 10.33 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm): 56.12 (CH₃), 56.21 (CH₃), 60.62 (CH₃), 106.83 (CH), 115.12 (CH), 121.13 (CH), 122.37 (C), 124.61 (C), 126.09 (C), 128.42 (CH), 129.13 (CH), 130.89 (C), 138.71 (C), 139.47 (C), 153.10 (C), 155.05 (C), 156.39 (C), 157.83 (C), 160.52 (C=O); HRMS (FAB) m/z Calcd for C₂₅H₂₅N₄O₆ (M⁺ + 1): 477.1774; found: 477.1760. Anal. Calcd for C₂₅H₂₄N₄O₆ (476.17): C, 63.02; H, 5.08; N, 11.76. Found: C, 62.90; H, 5.10; N, 11.70.

4.1.3.12. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-[1,2,4]triazole-3-carboxylic acid phenylamide **5l**. Brown powder (1.61 g, 35.00% yield); mp 135 °C; IR (KBr, cm⁻¹): 3312 (NH), 1691 (CO), 1593 (C=N); ¹H NMR (300 MHz, DMSO-d₆) δ (ppm): 3.65 (s, 6H, 2OCH₃), 3.72 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 6.84 (s, 2H, Ar-H), 7.12–7.17 (m, 3H, Ar-H), 7.37–7.56 (m, 4H, Ar-H), 7.86 (d, 2H, J = 8.10 Hz, Ar-H), 10.50 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO-d₆) δ (ppm): 57.73 (2CH₃), 62.07 (2CH₃), 107.76 (CH), 115.91 (CH), 121.83 (CH), 123.32 (C), 125.29 (C), 129.01 (CH), 129.73 (CH), 131.47 (CH), 139.16 (C), 140.01 (C),153.42 (C), 155.33 (C), 156.65 (C), 158.08 (C), 160.75 (C=O); ESI-MS: m/z (%) 461 (100) (M⁺ + 1); Anal. Calcd for C₂₅H₂₄N₄O₅ (460.17): C, 65.21; H, 5.25; N, 12.17. Found: C, 65.00; H, 5.20; N, 12.10.

4.1.4. General procedure for the synthesis of 1-(4-methoxyphenyl)-5-(3,4,5-trimethoxy-phenyl)-1H-[1,2,4]triazole-3-carboxylic acid hydrazide **6**

To a stirred suspension of compound **3** (11.55 g, 0.03 mol) in methanol (100 mL), hydrazine hydrate 95% (4.5 g, 0.09 mol) was added gradually, stirring was continued overnight at 25 °C, solvent was evaporated and the obtained oily product was then purified using silica gel column eluted with chloroform/methanol (9.5:0.5),

solvent was evaporated and the obtained product was recrystallized from ethanol give compound **6** as pale yellow powder (7.78 g, 65.00% yield); mp 210 °C; IR (KBr, cm⁻¹): 3380 and 3150 (NH and NH₂), 1661 (CO), 1590 (C=N); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 4.01 (s, 6H, 2OCH₃), 4.02 (s, 6H, 2OCH₃), 7.09 (d, 2H, *J* = 9.00 Hz, Ar– H), 7.54 (s, 2H, Ar–H), 8.18 (d, 2H, *J* = 9.00 Hz, Ar–H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 58.31 (CH₃), 58.49 (CH₃), 63.01 (CH₃), 107.10 (CH), 115.89 (CH), 119.86 (C), 127.94 (CH), 143.52 (C), 148.14 (C), 154.44 (C), 165.28 (C), 176.07 (C), 177.28 (C); ESI-MS: m/z (%) 400 (100) [M⁺ + 1]; Anal. Calcd for C₁₉H₂₁N₅O₅ (399.15): C, 57.14; H, 5.30; N, 17.53. Found: C, 56.80; H, 5.21; N, 17.38.

4.2. Biology

4.2.1. Screening of the anti-inflammatory activity

The experiments were performed on adult male albino rats, weighing (120-140 g), obtained from the animal house, Minia University. The animals were housed in stainless steel cages, divided into groups of four animals each and deprived of food but not water 24 h before the experiment. The anti-inflammatory activity of the compounds under investigation was studied using carrageenan. A suspension of the tested compounds 4a-c, 5a-l and 6, celecoxib and indomethacin in carboxy methyl cellulose (CMC) solution (0.5% w/v in water) was administered orally in a dose level of (0.28 mmol/kg). Control animals were similarly treated with CMC solution (0.5% w/v in water). After 30 min, 0.1 mL of freshly prepared 1% carrageenan solution in normal saline was injected into the subplantar region of the right hind paw of rats according to the method of Winter et al. An equal volume of saline was injected into the left hind paw of each rat. The right paw thickness was measured by a Vernier caliper (SMIEC) directly before and after 1, 2, 3, 4 and 5 h intervals after carrageenan injection. The anti-inflammatory activity of the tested compounds, celecoxib and indomethacin was calculated as the percentage decrease in edema thickness induced by carrageenan.

4.2.2. Screening of ulcerogenicity

After measuring the anti-inflammatory activity the rats were sacrificed by decapitation. The stomachs were removed, collected, opened along the greater curvature, washed with distilled water and cleaned gently by dipping in saline. The mucosal damage for each stomach was examined with a magnifying lens for the presence of macroscopically visible lesions. The number of lesions in each stomach, if any, was counted and recorded. Ulcers were classified into levels, level I, in which the ulcer area is less than 1 mm², level II, in which ulcer area is in the range from 1 to 3 mm² and level III, in which the ulcer area more than 3 mm² and this rated according to their areas in mm².

The data are expressed as mean \pm S.E.M, *one way* ANOVA test was applied to determine the significance of the difference between the control group and rats treated with the tested compounds.

4.2.3. Histopathological investigation

The histological slides were prepared according to the reported procedures for examination of ulcers under light microscope [48]. Identify site of the slide on which the section was applied by scratching wax around section with a needle. Dewax hydrated sections by using graded alcohols to water. Slides were stained with haematoxylin for 5–7 min, washed with tap water until sectioning for 5 min and immersed for 5–10 s in solution of (1% HCl in 70% alcohol), then washed well with tap water for 10–15 min followed by staining with 1% Eosin for 10 min, and washed with running tap water for 1–5 min. The slide was then dehydrated using alcohols,

cleaned by using xylene, covered by glass cover using Canda balsam then examined under microscope.

4.3. Cyclooxygenase inhibitory assay [49]

The effect of the compounds on ovine COX-1 and human recombinant COX-2 (IC₅₀ value, μ M) enzymes were determined by measuring prostaglandin F2 α (PGF2 α) using a COX Inhibitor Screening Kit (Catalog No 560131) from Cayman Chemical, Ann Arbor Michigan USA following the procedure suggested by manufacturer. The IC₅₀ values (the concentration of the test compound causing 50% inhibition) were calculated from the concentrationinhibition response curves (duplicate determinations).

4.4. Docking studies

Molecular modeling studies were performed with MOE (The Molecular Operating Environment) Version 2011.10, software available from Chemical Computing Group Inc., 1010 Sherbrooke Street West, Suite 910, Montreal, Canada H3A2R7, http://www. chemcomp.com. The ligands were built using the builder tool of the MOE program and subjected to energy minimization (MMFF94x, gradient: 0.05). The X-ray crystallographic structures of COX-1 (PDB: 3KK6) [50] and COX-2 (PDB: 1CX2) [51] were obtained from the Protein Data Bank. The errors of the protein were corrected by the Structure Preparation process in MOE. After correction, hydrogens were added and partial charges (Gasteiger methodology) were calculated. The default Triangle Matcher placement method was used for docking. GBVI/WSA dG scoring function which estimates the free energy of binding of the ligand from a given pose was used to rank the final poses. The ligand-enzyme complex with lowest S score was selected.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.ejmech.2014.03.001.

References

- G. Singh, G. Triadafilopoulos, Epidemiology of NSAID induced gastrointestinal complications, The Journal of Rheumatology (Suppl. 56) (1999) 18–24.
- [2] R.M. Botting, Cyclooxygenase: past, present and future, Journal of Thermal Biology 31 (2006) 208–219.
- [3] J. Naesdal, K. Brown, NSAID-associated adverse effects and acid control aids to prevent them: a review of current treatment options, Drug Safety 29 (2006) 119–132.
- [4] B. Cryer, NSAID-associated deaths: the rise and fall of NSAID-associated GImortality, The American Journal of Gastroenterology 100 (2005) 1694– 1695.
- [5] M. Lazzaroni, P.G. Bianchi, Gastrointestinal side-effects of traditional nonsteroidal anti-inflammatory drugs and new formulations, Alimentary Pharmacology & Therapeutics 20 (2004) 48–58.
- [6] M.W. James, C.J. Hawkey, Assessment of non-steroidal anti-inflammatory drug(NSAID) damage in the human gastrointestinal tract, British Journal of Clinical Pharmacology 56 (2003) 146–155.
- [7] V. Schneider, L.E. Levesque, B. Zhang, T. Hutchinson, J.M. Brophy, Associationof selective and conventional nonsteroidal antiinflammatory drugs with acute renal failure: a population-based, nested case-control analysis, American Journal of Epidemiology 164 (2006) 881–889.
- [8] G. Mounier, C. Guy, F. Berthoux, M.N. Beyens, M. Ratrema, M. Ollagnier, Severe renal adverse events with arylcarboxylic non-steroidal anti-inflammatory drugs: results of a eight-year French national survey, Therapie 61 (2006) 255– 266.
- [9] J. Zadrazil, Nonsteroidal antiinflammatory drugs and the kidney, Vnitrní Lékarství 52 (2006) 686–690.
- [10] D. Adebayo, I. Bjarnason, Is non-steroidal anti-inflammaory drug (NSAID) enteropathy clinically more important than NSAID gastropathy? Postgraduate Medical Journal 82 (2006) 186–191.
- [11] J.J. Talley, D.L. Brown, J.S. Carter, M.J. Graneto, C.M. Koboldt, J.L. Masferrer, W.E. Perkins, R.S. Rogers, A.F. Shaffer, Y.Y. Zhang, B.S. Zweifel, K. Seibert, 4–[5-Methyl-3-phenylisoxazol-4-yl]benzenesulfonamide, valdecoxib: a potent and

selective inhibitor of COX-2, Journal of Medicinal Chemistry 43 (2000) 775-777.

- [12] K. Brune, B. Hinz, Selective cyclooxygenase-2 inhibitors: similarities and differences, Scandinavian Journal of Rheumatology 33 (2004) 1–6.
- [13] D.O. Stichtenoth, J.C. Frölich, The second generation of COX-2 inhibitors: what advantages do the newest offer? Drugs 63 (2003) 33–45.
- [14] www.Fda.gov/Cder/Drugs/Advisory/Cox2.Htm.
- [15] N. Demirbas, A. Demirbas, S. Alpay Karaoglu, E. Celik, Synthesis and antimicrobial activities of some new [1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles and [1,2,4]triazolo[3,4-b] [1,3,4]thiadiazines, Arkivoc(Archive for Organic Chemistry) i (2005) 75–91.
- [16] S. Sharma, S. Gangal, A. Rauf, M. Zahin, Synthesis, antibacterial and antifungal activity of some novel 3,5-disubstituted-1H-1,2,4-triazoles, Archiv der Pharmazie – Chemistry in Life Sciences 341 (2008) 714–720.
- [17] G. Turan-Zitouni, Z.A. Kaplancikli, M.T. Yildiz, P. Chevallet, D. Kaya, Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H-1,2,4-triazole derivatives, European Journal of Medicinal Chemistry 40 (2005) 607–613.
- [18] A.R. Jalilian, S. Sttari, M. Bineshmarvasti, A. Shafiee, M. Daneshtalab, Synthesis and in vitro antifungal and cytotoxicity evaluation of thiazolo-4H-1,2,4triazoles and 1,2,3-thiadiazolo-4H-1,2,4-triazoles, Archiv der Pharmazie 333 (2000) 347–354.
- [19] I. Kucukguzel, S.G. Kucukguzel, S. Rollas, M. Kiraz, Some 3-thioxo/alkylthio-1,2,4-triazoles with a substituted thiourea moiety as possible antimycobacterials, Bioorganic & Medicinal Chemistry Letters 11 (2001) 1703– 1707.
- [20] L. Zahajska, V. Klimesova, J. Koci, K. Waisser, J. Kaustova, Synthesis and antimycobacterial activity of pyridylmethylsulfanyl and naphthylmethylsulfanyl derivatives of benzazoles, 1, 2, 4-triazole, and pyridine-2-carbothioamide/-2carbonitrile, Archiv der Pharmazie 337 (2004) 549–555.
- [21] A. Foroumadi, Z. Kiani, F. Soltani, Antituberculosis agents VIII. Synthesis and in vitro antimycobacterial activity of alkyl alpha-[5-(5-nitro-2-thienyl)-1,3,4thiadiazole-2-ylthio]acetates, IL Farmaco 58 (2003) 1073–1076.
- [22] M. Kritsanida, A. Mouroutsou, P. Marakkos, N. Pouli, S. Papakonstantinou-Garoufalias, C. Pannecouque, M. Witvrouw, E. DeClercq, Synthesis and antiviral activity evaluation of some new 6-substituted 3-(1-adamantyl)-1,2,4triazolo[3,4-b][1,3,4]thiadiazoles, IL Farmaco 57 (2002) 253–257.
- [23] M.T. Abdel-Aal, W.A. El-Sayed, S.M. El-Kosy, E.S.H. El-Ashry, Synthesis and antiviral activity evaluation of some new 6-substituted 3-(1-adamantyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles, Archiv der Pharmazie – Chemistry in Life Sciences 341 (2008) 307–313.
- [24] G. Turan-Zitouni, M. Sivaci, F.S. Kilic, K. Erol, Synthesis of some triazolylantipyrine derivatives and investigation of analgesic activity, European Journal of Medicinal Chemistry 36 (2001) 685–689.
- [25] B. Tozkoparan, E. Kupeli, E. Yesilada, M. Ertan, Preparation of 5-aryl-3alkylthio-l,2,4-triazoles and corresponding sulfones with antiinflammatoryanalgesic activity, Bioorganic & Medicinal Chemistry 15 (2007) 1808–1814.
- [26] S.M. Rabea, N.A. El-Koussi, H.Y. Hassan, T. Aboul-Fadl, Synthesis of 5-phenyl-1-(3-pyridyl)-1H-1,2,4-triazole-3-carboxylic acid derivatives of potential antiinflammatory activity, Archiv der Pharmazie – Chemistry in Life Sciences 339 (2006) 32–40.
- [27] L. Labanauskas, E. Udrenaite, P. Gaidelis, A. Brukstus, Synthesis of 5-(2-,3- and 4-methoxyphenyl)-4H-1,2,4-triazole-3-thiol derivatives exhibiting antiinflammatory activity, IL Farmaco 59 (2004) 255–259.
- [28] A. Almasirad, S.A. Tabatabai, M. Faizi, A. Kebriaeezadeh, N. Mehrabi, A. Dalvandi, A. Shafiee, Synthesis and anticonvulsant activity of new 2substituted-5-[2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4triazoles, Bioorganic & Medicinal Chemistry Letters 14 (2004) 6057–6059.
- [29] I. Kucukguzel, S.G. Kucukguzel, S. Rollas, G. Otuk-Sanis, O. Ozdemir, I. Bayrak, T. Altug, J.P. Stables, Synthesis of some 3-(arylalkylthio)-4-alkyl/aryl-5-(4aminophenyl)-4H-1,2,4-triazole derivatives and their anticonvulsant activity, IL Farmaco 59 (2004) 893–901.
- [30] A. Varvaresou, T. Siatra-Papastaikoudi, A. Tsotinis, A. Tsantili-Kakoulidou, A. Vamvakides, Synthesis, lipophilicity and biological evaluation of indolecontaining derivatives of 1,3,4-thiadiazole and 1,2,4-triazole, IL Farmaco 53 (1998) 320–326.
- [31] B.S. Holla, B. Veerendra, M.K. Shivananda, B. Poojary, Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles, European Journal of Medicinal Chemistry 38 (2003) 759–767.
- [32] A. Duran, H.N. Dogan, S. Rollas, Synthesis and preliminary anticancer activity of new 1,4-dihydro-3-(3-hydroxy-2-naphthyl)-4-substituted-5H-1,2,4triazoline-5-thiones, IL Farmaco 57 (2002) 559–564.
- [33] A. Czarnocka-Janowicz, H. Foks, A. Nasal, J. Petrusewicz, B. Damasiewicz, A. Radwanska, R. Kaliszan, Synthesis and pharmacological activity of 5substituted-s-triazole-3-thiols, Pharmazie 46 (1991) 109–112.
- [34] M.Y. Mhasalkar, M.H. Shah, S.T. Nikam, K.G. Ananthanarayana, C.V. Deliwala, 4-alkyl-5-aryl-4H-1,2,4-triazole-3-thiols as hypoglycemic agents, Journal of Medicinal Chemistry 13 (1970) 672–674.
- [35] L. Czollner, G. Sxilagli, J. Janaky, Synthesis of new 1,5-diphenyl-3-1H-1,2,4triazoles substituted with H-, alkyl, or carboxyl groups at C-3, Archiv der Pharmazie 323 (1990) 225–229.
- [36] C.H. Chu, X.W. Sun, L. Sun, Z.Y. Zhang, Z.C. Li, R.A. Liao, Synthesis and biological activity of omega-(5-aryl-1,3,4-oxadiazol-2-thio)- and omega-(5-aryl-1,3,4oxadiazol-2-thioacetoxyl)-omega-(1-H-1,2,4-triazol-1-yl)aceto-phenones, Journal of the Chinese Chemical Society 46 (1999) 229–235.

- [37] A. Er-Rhaimini, R. Mornet, Synthesis and photochemical degradation of Narylmethyl derivatives of the herbicide 3-amino-1,2,4-triazole, Journal of Heterocyclic Chemistry 29 (1992) 1561–1566.
- [38] S. Kalgutkar, A.B. Marnett, B.C. Crews, R.P. Remmel, L.J. Marnett, Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors, Journal of Medicinal Chemistry 43 (2000) 2860–2870.
- [39] G. Dannhardt, S. Laufer, Structural approaches to explain the selectivity of COX-2 inhibitors: is there a common pharmacophore? Current Medicinal Chemistry 7 (2000) 1101–1112.
- [40] D. Galanakis, A.P. Kourounakis, K.C. Tsiakitzis, C. Doulgkeris, E.A. Rekka, A. Gavalas, C. Kravaritou, C. Charitos, P.N. Kourounakis, Synthesis and pharmacological evaluation of amide conjugates of NSAIDs with L-cysteine ethyl ester, combining potent antiinflammatory and antioxidant properties with significantly reduced gastrointestinal toxicity, Bioorganic & Medicinal Chemistry Letters 14 (2004) 3639–3643.
- [41] M. Amir, S. Kumar, Anti-inflammatory and gastro sparing activity of some new indomethacin derivatives, Archiv der Pharmazie – Chemistry in Life Sciences 338 (2005) 24–31.
- [42] M.E. Shoman, M. Abdel-Aziz, O.M. Aly, H.H. Farag, M.A. Morsy, Synthesis and investigation of anti-inflammatory activity and gastric ulcerogenicity of novel nitric oxide-donating pyrazoline derivatives, European Journal of Medicinal Chemistry 44 (2009) 3068–3076.
- [43] el-SM. M.N. Abdel-Hafez, Gel-D. A.A. Abuo-Rahma, M. Abdel-Aziz, M.F. Radwan, H.H. Farag, Design, synthesis and biological investigation of certain pyrazole-3-carboxylic acid derivatives as novel carriers for nitric oxide, Bioorganic & Medicinal Chemistry 17 (2009) 3829–3837.

- [44] Gel-D. A.A. Abuo-Rahma, M. Abdel-Aziz, M.A.E. Mourad, H.H. Farag, Synthesis, anti-inflammatory activity and ulcerogenic liability of novel nitric oxide donating/ chalcone hybrids, Bioorganic & Medicinal Chemistry 20 (2012) 195–206.
- [45] G.W. Sawdey, Rearrangement of 4-arylazo-2-phenyloxazolin-5-one: a new synthesis of 1H-1,2,4-triazoles, Journal of the American Chemical Society 79 (1957) 1955–1960.
- [46] C.A. Winter, E.A. Risely, G.W. Nuss, Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs, Proceedings of the Society for Experimental Biology and Medicine 111 (1962) 544–547.
- [47] S.F. De Andrade, M. Lemosa, E. Comunello, V.F. Noldin, V.C. Filho, R. Niero, Evaluation of the antiulcerogenic activity of *Maytenus robusta* (celastraceae) in different experimental ulcer models, Journal of Ethnopharmacology 113 (2007) 252–256.
- [48] L.P. Gartner, J.L. Haitt, Color Textbook of Histology, second ed., W. B. Saunders Company, Philadelphia, London, New York, 2001, pp. 1–2.
- [49] O. Unsal-Tan, K. Ozadali, K. Piskin, A. Balkan, Molecular modeling, synthesis and screening of some new 4-thiazolidinone derivatives with promising selective COX-2 inhibitory activity, European Journal of Medicinal Chemistry 57 (2012) 59–64.
- [50] G. Rimon, R.S. Sidhu, D.A. Lauver, J.Y. Lee, N.P. Sharma, C. Yuan, R.A. Frieler, R.C. Trievel, B.R. Lucchesi, W.L. Smith, Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1, Proceedings of the National Academy of Sciences 107 (2010) 28–33.
- [51] R.G. Kurumbail, A.M. Stevens, J.K. Gierse, J.J. McDonald, R.A. Stegeman, J.Y. Pak, D. Gildehaus, J.M. Miyashiro, T.D. Penning, K. Seibert, P.C. Isakson, W.C. Stallings, Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents, Nature 384 (1996) 644–648.