

S0040-4020(96)00004-X

A FACILE AND REGIO- AND STEREO-SELECTIVE PREPARATION OF BICYCLIC GUANIDINES BY IODOCYCLIZATION OF 3-(ALK-2-ENYL)-2-(SUBSTITUTED AMINO)-1-IMIDAZOLIN-4-ONES¹

Masanori Watanabe,^a Hiroshi Okada,^a Takayuki Teshima,^a Michihiko Noguchi,^{a,*} and Akikazu Kakehi^b

^a Department of Applied Chemistry, Faculty of Engineering, Yamaguchi University,

- Tokiwadai, Ube 755, Japan
- b Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380, Japan

Abstract: The iodocyclization of 3-(alk-2-enyl)-2-(substituted amino)-1-imidazolin-4-ones proceeded in regio- and stereo-selective manners to give bicyclic guanidines, imidazo[1,2-*a*]-imidazole and/or imidazo[1,2-*a*]pyrimidine, in good yields. The regiochemistry of the cyclization depended mainly on the kind of substituents of the alkenyl moieties and was interpretable by the PM3 MO calculations of the iodonium ion intermediates.

Although some bicyclic guanidine derivatives, imidazo[1,2-*a*]imidazole and imidazo[1,2-*a*]pyrimidine, showed a potent hypoglycemic activity,² the synthetic routes have been considerably limited (Scheme 1).³ In order to elucidate the synthetic utilities of functionalized carbodiimides, we examined to prepare 3-alkenyl-2-(substituted amino)-1-imidazolin-4-ones (**A**) by the reaction of ethyl 2-methyl-2-(*N*'-substituted)carbodiimido-propionate with alkenylamines.⁴ Intramolecular nucleophilic attack to the activated alkene moiety of the imidazolinones was expected to provide a new route to imidazo[1,2-*a*]imidazole (**C**) and imidazo[1,2-*a*]-pyrimidine derivatives (**D**) (Scheme 1). Much attention has been concentrated on the cyclizations utilizing iodine

Scheme 1.

as the activating trigger (iodocyclizations) and their application to the regio- and stereo-selective synthesis of nitrogen containing heterocycles was found in the literatures.⁵ It has been described that the regio- and stereo-selectivity on the cyclizations was attributed to the formation of the iodonium ion intermediates and to their opening with nucleophiles. The regioselectivity of the iodocyclization has been interpreted by Baldwin rule⁶ and, however, discussions on the regioselectivity using molecular orbital (MO) calculations of the iodonium ions have not been made enough. In the present paper, we describe the facile preparation of the bicyclic guanidines by the iodocyclization of 3-(alk-2-enyl)-2-(substituted amino)-1-imidazolin-4-ones. The iodocyclization

proceeds in a highly stereoselective manner and its regioselectivity will be discussed by the PM3 MO calculations of the iodonium ions.

Iodocyclization of 3-(Alk-2-enyl)-2-(substituted amino)-1-imidazolin-4-ones

The Staudinger reaction of ethyl 2-azido-2-methylpropionate (1) with triphenylphosphine (2) in dioxane at 80 °C for 1 h gave an iminophosphorane 3, which was allowed to react with phenyl isocyanate (4a) at room temperature for 1 h to give carbodiimide 5a. To the reaction mixture allylamine (6a) was added and the resulting mixture was stirred at room temperature for 10 h. These one-pot procedures and column separation on silica gel afforded 3-allyl-2-anilino-5,5-dimethyl-1-imidazolin-4-one (7a) in 66% yield. Similarly, 3-allyl-2-(1-naphthylamino)- (7b) and 3-allyl-2-tosylamido-5,5-dimethyl-1-imidazolin-4-one (7c) were prepared in 60 and 88% yields, respectively. Other 3-(*trans*-cinnamyl)-8, 3-(*trans*-but-2-enyl)-9, and 3-methallyl-2-(substituted amino)-1-imidazolin-4-ones 10 were also obtained in moderate to good yields (Scheme 2 and see the Experimental section).

Scheme 2. One-pot Procedures for the Preparation of 3-(Alk-2-enyl)-5,5-dimethyl-2-(substituted amino)-1-imidazolin-4-ones 7-10

Entry	Substrate	e R	Solvent	K ₂ CO ₃ (equiv.)	Time	Product (Yield; %) ^a	
1	7a	Ph	DME	none	1 d	11a (6	5)
2	7a	Ph	DME	(2.0)	3 h	11a (9	8)
3	7b	1-Naphthyl	DME	none	1 d	11b (8	0)
4	7ь	1-Naphthyl	DME	(2.0)	1 d	11b (8	3)
5	7c	Ts	DME	none	3 d	11c (79)	12c (9)
6	7c	Ts	DME	(2.0)	3 d	7c (70) 11c (2	1) 12c (4)
7	7c	Ts	MeCN	none	3 d	11c (74)	12c (8)

Table 1. Reaction of 3-Allyl-5,5-dimethyl-2-(substituted amino)-1-imidazolin-4-ones 7 with Iodine.

^a Isolated yield.

The reaction of imidazolinone 7a with iodine (3.0 equiv.) in dimethoxyethane (DME) at room temperature for 1 day gave an imidazo[1,2-a]imidazole 11a in 65% yield. The effect of the solvents utilized was also examined; the similar reaction in THF (62%) and acetonitrile (MeCN; 58%) gave almost same results. However, the addition of potassium carbonate (K2CO3, 2.0 euiv.) into the DME solution resulted in a significant improvement of the formation of product **11a** (Table 1, entry 2). The structural assignment of product **11a** was accomplished by its analytical and spectroscopic data; its ¹³C NMR spectrum showed six sp³-carbon signals, the signal at the highest field ($\delta = 7.23$) of which was confirmed to be methylene carbon one by DEPT measurements and, therefore, deduced to be iodomethyl carbon signal due to the heavy atom effect of iodine atom.⁷ The formation of 11a is defined as a 5-exo cyclization by Baldwin rule.⁶ The similar reaction of imidazolinone 7b in DME with and without K₂CO₃ gave also a 5-exo cyclization product 11b in 83% and 80% yield, respectively. A slightly different results were found in the reaction of imidazolinone 7c with iodine; 6-endo cyclization product 12c, imidazo[1,2-a]pyrimidine, was obtained as a minor together with 5-exo one 11c (Scheme 3). Utilization of K2CO3 in the similar reaction of 7c afforded only negative results. The structure of product 12c was also deduced by its ¹³C NMR spectrum; the methine carbon signal at the highest field (δ = 12.10) was assigned to be iodometheylene carbon one at the 6-position. The structures of products 11a-c and 12c were confirmed by the treatment with DBU in refluxing toluene; while 5-exo products 11 gave exo-methylene products 13 with the elimination of hydrogen iodide in excellent yields, 6-endo one 12c gave regioisomeric 14c and 15c in good total yields (Scheme 3). Next our concern was focused on the regiochemistry of the iodocyclization and the similar

Scheme 4.

Entry	Substrate	R	R ¹	K ₂ CO ₃ (equiv.)	Time	Product (Yield: %) ^a
1	8a	Ph	Ph	none	1 d	16a (80)
2	8a	Ph	Ph	2.0	3 h	16a (94)
3	8 b	1-Naphthyl	Ph	none	1 d	16b (90)
4	8c	Ts	Ph	none	1 d	16c (77)
5	9a	Ph	Me	none	1 d	17a (35) ^b
6	9a	Ph	Me	2.0	3 h	17a (96)
7	9c	Ts	Me	none	1 d	17c (89) 18c (3)

 Table 2.
 Iodocyclization of 3-(trans-Cinnamyl)- 8 and 3-(trans-But-2-enyl)-5,5-dimethyl-2-(substituted amino)-1-imidazolin-4-ones 9 in DME at Room Temperature.

^a Based on isolated products. ^b A mixture of unidentified products was also obtained.

reaction of 3-(*trans*-cinnamyl)-8 and 3-(*trans*-but-2-enyl) substrates 9 was examined; imidazolinones 8a-c gave 6-endo products 16a-c as single diastereoisomers in good yields (Scheme 4). The structures of products 16 were assigned on the basis of their ¹³C and ¹H NMR spectra and the configuration between the 5- and 6-H was confirmed unambiguously to be *trans* by X-ray crystallographic study of 16a.⁸ Imidazolinones 9a,c in the similar conditions gave 6-endo products 17a,c and 5-exo one 18c as a minor (Scheme 4). The stereochemistry of 17a was also confirmed by X-ray crystallographic study.⁸ These suggest that the formation of iodonium ion proceeds with the retention of the configuration of alkenyl moiety and the successive nucleophilic opening of the ion by the amino nitrogen does in the S_N 2 manner with the inversion of configuration at the reaction site. The elimination of hydrogen iodide from the 6-endo product 16 and 17 was of much interest; both gave 7,8-dihydroimidazo[1,2-a]pyrimidin-3(2H)-one derivatives 19 and 20, respectively, which were formed by the *anti*elimination of hydrogen iodide. Similar *anti*-elimination of hydrogen iodide from the 5-exo product 18c gave an ethylidene product 21c with *E*-configuration (Scheme 4). The reaction of 3-methallyl substrates 10a-c with iodine gave exclusively 5-exo cyclization products 22a-c in good yields (Scheme 5).

Regiochemistry of the Iodocyclizations: Discussions Utilizing PM3 MO Calculations of the Iodonium Ion Intermediates

As mentioned above, the reactivity and regiochemistry of these iodocyclizations were interpretable in the terms of the interaction between the LUMO of the iodonium ion and the HOMO of the amino nitrogen. However, MO calculation data of iodonium ions have been rare in the literatures⁹ and we attempted to use MO calculation results in order to elucidate qualitatively the regiochemistry. According to the preceding studies on the MO calculations of bromonium ions, ¹⁰ no significant differences were found between the PM3 and *ab initio* calculations.^{10b} We, therefore, underwent the MO calculations of two types of the iodonium ions by PM3 method¹¹ in MOPAC program;¹² one of which was 2-anilino (a: R= Ph) and the other was 2-tosylamido (c: R=Ts) iodonium ions. While the coefficients of HOMO of the anilino-type iodonium ions were located at the anilino nitrogen and the phenyl carbons, those of the tosylamido-type ones at the three nitrogen atoms of imidazolinone and tosylamido moieties. The coefficients of LUMO of both the iodonium ions were located at both the bridgehead carbon atoms and iodine of the ions. The effects of the substituents of the alkenyl moieties

Table 3. Energy Levels of the Frontier Orbitals of the Iodonium Ions 23-26 and Their Frontier Electron Density for Nucleophile fr(N) in the 5-exo and 6-endo Cyclizations.

							Frontier Electron Density	
					Energy Level/eV		for Nucleophile fr(N)	
Entry	Iodonium Ion	R	R ¹	R ²	HOMO	LUMO	C5-exo	C6-endo
1	23a	Ph	Н	Н	- 11.772	- 6.542	0.495	0.321
2	23c	Ts	Н	Н	- 12.440	- 6.717	0.387	0.417
3	24a	Ph	Ph	Н	- 11.638	- 6.131	0.116	0.694
4	24c	Ts	Ph	Н	- 12.237	- 5.763	0.131	0.683
5	25a	Ph	Me	Н	- 11.757	- 6.444	0.419	0.425
6	25c	Ts	Me	Н	- 12.379	- 5.917	0.388	0.459
7	26a	Ph	н	Me	- 11.822	- 6.418	0.559	0.288
8	26c	Ts	Н	Me	- 12.237	- 5.763	0.540	0.310

on the regiochemistry of cyclization were also examined. The frontier electron density for nucleophile fr(N) in the 5-exo and 6-endo cyclization and the HOMO and LUMO energy levels of the iodonium ions are summarized in Table 3. The iodonium ion **23a** (R= Ph) from imidazolinone **7a** had a larger fr(N) value for 5-exo cyclization (0.495) than that for 6-endo one (0.321) and, therefore, the preference of the 5-exo cyclization in **23a** was understood taking the stereoelectronic effects cited by Baldwin into consideration. On the other hand, the fr(N) values of the iodonium ion **23c** (R= Ts) were C5-exo (0.387) and C6-endo (0.417), respectively, and the 6-endo cyclization took place in competition with the 5-exo one. The preferences of the 6-endo cyclization for 3-cinnamyl substrates **8** and of 5-exo one for 3-methallyl substrates **10** were also understood by the PM3 calculation results of the iodonium ions **24** and **26**. While the fr(N) values of iodonium ion **25c** showed the preference of the 6-endo cyclization, those of iodonium ion **25a** were almost equal, C5-exo (0.419) and C6-endo (0.425), and suggested a little preference of the 5-exo one from the Baldwin's rule.⁶ However, the 6-endo cyclization product **17a** was formed exclusively in the reaction of **9a** with iodine.

Conclusion

The iodocyclization of 3-(alk-2-enyl)-2-(substituted amino)-1-imidazolin-4-ones gave the bicyclic guanidine derivatives in regio- and stereo-selective manners. The regiochemistry of the cyclization was controlled by the kinds of substituents on the both the alkenyl and 2-amino moieties. The PM3 MO calculations of the iodonium ion intermediates were available to interpret the regiochemistry. Further investigations on the reaction path and scope of the iodocyclization are in progress in our laboratory.

Experimental

General. For general details of apparatuses and procedures, see the previous paper.¹³ ¹H and ¹³C NMR spectra were measured on JEOL EX-270 spectrometer (at 270 MHz for ¹H and 68 MHz for ¹³C) in deuteriochloroform (CDCl₃) solution, unless otherwise stated. Assignment of the NMR spectra of products was accomplished by ¹H-¹H and ¹H-¹³C COSY spectra. Overlapping splitting patterns in ¹H NMR spectra are

indicated as ov. Ethyl 2-azido-2-methylpropionate (1) was obtained quantitatively by the reaction of ethyl 2-bromo-2-methylpropionate with sodium azide (2.0 equiv.) in 20%-aqueous methanol at 50 °C for 2 d; colorless oil, IR (neat) 2100 (N₃), 1735 cm⁻¹ (CO); ¹H NMR δ = 1.32 (3 H, t, *J*= 7.3 Hz, CH₂CH₃), 1.47 (6 H, s, Me), 4.25 (2 H, q, *J*= 7.3 Hz, CH₂CH₃). Alkenylamine **6b-d** were obtained by the treatment of the corresponding hydrochlorides¹⁴ with an excess of triethylamine *in situ*.

Preparation of 1-Imidazolin-4-ones 7, 8, 9, and 10. General Procedures: To a solution of azide 1 (0.189 g, 1.2 mmol) in dry dioxane (5 ml) heated at 80 °C under argon atmosphere was added triphenylphosphine (2; 0.262 g, 1.0 mmol) in dry dioxane (5 ml) and immediately nitrogen was extruded. The reaction mixture was stirred for 3 h at the same temperature and cooled down to room temperature. Phenyl isocyanate (4a; 0.109 ml, 1.0 mmol) was added and stirred for 1 h. *trans*-Cinnamylamine hydrochloride (0.255 mg, 1.5 mmol) and triethylamine (0.28 ml, 2.0 mmol) were added to the mixture and stirred at room temperature for 11 h. The solvent was evaporated to dryness, which was extracted with dichloromethane (3 x 15 ml) and the organic layer was washed with water and dried on anhydrous magnesium sulfate. The solvent was evaporated and the residue was subjected to column chromatography on silica gel to give imidazolinone 8a (0.163 g, 51%) with hexane/ethyl acetate (5/1). Similarly, other 1-imidazolin-4-ones 7, 8, 9, and 10 were prepared and their structures were fully confirmed by the analytical and spectral data, the selective data of which, the yield, mp and ¹H NMR and analytical data, are summarized as follows.

3-Allyl-2-anilino-5,5-dimethyl-1-imidazolin-4-one (**7a**): yield 54%; mp 103-105 °C; ¹H NMR δ = 1.37 (6 H, s, Me), 4.26 (2 H, d, J= 5.5 Hz, CH₂), 4.76 (1 H, br s, NH), 5.20 (1 H, dd, J= 1.5, 9.9 Hz, =CHH), 5.25 (1 H, dd, J= 1.5, 17.6 Hz, =CHH), 5.94 (1 H, m, -CH=), 6.96, 7.03, 7.31 (total 5 H, Ph). Anal. Found: C, 69.38; H, 7.09; N, 17.49%. Calcd for C1₄H₁7N₃O: C, 69.11; H, 7.04; N, 17.27%.

3-Allyl-5,5-dimethyl-2-(1-naphthylamino)-1-imidazolin-4-one (**7b**): yield 48%; mp 166-167 °C; ¹H NMR δ = 1.33 (6 H, s, Me), 4.40 (2 H, d, J= 5.6 Hz, CH₂), 4.66 (1 H, br s, NH), 5.29 (1 H, dd, J= 1.3, 10.2 Hz, =CHH), 5.35 (1 H, dd, J= 1.3, 15.5 Hz, =CHH), 6.05 (1 H, m, -CH=), 7.01, 7.37-7.46, 7.56, 7.83, 8.01 (total 7 H, naphthyl-H). Anal. Found: C, 73.94; H, 6.60; N, 14.31%. Calcd for C18H19N3O: C, 73.69; H, 6.53; N, 14.33%.

3-Allyl-5,5-dimethyl-2-tosylamido-1-imidazolin-4-one (7c): yield 88%; mp 133-134 °C; ¹H NMR δ = 1.44 (6 H, s, Me), 2.42 (3 H, s, Me), 4.11 (2 H, d, J= 6.6 Hz, CH₂), 5.10 (1 H, dd, J= 1.1, 16.1 Hz, =CH*H*), 5.11 (1H, dd, J= 1.1, 9.9 Hz, =C*H*H), 5.73 (1 H, m, =CH-), 7.29, 7.82 (total 4 H, aromatic-H), 8.02 (1 H, br, NH). Anal. Found: C, 56.00; H, 5.96; N, 13.07%. Calcd for C₂₀H₂₁N₃O: C, 56.05; H, 5.96; N, 13.08%.

2-Anilino-3-(*trans*-cinnamyl)-5,5-dimethyl-1-imidazolin-4-one (**8a**): yield 51%; mp 112-113 °C; ¹H NMR δ = 1.37 (6 H, s, Me), 4.41 (2 H, d, J= 6.6 Hz, CH₂), 4.75 (1 H, br s, NH), 6.34 (1 H, td, J= 6.6, 16.1 Hz, CH₂-CH=), 6.67 (1 H, d, J= 16.1 Hz, =CH-Ph), 6.97-7.08, 7.22-7.41 (total 10 H, Ph). Anal. Found: C, 75.13; H, 6.67; N, 12.99%. Calcd for C₂₀H₂₁N₃O: C, 75.21; H, 6.63; N, 13.16%.

3-(*trans*-Cinnamyl)-5,5-dimethyl-2-(1-naphthylamino)-1-imidazolin-4-one (**8b**): yield 46%; mp 123-124 °C; ¹H NMR δ = 1.36 (6 H, s, Me), 4.56 (2 H, d, J= 6.2 Hz, CH₂), 4.66 (1 H, br s, NH), 6.44 (1 H, td, J= 6.2, 16.1 Hz, CH₂-CH=), 6.78 (1 H, d, J= 16.1 Hz, =CH-Ph), 7.04, 7.23-7.49, 7.57, 7.82, 8.03 (total 12 H, aromatic-H). Anal. Found: C, 78.20; H, 6.37; N, 11.45%. Calcd for C₂₄H₂₃N₃O: C, 78.02; H, 6.28; N, 11.37%.

3-(*trans*-Cinnamyl)-5,5-dimethyl-2-tosylamido-1-imidazolin-4-one (**8c**): yield 84%; mp 157-158 °C; ¹H NMR δ = 1.44 (6 H, s, Me), 2.37 (3 H, s, Me), 4.26 (2 H, d, J= 6.6 Hz, CH₂), 6.06 (1 H, td, J= 6.6, 16.1 Hz, CH₂-CH=), 6.48 (1 H, d, J= 16.1 Hz, =CH-Ph), 7.17-7.28, 7.81 (total 9 H, aromatic-H), 8.05 (1 H, br s, NH). Anal. Found: C, 63.65; H, 5.82; N, 10.56%. Calcd for C₂₁H₂₃N₃O₃S: C, 63.45; H, 5.83; N, 10.57%.

2-Anilino-3-(*trans*-but-2-enyl)-5,5-dimethyl-1-imidazolin-4-one (**9a**): yield 44%; mp 86-88 °C; ¹H NMR $\delta = 1.36$ (6 H, s, Me), 1.70 (3 H, d, J = 6.3 Hz, =CH-Me), 4.19 (2 H, d, J = 5.6 Hz, CH₂), 4.68 (1 H, br s,

NH), 5.60 (1 H, td, J = 5.6, 16.8 Hz, CH₂-CH=), 5.75 (1 H, qd, J = 6.3, 16.8 Hz, =CH-Me), 6.98, 7.03, 7.31 (total 5 H, Ph). Anal. Found: C, 70.10; H, 7.55; N, 16.28%. Calcd for C₁₅H₁₉N₃O: C, 70.01; H, 7.44; N, 16.33%.

3-(trans-But-2-enyl)-5,5-dimethyl-2-tosylamido-1-imidazolin-4-one (**9** $c): yield 82%; mp 157-158 °C; ¹H NMR <math>\delta$ = 1.42 (6 H, s, 5-Me), 1.59 (3 H, d, J= 6.3 Hz, =CH-Me), 2.42 (3 H, s, Me), 4.03 (2 H, d, J= 6.3 Hz, CH₂), 5.37 (1 H, td, J= 6.3, 16.8 Hz, CH₂-CH=), 5.61 (1 H, qd, J= 6.3, 16.8 Hz, =CH-Me), 7.30, 7.83 (total 4 H, aromatic-H), 8.02 (1 H, br s, NH). Anal. Found: C, 57.23; H, 6.37; N, 12.53%. Calcd for C₁₆H₂₁N₃O₃S: C, 57.30; H, 6.31; N, 12.53%.

2-Anilino-3-methallyl-5,5-dimethyl-1-imidazolin-4-one (10a): yield 48%; mp 96-97 °C; ¹H NMR δ = 1.38 (6 H, s, 5-Me), 1.80 (3 H, s, Me), 4.19 (2 H, s, CH₂), 4.74 (1 H, br s, NH), 4.80, 4.90 (each 1 H, each s, =CH₂), 6.94, 7.04, 7.29 (total 5 H, Ph). Anal. Found: C, 70.05; H, 7.34; N, 16.39%. Calcd for C₁₅H₁₉N₃O: C, 70.00; H, 7.44; N, 16.33%.

3-Methallyl-5,5-dimethyl-2-(1-naphthylamino)-1-imidazolin-4-one (**10b**): yield 40%; mp 163-164 °C; ¹H NMR δ = 1.33 (6 H, s, 5-Me), 1.87 (3 H, s, Me), 4.30 (2 H, s, CH₂), 4.71 (1 H, br s, NH), 4.90, 4.99 (each 1 H, each d, *J*= 1.0 Hz, =CH₂), 7.00, 7.34-7.49, 7.54, 7.81, 8.01 (total 7 H, naphthyl-H). Anal. Found: C, 74.18; H, 6.93; N, 13.47%. Calcd for C19H₂₁N₃O: C, 74.24; H, 6.89; N, 13.67%.

3-Methallyl-5,5-dimethyl-2-tosylamido-1-imidazolin-4-one (**10c**): yield 72%; mp 146-147 °C; ¹H NMR $\delta = 1.44$ (6 H, s, 5-Me), 1.63 (3 H, s, -CMe=), 2.42 (3 H, s, Me), 4.05 (2 H, s, CH₂), 4.61, 4.79 (each 1 H, each s, =CH₂), 7.28, 7.81 (total 4 H, aromatic-H), 8.11 (1 H, br s, NH). Anal. Found: C, 57.36; H, 6.29; N, 12.33%. Calcd for C16H₂1N₃O₃S: C, 57.29; H, 6.31; N, 12.53%.

Iodocyclization of 1-Imidazolin-4-ones 7. General Procedures: To a solution of imidazolinone **7a** (0.122 g, 0.5 mmol) in DME (5 ml) was added iodine (0.381 g, 1.5 mmol) and the reaction mixture was stirred at room temperature for 1 d under argon atmosphere. The solvent was evaporated, the residue was treated with 5% sodium thiosulfate to decompose the excess of iodine and extracted with dichloromethane (3 x 15 ml). The organic layer was washed with water, dried over anhydrous magnesium sulfate, and evaporated to dryness, which was subjected to column chromatography on silica gel to afford 5-exo cyclization product **11a** (0.115 g, 65%) with hexane/ethyl acetate (1/1).

2-Iodomethyl-6,6-dimethyl-1-phenyl-2,3-dihydro-1*H*-imidazo[1,2-*a*]imidazol-5(6*H*)-one (**11a**): colorless prisms from hexane-benzene; mp 122-123 °C; IR (KBr) 1720 (CO), 1680 cm⁻¹ (C=N); ¹H NMR δ = 1.40, 1.48 (each 3 H, each s, Me), 3.36 (1 H, dd, *J*= 7.7, 10.6 Hz, CHHI), 3.46 (1 H, dd, *J*= 2.6, 10.6 Hz, CHHI), 3.70 (1 H, dd, *J*= 2.9, 11.0 Hz, 3-H), 3.93 (1 H, dd, *J*= 8.1, 11.0 Hz, 3-H), 4.86 (1 H, dddd, *J*= 2.6, 2.9, 7.7, 8.1 Hz, 2-H), 7.15, 7.41, 7.54 (total 5 H, Ph); ¹³C NMR δ = 7.4 (CH₂I), 25.1, 25.2 (6-Me), 43.0 (3-C), 61.9 (2-C), 75.3 (6-C), 119.4, 124.2, 129.7, 136.7 (Ph-C), 155.1 (7a-C), 180.7 (5-C); MS *m/z* 369 (M⁺), 354 (M⁺ - Me), 341 (M⁺ - CO). Anal. Found: C, 45.77; H, 4.36; N, 11.30%. Calcd for C₁₄H₁₆IN₃O: C, 45.54; H, 4.37; N, 11.38%.

2-Iodomethyl-6,6-dimethyl-1-(1-naphthyl)-2,3-dihydro-1*H*-imidazo[1,2-*a*]imidazol-5(6*H*)-one (11b): colorless crystals without recrystallization; mp 154-156 °C; IR (KBr) 1720 (CO), 1670 cm⁻¹ (C=N); ¹H NMR δ = 1.35, 1.43 (each 3 H, each s, Me), 3.16 (1 H, dd, *J*= 6.6, 10.6 Hz, CHHI), 3.22 (1 H, dd, *J*= 3.3, 10.6 Hz, CHHI), 3.77 (1 H, dd, *J*= 4.8, 11.0 Hz, 3-H), 4.18 (1 H, dd, *J*= 8.4, 11.0 Hz, 3-H), 4.68 (1 H, dddd, *J*= 3.3, 4.8, 6.6, 8.4 Hz, 2-H), 7.49-7.93 (7 H, ov, naphthyl-H); ¹³C NMR δ = 8.2 (CH₂I), 25.1, 25.2 (6-Me), 44.3 (3-C), 64.7 (2-C), 75.1 (6-C), 122.3, 125.7, 126.4, 126.6, 126.9, 128.8, 129.1, 130.0, 131.8, 134.9 (naphthyl-C), 157.2 (7a-C), 180.9 (5-C); MS *m/z* 419 (M⁺), 404 (M⁺ - Me), 391 (M⁺ - CO), 292 (M⁺ - I). Anal. Found: C, 51.37; H, 4.36; N, 9.75%. Calcd for C₁₈H₁₈IN₃O: C, 51.57; H, 4.33; N, 10.02%.

2-Iodomethyl-6,6-dimethyl-1-tosyl-2,3-dihydro-1*H*-imidazo[1,2-*a*]imidazol-5(6*H*)-one (**11c**); colorless needles from ethanol; mp 143-145 °C; IR (KBr) 1740 (CO), 1660 (C=N), 1360, 1160 cm⁻¹ (SO₂); 1.31, 1.43 (each 3 H, each s, 6-Me), 2.46 (3 H, s, Me), 3.52 (1 H, dd, J= 3.9, 11.2 Hz, 3-H), 3.52 (1 H, dd, J= 8.3, 10.3 Hz, CHHI), 3.68 (1 H, dd, J= 8.8, 11.2 Hz, 3-H), 3.70 (1 H, dd, J= 2.9, 10.3 Hz, CHHI), 4.59 (1 H,

dddd, J = 2.9, 3.9, 8.3, 8.8 Hz, 2-H), 7.36, 7.97 (total 4 H, aromatic-H); ¹³C NMR $\delta = 9.1$ (CH₂I), 21.7 (Me), 24.3, 24.6 (6-Me), 43.7 (3-C), 63.5 (2-H), 76.5 (6-C), 127.9, 129.9, 134.1, 145.9 (Ph-C), 153.4 (7a-C), 180.3 (5-C); MS m/z 447 (M⁺), 432 (M⁺ - Me), 419 (M⁺ - CO), 383 (M⁺ - SO₂). Anal. Found: C, 40.09; H, 4.07; N, 9.35%. Calcd for C₁₅H₁₈IN₃O₃S: C, 40.27; H, 4.06; N, 9.39%.

6-Iodo-6,6-dimethyl-8-tosyl-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyrimidin-3(2*H*)-one (12*c*): colorless needles from hexane-benzene; mp 182-183 °C; IR (KBr) 1730 (CO), 1640 (C=N), 1365, 1170 cm⁻¹ (SO₂); ¹H NMR δ= 1.24, 1.30 (each 3 H, each s, 6-Me), 2.44 (3 H, s, Me), 3.69 (1 H, ddd, *J*= 1.0, 6.6, 13.5 Hz, 5-H), 3.78 (1 H, dd, *J*= 4.6, 13.5 Hz, 5-H), 4.05 (1 H, ddd, *J*= 1.0, 7.3, 13.5 Hz, 7-H), 4.20 (1 H, dd, *J*= 3.3, 13.5 Hz, 7-H), 4.45 (1 H, dddd, *J*= 3.3, 4.6, 6.6, 7.3 Hz, 6-H), 7.31, 8.03 (total 4 H, aromatic-H); ¹³C NMR δ= 12.1 (6-C), 21.6 (Me), 24.1, 24.7 (6-Me), 48.2 (5-C), 52.5 (7-C), 67.1 (2-C), 129.0, 129.2, 134.5, 144.7 (Ph-C), 145.2 (8a-C), 183.1 (3-C); MS *m/z* 447 (M⁺), 432 (M⁺ - Me), 419 (M⁺ - CO), 383 (M⁺ - SO₂). Anal. Found: C, 40.60; H, 4.07; N, 9.34%. Calcd for C1₅H₁₈IN₃O₃S: C, 40.27; H, 4.06; N, 9.39%.

Treatment of Iodocyclization Products 11 and 12c with DBU. General Procedures: A solution of imidazoimidazole **11a** (0.185 g, 0.5 mmol) and DBU (0.149 ml, 1.0 mmol) in dry toluene (10 ml) was heated under reflux for 3 h under argon atmosphere. The solvent was evaporated, the residue was extracted with dichloromethane (3 x 10 ml), and the organic layer was dried over anhydrous magnesium sulfate. The dichloromethane was evaporated and the residue was subjected to column chromatography on silica gel to afford *exo*-methylene compound **13a** (0.117 g, 97%) with hexane/ethyl acetate (1/2).

6,6-Dimethyl-2-methylene-1-phenyl-2,3-dihydro-1*H*-imidazo[1,2-*a*]imidazol-5(6*H*)-one (**13a**): colorless plates from hexane-benzene; mp 149-151 °C; IR (KBr) 1730 (CO), 1680 cm⁻¹ (C=N); ¹H NMR δ = 1.41 (6H, s, 6-Me), 4.25, 4.42 (each 1 H, each td, *J*= 2.2, 2.6 Hz, =CH*H*), 4.59 (2 H, t, *J*= 2.2 Hz, 3-H), 7.34-7.50 (5 H, ov, Ph); ¹³C NMR δ = 25.0 x 2 (6-Me), 42.6 (3-C), 74.4 (6-C), 84.5 (=CH₂), 126.4, 127.8, 128.8, 133.8 (Ph-C), 145.2 (2-C), 156.2 (7a-C), 180.3 (5-C); MS *m*/z 241 (M⁺), 226 (M⁺ - Me), 213 (M⁺ - CO). Anal. Found: C, 69.89; H, 6.28; N, 17.31%. Calcd for C₁₄H₁₅N₃O: C, 69.69; H, 6.27; N, 17.42%.

6,6-Dimethyl-2-methylene-1-(1-naphthyl)-2,3-dihydro-1*H*-imidazo[1,2-*a*]imidazol-5(6*H*)-one (13b): colorless prisms from hexane-benzene; mp 177-179 °C; IR (KBr) 1730 (CO), 1675 cm⁻¹ (C=N); ¹H NMR δ = 1.39, 1.42 (each 3 H, each s, 6-Me), 3.89 (1 H, td, *J*= 2.2, 2.9 Hz, =CH*H*), 4.20 (1 H, ddd, *J*= 1.8, 2.2, 2.9 Hz, =C*H*H), 4.56 (1 H, ddd, *J*= 1.8, 2.2, 15.0 Hz, 3-H), 4.64 (1 H, td, *J*= 2.2, 15.0 Hz, 3-H), 7.50-7.95 (5 H, ov, naphthyl-H); ¹³C NMR δ = 24.9, 25.1 (6-Me), 42.7 (3-C), 74.5 (6-C), 85.3 (=CH₂), 122.5, 125.9, 126.6, 126.7, 127.0, 127.1, 128.5, 129.5, 129.7, 134.8 (naphthyl-C), 146.1 (2-C), 156.7 (7a-C), 180.2 (5-C); MS *m/z* 291 (M⁺), 276 (M⁺ - Me), 263 (M⁺ - CO). Anal. Found: C, 74.36; H, 6.06; N, 14.46%. Calcd for C18H17N30: C, 74.20; H, 5.88; N, 14.42%.

6,6-Dimethyl-2-methylene-1-tosyl-2,3-dihydro-1*H*-imidazo[1,2-*a*]imidazol-5(6*H*)-one (**13c**): colorless needles from hexane-benzene; mp 156-157 °C; IR (KBr) 1720 (CO), 1680 (C=N), 1360, 1170 cm⁻¹ (SO₂); ¹H NMR δ = 1.40 (6 H, s, 6-Me), 2.45 (3 H, s, Me), 4.13 (2 H, dd, *J*= 2.0, 2.4 Hz, 3-H), 4.70 (1 H, td, *J*= 2.0, 2.9 Hz, =CH*H*), 5.68 (1 H, td, *J*= 2.4, 2.9 Hz, =C*H*H), 7.43, 7.96 (total 4 H, aromatic-H); ¹³C NMR δ = 21.7 (Me), 24.4 x 2 (6-Me), 42.3 (3-C), 75.2 (6-C), 95.9 (=CH₂), 127.8, 129.8, 134.0, 146.1 (aromatic-C), 139.3 (2-C), 153.5 (7a-C), 179.7 (5-C); MS *m*/z 319 (M⁺), 291 (M⁺ - CO). Anal. Found: C, 56.39; H, 5.37; N, 12.89%. Calcd for C15H17N3O3S: C, 56.41; H, 5.37; N, 13.16%.

Similar treatment of 6-*endo* product 12c with DBU gave a mixture of 14c and 15c, which showed a satisfactory analytical data; C, 56.66; H, 5.65; N, 13.01%. Calcd for C15H17N3O3S: C, 56.41; H, 5.37; N, 13.16%. The two products could not be isolated each other in pure forms, but their structures were accomplished by the spectroscopic data as follows: 2,2-dimethyl-8-tosyl-7,8-dihydroimidazo[1,2-*a*]pyrimidin-3(2*H*)-one (14c): ¹H NMR δ = 1.28 (6 H, s, 2-Me), 2.44 (3 H, s, Me), 4.43 (2 H, dd, J= 2.0, 3.9 Hz, 7-H), 5.33 (1 H, td, J= 3.9, 7.9 Hz, 6-H), 6.60 (1 H, td, J= 2.0, 7.9 Hz, 5-H), 7.31, 8.00 (total 4 H, aromatic-H); ¹³C NMR δ = 21.6 (Me), 24.5 x 2 (2-Me), 44.5 (7-C), 67.6 (2-C), 104.3 (6-C), 118.1 (5-C), 128.9, 129.2, 134.4, 144.5 (aromatic-C), 145.2 (8a-C), 178.7 (3-C). 2,2-Dimethyl-8-tosyl-5,8-dihydroimidazo[1,2-*a*]-

pyrimidin-3(2*H*)-one (**15c**): ¹H NMR δ = 1.26 (6 H, s, 2-Me), 2.43 (3 H, s, Me), 3.95 (2 H, dd, J= 2.3, 3.3 Hz, 5-H), 5.18 (1 H, td, J= 3.3, 8.6 Hz, 6-H), 7.04 (1 H, td, J= 2.3, 8.6 Hz, 7-H), 7.31, 7.96 (total 4 H, aromatic-H); ¹³C NMR = 21.7 (Me), 24.3 x 2 (2-Me), 38.8 (5-C), 67.0 (2-C), 100.3 (6-C), 122.6 (7-C), 128.9, 129.2, 134.1, 144.3 (aromatic-C), 145.5 (8a-C), 183.6 (3-C).

Iodocyclization of Imidazolinones 8 and 9 Leading to 6-endo 16 and 17 and 5-exo Cyclization Product 18c. Iodocyclization of 8 and 9 was performed similarly to the procedures mentioned above to afford the corresponding cyclization products.

 $(6S^*, 7R^*)$ -6-Iodo-2,2-dimethyl-7,8-diphenyl-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyrimidin-3(2*H*)-one (**16a**): colorless plates from hexane-benzene; mp 187 °C (dec.); IR (KBr) 1720 (CO), 1630 cm⁻¹ (C=N); ¹H NMR δ = 1.43, 1.45 (each 3 H, each s, 2-Me), 3.40 (1 H, dd, *J*= 3.3, 14.5 Hz, 5-H), 3.92 (1 H, dd, *J*= 1.0, 1.45 Hz, 5-H), 4.74 (1 H, dd, *J*= 1.0, 1.3 Hz, 6-H), 5.06 (1 H, br s, 7-H), 7.14-7.44 (10 H, ov, Ph); ¹³C NMR δ = 21.8 (6-C), 24.9, 25.7 (2-Me), 43.6 (5-C), 66.1 (2-C), 70.3 (7-C), 125.5, 126.2, 126.5, 128.8,

129.3, 129.6, 138.7, 142.4 (Ph-C), 149.1 (8a-C), 184.9 (3-C); MS m/z 445 (M⁺), 444, 430 (M⁺ - Me), 318 (M⁺ - I). Anal. Found: 53.94; H,4.39; N, 9.29%. Calcd for C₂₀H₂₀IN₃O: C, 53.95; H, 4.53; N, 9.44%. The structure of compound **16a** was also confirmed by X-ray structure analysis.⁸ (6S*,7R*)-6-Iodo-2,2-dimethyl-8-(1-naphthyl)-7-phenyl-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidin-3(2H)-one (**16b**): colorless crystals without recrystallization; mp 214 °C (dec.); IR (KBr) 1730 (CO), 1630 cm⁻¹ (C=N); MS m/z 495 (M⁺), 480 (M⁺ - Me), 368 (M⁺ - I). Anal. Found: C, 58.12; H, 4.44; N, 8.42%. Calcd

for C₂₄H₂₂IN₃O: C, 58.19; H, 4.48; N, 8.48%. The ¹H and ¹³ NMR spectra of compound **16b** showed that it existed in the CDCl₃ solution as a 3.3:1 mitture of atropisomers; **major**: ¹H NMR δ = 1.38, 1.39 (each 3 H, each s, 2-Me), 3.79 (1 H, dd, *J*= 3.6, 14.9 Hz, 5-H), 4.09 (1 H, dd, *J*= 1.3, 14.9 Hz, 5-H), 4.66 (1 H, ddd, *J*= 1.3, 2.3, 3.6 Hz, 6-H), 4.98 (1 H, d, *J*= 2.3 Hz, 7-H), 7.08-7.90, 8.63 (total 12 H, aromatic-H); ¹³C NMR δ = 20.2 (6-C), 25.0, 25.7 (2-Me), 44.3 (5-C), 66.3 (2-C), 70.5 (7-C), 125.2, 125.5, 125.6, 126.2, 126.5, 127.0 x 2, 128.8, 129.0, 129.1, 129.7, 135.1, 137.6, 139.7 (aromatic-C), 150.0 (8a-C), 185.1 (3-C). **Minor**: ¹H NMR δ = 1.34, 1.39 (each 3 H, each s, 2-Me), 3.89 (1 H, dd, *J*= 3.3, 14.5 Hz, 5-H), 4.06 (1 H, dd, *J*= 3.3, 14.5 Hz, 5-H), 4.71 (1 H, dt, *J*= 2.6, 3.3 Hz, 6-H), 5.30 (1 H, d, *J*= 2.6 Hz, 7-H), 7.08-7.90 (total 12 H, aromatic-H); ¹³C NMR δ = 23.1 (6-C), 25.1, 25.7 (2-Me), 43.9 (5-C), 66.7 (2-C), 73.1 (7-C), 124.3, 125.4, 126.0, 126.1, 126.3, 127.2, 128.6, 128.9, 129.0, 129.6, 134.8, 139.0, 139.3 (aromatic-C), 150.0 (8a-C), 185.1 (3-C).

 $(6S^*, 7R^*)$ -6-Iodo-2,2-dimethyl-7-phenyl-8-tosyl-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyrimidin-3(2*H*)-one (**16c**): colorless prisms from ethanol; mp 249 °C (dec.); IR (KBr) 1730 (CO), 1630 (C=N), 1340, 1160 cm⁻¹ (SO2); ¹H NMR (CF₃CO₂D) δ = 1.97 (6 H, s, 2-Me), 2.58 (3 H, s, Me), 3.69, 4.21 (each 1 H, each d, *J*= 14.7 Hz, 5-H), 4.93 (1 H, s, 6-H), 5.75 (1 H, s, 7-H), 7.15, 7.45-7.56, 7.92 (total 9 H, aromatic-H); ¹³C NMR (CF₃CO₂D) δ = 15.5 (6-C), 22.6 (Me), 24.2, 25.8 (2-Me), 46.1 (5-C), 66.2 (2-C), 70.8 (7-C), 127.5, 131.4, 132.1, 132.2, 132.5, 133.3, 135.9, 153.5 (aromatic-C), 154.7 (8a-C), 177.0 (3-C); MS *m/z* 523 (M⁺), 508 (M⁺ - Me), 459 (M⁺ - SO₂). Anal. Found: C, 48.23; H, 4.18; N, 8.02%. Calcd for C₂₁H₂₂IN₃O₃S: C, 48.19; H, 4.24; N, 8.03%.

 $(6S^*, 7R^*)$ -6-Iodo-2,2,7-trimethyl-8-phenyl-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyrimidin-3(2*H*)-one (17a): colorless plates from hexane-benzene; mp 172 °C (dec.); IR (KBr) 1730 (CO), 1630 cm⁻¹ (C=N); ¹H NMR δ = 1.34, 1.35 (each 3 H, each s, 2-Me), 1.36 (3 H, d, *J*= 6.6 Hz, 7-Me), 3.90 (1 H, dd, *J*= 3.6, 14.8 Hz, 5-H), 4.01-4.11 (2 H, ov, 5- and 7-H), 4.62 (1 H, ddd, *J*= 1.0, 3.3, 3.6 Hz, 6-H), 7.25-7.46 (total 5 H, ov, Ph). Anal. Found: C, 47.43; H, 4.79; N, 10.89%. Calcd for C15H18lN3O: C, 47.01; H, 4.73; N, 10.96%. The structure of compound **17a** was also confirmed by X-ray structure analysis.⁸

Similar reaction of imidazolinone 9c with iodine gave two cyclization products 17c and 18c, which could be separated each other by column chromatography on silica gel with hexane/ethyl acetate (3/1).

 $(6S^*, 7R^*)$ -6-Iodo-2,2,7-trimethyl-8-tosyl-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyrimidin-3(2*H*)-one (17c): colorless plates from ethanol; mp 162-163 °C; IR (KBr) 1740 (CO), 1630 (C=N), 1420, 1160 cm⁻¹ (SO₂); ¹H

NMR δ = 1.17, 1.38 (each 3 H, each s, 2-Me), 1.53 (3 H, d, J= 6.9 Hz, 7-Me), 2.42 (3 H, s, Me), 3.73 (1 H, dd, J= 3.6, 14.8 Hz, 5-H), 3.87 (1 H, dd, J= 1.7, 14.8 Hz, 5-H), 4.55 (1 H, ddd, J= 1.7, 2.0, 3.6 Hz, 6-H), 4.85 (1 H, dq, J= 2.0, 6.9 Hz, 7-H), 7.28, 8.11 (total 4 H, aromatic-H); ¹³C NMR δ = 20.2 (6-C), 21.1 (7-Me), 21.7 (Me), 24.0, 25.1 (2-Me), 43.8 (5-C), 59.8 (7-C), 66.8 (2-C), 128.5, 130.1, 134.6, 144.1 (aromatic-C), 145.0 (8a-C), 184.0 (3-C); MS *m*/z 461 (M⁺), 397 (M⁺ - SO₂), 334 (M⁺ - I), 306 (M⁺ - Ts). Anal. Found: C, 41.54; H, 4.36; N, 9.00%. Calcd for C1₆H₂0IN₃O₃S: C, 41.66; H, 4.37; N, 9.11%.

 $(2S^*, 8R^*)$ -2-(1-Iodoethyl)-6,6-dimethyl-1-tosyl-2,3-dihydro-1*H*-imidazo[1,2-*a*]imidazol-5(6*H*)-one (18c): colorless films; ¹H NMR δ = 1.33, 1.42 (each 3 H, each s, 2-Me), 1.87 (3 H, d, *J*= 7.3 Hz, CHI-*Me*), 2.46 (3 H, s, Me), 3.54 (2 H, d, *J*= 5.6 Hz, 2-H), 4.07 (1 H, dt, *J*= 3.3, 5.6 Hz, 6-H), 4.69 (1 H, dq, *J*= 3.3, 7.3 Hz, CHI-Me), 7.35, 7.98 (total 4 H, aromatic-H); ¹³C NMR δ = 21.7 (Me), 23.9 (CHI-*Me*), 24.4, 24.5 (6-Me), 31.0 (3-C), 41.6 (CHI-Me), 68.6 (2-C), 76.8 (6-C), 127.9, 129.9, 134.9, 145.8 (aromatic-C), 153.1 (7a-C), 180.4 (5-C). Anal. Found: C, 41.12; H, 4.60; N, 9.68%. Calcd for C1₆H₂₀IN₃O₃S: C, 41.66; H, 4.37; N, 9.11%.

Elimination of Hydrogen Iodide from the 6-endo 16 and 17c and 5-exo Cyclization Product 18c by the Treatment with DBU. A toluene solution of imidazolinone 16a and DBU (2.0 equiv.) was heated under reflux for 1 h under argon atmosphere. Concentration, extraction with dichloromethane, and silica gel column separation gave product 19a (97%).

2,2-Dimethyl-7,8-diphenyl-7,8-dihydroimidazo[1,2-*a*]pyrimidin-3(2*H*)-one (**19a**): colorless needles from hexane-benzene; mp 142-143 °C; IR (KBr) 1740 (CO), 1635 cm⁻¹ (C=N); ¹H NMR δ = 1.37, 1.41 (each 3 H, each s, 2-Me), 5.24 (1 H, d, *J*= 4.6 Hz, 7-H), 5.43 (1 H, dd, *J*= 4.6, 7.9 Hz, 6-H), 6.83 (1 H, d, *J*= 7.9 Hz, 5-H), 7.10-7.35 (total 10H, Ph); ¹³C NMR δ = 25.1, 25.3 (2-Me), 63.4 (7-C), 66.6 (2-C), 110.1 (6-C), 116.5 (5-C), 126.6, 126.7, 126.8, 128.2, 128.9, 129.1, 129.2, 140.5 (Ph-C), 148.7 (8a-C), 180.1 (3-C); MS *m*/z 317 (M⁺), 302 (M⁺ - Me), 289 (M⁺ - CO). Anal. Found: C, 75.84; H, 6.04; N, 13.12%. Calcd for C₂₀H₁₉N₃O: C, 75.68; H, 6.03; N, 13.24%.

2,2-Dimethyl-8-(1-naphthyl)-7-phenyl-7,8-dihydroimidazo[1,2-*a*]pyrimidin-3(2*H*)-one (**19b**): yield 92%; colorless prisms from hexane-benzene; mp 196-197 °C; IR (KBr) 1730 (CO), 1640 cm⁻¹ (C=N); MS *m/z* 367 (M⁺), 352 (M⁺- Me), 339 (M⁺- CO). Anal. Found: C, 78.67; H, 5.80; 11.34%. Calcd for C₂₄H₂₁N₃O: C, 78.45; H, 5.76; N, 11.44%. This compound existed as a 3:1 mixture of atropisomers in the CDCl₃ solution; **major**: ¹H NMR δ = 1.26, 1.39 (each 3 H, each s, 2-Me), 5.05 (1 H, dd, *J*= 1.3, 4.6 Hz, 7-H), 5.49 (1 H, dd, *J*= 4.6 7.9 Hz, 6-H), 6.77 (1 H, dd, *J*= 1.3, 7.9 Hz, 5-H), 6.96-7.91 (total 10 H, aromatic-H); ¹³C NMR δ = 25.2, 25.3 (2-Me), 63.5 (7-C), 66.6 (2-C), 109.8 (6-C), 117.1 (5-C), 121.8, 125.5, 126.1, 126.9, 127.5 x 2, 128.0, 128.5, 128.6, 128.8, 128.9, 129.3, 135.0, 140.6 (aromatic-C), 148.9 (8a-C), 180.3 (3-C). **Minor**: ¹H NMR δ = 1.30, 1.39 (each 3 H, each s, 2-Me), 5.39 (1 H, dd, *J*= 3.0, 7.9 Hz, 6-H), 5.50 (1 H, dd, *J*= 1.3, 3.0 Hz, 6-H), 6.96-7.91 (12 H, ov, 5-H and aromatic-H); ¹³C NMR δ = 25.0, 25.4 (2-Me), 64.8 (7-C), 66.7 (2-C), 109.6 (6-C), 117.4 (5-C), 123.6, 124.9, 125.8, 126.1, 126.9, 127.5, 127.8, 128.2, 128.6, 128.8, 130.9, 134.2, 138.4 (aromatic-C), 148.3 (8a-C), 180.1 (3-C).

2,2-Dimethyl-7-phenyl-8-tosyl-7,8-dihydroimidazo[1,2-*a*]pyrimidin-3(2*H*)-one (**19c**): yield 73%; colorless plates from hexane-benzene; mp 146-147 °C; IR (KBr) 1740 (CO), 1630 (C=N), 1360, 1175 cm⁻¹ (SO₂); ¹H NMR δ = 1.23, 1.34 (each 3 H, each s, 2-Me), 2.36 (3 H, s, Me), 5.52 (1 H, dd, *J*= 5.6, 7.9 Hz, 6-H), 6.05 (1 H, dd, *J*= 1.3, 5.6 Hz, 7-H), 6.68 (1 H, dd, *J*= 1.3, 7.9 Hz, 5-H), 7.11, 7.16-7.29, 7.65 (total 9 H, aromatic-H); ¹³C NMR δ = 21.5 (Me), 24.2, 25.6 (2-Me), 58.9 (7-C), 67.7 (2-C), 110.0 (6-C), 116.6 (5-C), 126.6, 128.5, 128.7, 129.0, 129.1, 135.2, 139.1, 144.5 (aromatic-C), 144.7 (8a-C), 179.0 (3-C); MS *m/z* 395 (M⁺), 331 (M⁺ - SO₂). Anal. Found: C, 63.88; H, 5.30; N, 10.48%. Calcd for C₂₁H₂₁N₃O₃S: C, 63.78; H, 5.35; N, 10.63%.

2,2,7-Trimethyl-8-tosyl-7,8-dihydroimidazo[1,2-*a*]pyrimidin-3(2*H*)-one (**20c**): yield 89%; colorless plates from ethanol; mp 124-125 °C; IR (KBr) 1730 (CO), 1640 (C=N), 1380, 1170 cm⁻¹ (SO₂); ¹H NMR &=

1.06, 1.38 (each 3 H, each s, 2-Me), 1.44 (3 H, d, J= 6.6 Hz, 7-Me), 2.42 (3 H, s, Me), 5.12 (1 H, dq, J= 5.3, 6.6 Hz, 7-H), 5.42 (1 H, dd, J= 5.3, 7.9 Hz, 7-H), 6.56 (1 H, d, J= 7.9 Hz, 5-H), 7.28, 7.93 (total 4 H, aromatic-H); ¹³C NMR δ = 21.6 (Me), 23.3 (7-Me), 24.3, 24.4 (2-Me), 52.2 (7-C), 67.6 (2-C), 111.2 (6-C), 117.0 (5-C), 128.8, 129.1, 135.6, 144.5 (aromatic-C), 144.8 (7a-C), 179.0 (3-C); MS *m*/z 333 (M⁺), 318 (M⁺ - Me), 290 (M⁺ - HNCO), 254 (318 - SO₂). Anal. Found: C, 57.84; H, 5.79; N, 12.58%. Calcd for C₁₆H₁₉N₃O₃S: C, 57.64; H, 5.74; N, 12.60%.

2-(*E*)-Ethylidene-6,6-dimethyl-1-tosyl-2,3-dihydro-1*H*-imidazo[1,2-*a*]imidazol-5(6*H*)-one (**21c**): yield 72%; colorless films; ¹H NMR δ = 1.39 (6 H, s, 6-Me), 1.65 (3 H, d, *J*= 7.3 Hz, =CH-*Me*), 2.45 (3 H, s, Me), 4.05 (2 H, ov, 3-H), 6.16 (1 H, m, =CH-Me), 7.33, 7.89 (total 4 H, aromatic-H); ¹³C NMR δ = 12.9 (=CH-*Me*), 21.7 (Me), 24.4 x 2 (6-Me), 40.3 (3-C), 75.1 (6-C), 108.1 (=CH-Me), 127.7, 129.7, 134.2, 145.9 (aromatic-C), 132.9 (2-C), 153.9 (8a-C), 180.0 (5-C). Anal. Found: C, 57.90; H, 6.00; N, 12.32%. Calcd for C1₆H₁₉N₃O₃S: C, 57.64; H, 5.74; N, 12.60%. The configuration of the ethylidene moiety was assigned to be *E*-one by NOE measurement; irradiation of the methylene proton signal (δ = 4.05) caused an 8.4% enhancement of the methyl proton signal (δ = 1.65) of the ethylidene.

Iodocyclization of Imidazolinones 10 Leading to Imidazo[1,2-a]imidazoles 22. Iodocyclization of 10 was performed similarly to the procedures mentioned above to afford the corresponding cyclization products 22.

2-Iodomethyl-2,6,6-trimethyl-1-phenyl-2,3-dihydro-1*H*-imidazo[1,2-*a*]imidazol-5(6*H*)-one (22a): colorless prisms from hexane-benzene; mp 150-151 °C; IR (KBr) 1710 (CO), 1660 cm⁻¹ (C=N); ¹H NMR δ = 1.38, 1.40 (each 3 H, each s, 6-Me), 1.66 (3 H, s, 2-Me), 3.33, 3.37 (each 1 H, each d, *J*= 11.4 Hz, CH₂I), 3.62, 3.94 (each 1 H, each d, *J*= 11.0 Hz, 3-H), 7.33-7.45 (5 H, ov, Ph); ¹³C NMR δ = 14.9 (CH₂I), 25.4, 25.5 (6-Me), 25.7 (2-Me), 50.7 (3-C), 69.7 (2-C), 74.7 (6-C), 128.9, 129.0, 130.1, 134.6 (Ph-C), 157.6 (7a-C), 181.3 (5-C); MS *m/z* 383 (M⁺), 368 (M⁺ - Me), 355 (M⁺ - CO). Anal. Found: C, 46.76; H, 4.65; N, 11.05%. Calcd for C15H1gIN₃O: C, 47.01; H, 4.73; N, 10.97%.

2-Iodomethyl-2,6,6-trimethyl-1-(1-naphthyl)-2,3-dihydro-1*H*-imidazo[1,2-*a*]imidazol-3(2*H*)-one (**22b**): colorless crystals without recrystallization; mp 187-188 °C; IR (KBr) 1700 (CO), 1670 cm⁻¹ (C=N); MS *m*/z 433 (M⁺), 405 (M⁺ - CO), 306 (M⁺ - I). Anal. Found: C, 52.42; H, 4.66; N, 9.58%. Calcd for C19H20IN30: C, 52.67; H, 4.65; N, 9.70%. This compound existed as a 3:1 mixture of atropisomers in the CDCl₃ solution; **major**: ¹H NMR δ = 1.36, 1.37 (each 3 H, each s, 6-Me), 1.44 (3 H, s, 2-Me), 3.51, 3.60 (each 1 H, each d, *J*= 10.9 Hz, CH₂I), 3.79, 4.10 (each 1 H, each d, *J*= 11.2 Hz, 3-H), 7.47-7.96 (naphthyl-H); ¹³C NMR δ = 16.3 (CH₂I), 24.1, 24.8 (6-Me), 26.3 (2-Me), 50.7 (3-C), 70.0 (2-C), 74.4 (6-C), 123.0, 125.6, 126.5, 126.9, 128.3, 128.7, 129.8, 129.9, 131.8, 135.0 (naphthyl-C), 156.9 (7a-C), 181.0 (5-C). **Minor**: ¹H NMR δ = 1.36, 1.37 (each 3 H, each d, *J*= 11.2 Hz, 3-H), 7.47-7.96 (naphthyl-H); ¹³C NMR δ = 1.36, 1.37 (each 1 H, each d, *J*= 11.2 Hz, 3-H), 2.98, 3.60 (each 1 H, each d, *J*= 10.9 Hz, CH₂I), 3.75, 4.10 (each 1 H, each d, *J*= 11.2 Hz, 3-H), 7.47-7.96 (naphthyl-H); ¹³C NMR δ = 12.9 (CH₂I), 2.5.1, 25.5 (6-Me), 25.8 (2-Me), 51.0 (3-C), 70.7 (2-C), 74.5 (6-C), 123.3, 125.4, 126.5, 127.0, 128.6, 128.7, 129.9, 130.0, 132.0, 135.0 (naphthyl-C), 157.0 (7a-C), 181.3 (5-C).

2-Iodomethyl-2,6,6-trimethyl-1-tosyl-2,3-dihydro-1*H*-imidazolo[1,2-*a*]imidazol-5(6*H*)-one (**22c**): colorless prisms from ethanol; mp 170-171 °C; IR (KBr) 1720 (CO), 1660 (C=N), 1360, 1160 cm⁻¹ (SO₂); ¹H NMR δ = 1.39, 1.42 (each 3 H, each s, 6-Me), 1.90 (3 H, s, 2-Me), 2.45 (3 H, s, Me), 3.41, 3.70 (each 1 H, each d, *J*= 11.0 Hz, CH₂I), 3.75, 3.88 (each 1 H, each d, *J*= 10.6 Hz, 3-H), 7.33, 8.10 (total 4 H, aromatic-H); ¹³C NMR δ = 14.4 (CH₂I), 21.8 (Me), 24.4, 24.5 (6-Me), 25.1 (2-Me), 51.3 (3-C), 73.2 (2-C), 75.4 (6-C), 128.2, 129.5, 136.6, 145.3 (aromatic-C), 153.1 (7a-C), 180.1 (5-C); MS *m/z* 461 (M⁺), 446 (M⁺ - Me), 433 (M⁺ - CO). Anal Found: C, 41.56; H, 4.21; N, 9.03%; Calcd for C₁₆H₂₀IN₃O₃: C, 41.66; H, 4.37; N, 9.11%.

Computational Procedures: All iodonium intermediates **23-26** were created and roughly optimized by using MM2 force field calculations in MacroModel (version 3.5a).¹⁵ MO calculations were carried out with PM3 method using MOPAC program (version 6.0). All iodonium intermediates were fully optimized unless otherwise indicated.

References and Notes

- 1 a) Preparation of Heterocycles Using Functionalized Heterocumulenes. Part 4. b) Part 3 in this series; Isomura, Y.; Yamasaki, S.; Okada, H.; Noguchi, M. *Heterocyclic Commun.* in press.
- Ishikawa, F.; Kosasayama, A.; Nakamura, S.; Konno, T. Chem. Pharm. Bull. 1978, 26, 3658;
 Ishikawa, F.; Kosasayama, A.; Konno, T. Ibid. 1978, 26, 3666; Kosasayama, A.; Watanabe, Y.;
 Higashi, K.; Ishikawa, F. Ibid. 1979, 27, 831; Kosasayama, A.; Konno, T.; Higashi, K.; Ishikawa, F.
 Ibid. 1979, 27, 841.
- 3 a) Kosasayama, A.; Konno, T.; Higashi, K.; Ishikawa, F. Chem. Pharm. Bull. 1979, 27, 848. Also see references 1); b) Guinamant, J. L.; Robert, A. Tetrahedron 1986, 42, 1169.
- For recent reviews on the synthetic utilities of carbodiimides: Molina, P.; Vilaplana, M. J. Synthesis 1994, 1197; Eguchi, S.; Matsushita, Y.; Yamashita, K. Org. Prep. Proced. Int. 1992, 24, 209; Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353; Barluenga, J.; Palacios, F. Org, Prep. Proced. Int. 1992, 23, 1.
- 5 For recent reviews on the iodocyclizations: Boivin, T. L. B. *Tetrahedron* **1987**, *43*, 3309; Cardillo, G.; Orena, M. *Ibid.* **1990**, *46*, 3321.
- 6 Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734; Baldwin, J. E.; Cutting, J.; Dupont, W. Kruse, L.; Silberman, L.; Thomas, R. C. Ibid. 1976, 736; Baldwin, J. E. Ibid. 1976, 738.
- 7 Litchman, W. M.; Grant, D. M. J. Am. Chem. Soc. 1968, 90, 1400; Howarth, O. W.; Lynch, R. J. Mol. Phys. 1968, 15, 431; Miyajima, G.; Takahashi, K. J. Phys. Chem. 1971, 75, 331 and 3766.
- 8 The authors have deposited atomic coordinates for this structure with the Cambridge Crystallographic Data Centre. The coordinates can be obtained on request from The Director, Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.
- 9 Jin, S. Q.; Liu, R. Z. Int. J. Quant. Chem. 1984, 25, 699; Chamberlin, A. R.; Mulholland, Jr., R. L.; Kahn, S. D.; Hehre, W. J. J. Am. Chem. Soc. 1987, 109, 672. Also see the references cited therein.
- For recent papers: a) Poirier, R. A.; Mezey, P. G.; Yates, K.; Csizmadia, I. G. J. Mol. Struct. 1981, 85, 153; Jin, S. Q.; Liu, R. Z. Int. J. Quant. Chem. 1984, 25, 699; Galland, B.; Evleth, E. M.; Ruasse, M. -F. J. Chem. Soc., Chem. Commun. 1990, 898; b) Yamabe, S.; Minato, T. Bull. Chem. Soc. Jpn. 1993, 66, 3339; c) Hamilton, T. P.; Schaefer, III, H. F. J. Am. Chem. Soc. 1990, 112, 8260; Sperka, J.; Liotta, D. C. Heterocycles 1993, 35, 701. Also see the references cited therein.
- 11 Stewart, J. J. J. Comput. Chem. 1989, 10, 209.
- 12 "MOPAC program version 6, QCPE No. 455," 1990, Department of Chemistry, Indiana University, Bloomington, IN 47405.
- 13 Gotoh, M.; Mizui, T.; Sun, B.; Hirayama, K.; Noguchi, M. J. Chem. Soc., Perkin Trans. 1 1995, 1857.
- 14 Koziara, A.; Osowska-Pacewicka, K.; Zawadzki, S.; Zwierzak, A. Synthesis 1985, 202; Moody, C. J.; Rahimtoola, K. F.; Porter, B.; Ross, B. C. J. Org. Chem. 1992, 57, 2105.
- 15 Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrikson, T.; Still, W. C. J. Comp. Chem. 1990, 11, 221.

(Received in Japan 2 October 1995; accepted 25 December 1995)