J.C.S. CHEM COMM., 1980

pH 8.98

Synthesis, Ring Opening, and Glycosidic Bond Cleavage of 3-Methyl-2'-deoxyadenosine

By Tozo Fujii,* Tohru Saito, and Tsuyoshi Nakasaka

(Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan)

Summary Methylation of N'-benzyloxy-l-(2-deoxy- β -D-ribofuranosyl)-5-formamidoimidazole-4-carboxamidine (2a) followed by hydrogenolysis of the N'-benzyloxy-group and cyclization produced the hitherto unknown 3-methyl-2'-deoxyadenosine (5a), which was readily hydrolysed to 3-methyladenine (6) in H₂O at pH \leq 70 and to (6) and the imidazole-(2-deoxy)riboside (4a) at

THE 3-methyl-2'-deoxyadenosine structure (type 5a) has been assumed to occur in DNA's which had been treated with various methylating agents ¹ Because of the extraordinary instability of its glycosidic bond to acid hydrolysis at the polynucleotide level,² it is of prime importance to study this part-structure at the nucleoside level We now record the first synthesis of 3-methyl-2'-deoxyadenosine (5a), which has enlarged the scope of our general method³ for the synthesis of 3,9-disubstituted adenines, as well as its behaviour toward hydrolysis

In general agreement with previous results,⁴ the reaction of 2'-deoxyadenosine 1-oxide⁵ with PhCH₂Br in AcNMe₂ and treatment of the benzylated product with NaClO₄ gave the 1-benzyloxy-derivative (1a),[†] m p 143 5—144 5 °C (decomp), in 85% yield The perchlorate (1a) was converted into the free base by the use of Amberlite IRA-402 (HCO₃⁻) and the base was treated with H₂O at 3—4 °C for 8 days to furnish the formamidoimidazole (2a) $\frac{1}{2}$ H₂O (70% yield), m p 138—139 °C (decomp) Methylation of (2a) with anhydrous K₂CO₃ and MeI in HCONMe₂ at room temperature afforded the N-methylformamido-derivative (**3a**) (69% yield), m p 141—142 °C (decomp), which was hydrogenolysed with Raney N1 and H₂ (1 atm, room temperature, 90 min) in H₂O in the presence of a mol equiv of toluene-*p*-sulphonic acid (TsOH) The crude (**4a**) TsOH that formed was treated with a little Et₃N in MeOH at —18 °C for 3 days to produce the desired compound (**5a**) TsOH [19% yield from (**3a**)], m p ca 120 °C (decomp), λ_{max} (95% EtOH) 272 nm (unstable), λ_{max} (H₂O) (pH 1 or 13) unstable, λ_{max} (H₂O) (pH 7) 271 nm (ϵ 16900) (unstable), δ [(CD₃)₂SO] 2 28 (3H, s, CMe), 4 19 (3H, s NMe), 8 63 and 8 71 (1H each, s, purine protons), and 9 15 and 9 23 (2H, =NH₂⁺ or 2 NH)

The (5a) TsOH thus obtained was found to be very When treated with boiling MeOH for 30 min, it unstable gave 3-methyladenine (6)⁶ in 99% yield It underwent hydrolysis to (6) much faster in an aqueous acidic solution and rate constants of 0.25 min^{-1} (half life 2.7 min), 0.039 min^{-1} (18 min), and 0.02 min^{-1} (35 min) were determined for the hydrolyses at pH 3 34 and 25 °C, pH 5 00 and 37 °C, and pH 7 00 and 37 °C, respectively In contrast the hydrolysis of methylated DNA at 37 °C at pH 50 or 70 was reported to liberate (6) at a rate of 1.0×10^{-3} min⁻¹ (half life 11.5 h) or 4.8×10^{-4} min⁻¹ (24 h)^{2a} We also found that the rate constant for the hydrolysis of the furanosyl-analogue (5b) TsOH^{3b} at pH 3 34 and 25 °C was 6 9 $\,\times\,$ 10^{-4} min^{-1} (half life 17 h) Interestingly, the replacement of the ribosyl-group in (**5b**) TsOH by the 2-deoxyribosyl-group to give

† Satisfactory spectral data and/or elemental analyses were obtained for all the new compounds described

(5a) · TsOH made the glycosidic bond cleavage 360 times faster. In H₂O at pH 8.98 and 25 °C, (5a) · TsOH was slowly converted into (6) in 45 h, during which time the temporary formation of the ring-opened derivative (4a) was observed. Although the ring opening of $(5a) \cdot \text{TsOH}$ was similar to that reported^{3b} for $(5b) \cdot \text{TsOH}$, the observed hydrolytic cleavage of the glycosidic bond in alkaline solution was quite notable.

The glycosidic bond of the imidazole-derivative (3a) was also unstable in aqueous acidic solution. On treatment with $0{\cdot}1~{\mbox{n}}$ aq. HCl at room temperature for $3{\cdot}5$ h, (3a)provided (3c) (61% yield) as a glass. The ribosyl-analogue (3b)^{3b} was stable under similar conditions. The structure of (3c) was confirmed by its cyclization with HCl-EtOH to yield (7), m.p. 180-181 °C, identical with a sample synthesized from 3-methyl-6-methylthiopurine⁶ and benzyloxyamine, and by its hydrogenolysis using Raney Ni and H_2 and spontaneous cyclization to give (6) in 84% yield.

We acknowledge support of this work by a Grant-in-Aid for Special Project Research from the Ministry of Education, Science and Culture, Japan.

(Received, 12th May 1980; Com. 509.)

a; $R^1 = 2$ -deoxy- β -D-ribofuranosyl

b; $R^1 = \beta$ -D-ribofuranosyl

$$\mathbf{c}; \mathbf{R}^1 = \mathbf{H}$$

(a) P. D. Lawley and P. Brookes, Biochem. J., 1963, 89, 127; (b) S. Riazuddin and T. Lindahl, Biochemistry, 1978, 17, 2110, and references cited therein.

² (a) G. P. Margison and P. J. O'Connor, Biochim. Biophys. Acta, 1973, 331, 349; (b) A. A. Maxam and W. Gilbert, Proc. Natl. Acad. Sci. U.S.A., 1977, 74, 560. ³ (a) T. Fujii, T. Saito, and M. Kawanishi, Tetrahedron Lett., 1978, 5007; (b) T. Saito and T. Fujii, J. Chem. Soc., Chem. Commun.,

1979, 135.

⁴ (a) T. Fujii, C. C. Wu, and T. Itaya, Chem. Pharm. Bull., 1971, 19, 1368; (b) J. A. Montgomery and H. J. Thomas, J. Med. Chem., 1972, 15, 182; (c) T. Fujii, C. C. Wu, T. Itaya, S. Moro, and T. Saito, Chem. Pharm. Bull., 1973, 21, 1676.
⁶ (a) H. Klenow and S. Frederiksen, Biochim. Biophys. Acta, 1961, 52, 384; (b) T. Ueda, K. Miura, and T. Kasai, Chem. Pharm.

Bull., 1978, 26, 2122.

⁶ J. W. Jones and R. K. Robins, J. Am. Chem. Soc., 1962, 84, 1914.