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ABSTRACT: Copper oxidative addition into organohalides 
is a challenging two-electron process. In contrast, formal 
oxidative addition of copper to Csp2 carbon–bromine bonds 
can be accomplished by employing latent silyl radicals 
under photoredox conditions. This novel paradigm for 
copper oxidative addition has now been applied to a Cu-
catalyzed cross-coupling of Csp3-bromides. Specifically, a 
copper/photoredox dual catalytic system for the coupling of 
alkyl bromides with trifluoromethyl groups is presented. 
This operationally simple and robust protocol successfully 
converts a variety of alkyl, allyl, benzyl, and heterobenzyl 
bromides into the corresponding alkyl trifluoromethanes. 

Over the last four decades, a range of novel ligand classes 
in combination with palladium and nickel salts has enabled the 
efficient catalytic conversion of C–X bonds into carbon–
carbon, –nitrogen, –sulfur, and –oxygen bonds across a vast 
array of reaction manifolds.1  In contrast, copper has achieved 
limited success in analogous transformations, a notable 
deficiency given its salient potential for economical and 
operational benefit.2  Copper’s diminished utility arises from an 
intrinsically high barrier to oxidative addition with both 
haloarenes and aliphatic halides.  This feature necessitates the 
use of activated aryl bromides and iodides along with elevated 
temperatures in the former case, while haloalkanes remain 
effectively inert to almost all forms of catalytic copper 
insertion.3  This deficiency is further underscored by the fact 
that high-valent Cu(III) complexes undergo reductive 
elimination with electronegative coupling partners (e.g., CF3, 
CN, F moieties) at rates that are often superior to Ni and Pd 
salts.4 

Recently, we became interested in overcoming the copper 
oxidative addition problem via the conversion of aryl and alkyl 
bromides to their aryl- and alkyl-Cu(III) analogs using a 
halogen-atom abstraction/metal-radical capture mechanism.  
More specifically, silicon-centered radicals have long been 
established as potent abstractors of bromine atoms that can 
rapidly convert organobromides into carbon-centered radicals 
under mild conditions.5 In contrast to their limited capacity for 
oxidative addition, copper salts can efficiently trap carbon-
centered radicals at rates approaching diffusion control, thereby 
allowing copper C–X insertion to be readily accomplished via 
an alternative open-shell mechanism.6 Recently, this previously 
unknown approach has enabled aryl bromides to undergo 
copper-catalyzed trifluoromethylation at room temperature,7 a 
transformation that was generally considered to be challenging 
given the kinetically high barrier to reductive elimination of 
aryl–CF3 products using either nickel or palladium salts.8 In this 
disclosure, we elevate this radical capture/copper oxidative 
addition platform to the implementation of aliphatic bromides, 

a structural format that has previously been outside the scope of 
most copper-catalyzed cross-coupling protocols. 

Within medicinal chemistry, the introduction of 
trifluoromethyl groups onto Csp3-rich scaffolds can often 
enhance the pharmacokinetic properties of lead candidates in 
drug discovery, generally via improvements in surface 
hydrophobicity and/or decreased rates of enzymatic metabolism 
and clearance.9  However, the catalytic trifluoromethylation of 
alkyl halides has historically been challenging, and at the 
present time substrate tolerance is limited to allylic or benzylic 
halides.10  The production of Csp3–CF3 bonds has been 
accomplished using stoichiometric Cu(III)-based reagents, 
however, only recently have catalytic variants been 
investigated.11  Given the success of our copper/aryl halide 
insertion-trifluoromethylation studies, we questioned whether 
this open shell cross-coupling mechanism might be translated 
to all classes of aliphatic bromides, thereby delivering a 
catalytic CF3-installation protocol of significant utility to 
medicinal and process chemists. Herein we disclose the 
successful execution of these ideals and present a mild, broadly 

 

 

Figure 1. Catalytic trifluoromethylation of alkyl bromides 
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Figure 2. Proposed mechanism for the copper-catalyzed trifluoromethylation of alkyl bromides via metallophotoredox.   

applicable, one-step protocol for the conversion of alkyl 
bromides into alkyl trifluoromethanes. 

We envisioned that a dual copper/photoredox 
trifluoromethylation mechanism might be initiated by 
photoexcitation of IrIII photocatalyst 1 with blue LEDs to 
generate a long-lived IrIII excited state (2).  Given the relative 
oxidation potentials of the excited-state IrIII catalyst (2, E1/2

red 

[*IrIII/IrII] = +1.60 V vs SCE in MeCN) and tris(trimethyl-
silyl)silanol (4, Ep

red [(TMS)3SiOH+•/(TMS)3SiOH] = +1.54 V 
vs SCE in MeCN)7, we assumed that a rapid SET event would 
generate silicon-centered radical 5 after a deprotonation and 
radical Brook rearrangement sequence.12 At this stage, silyl 
radical 5 was expected to abstract a bromine atom from alkyl 
bromide 6 at a rate on the order of 107 M–1s–1 to generate 
corresponding alkyl radical 7.5b At the same time, single 
electron transfer between the IrII reductant (3, E1/2

red [IrIII/IrII] = –
0.81 V vs SCE in MeCN) and electrophilic trifluoromethylation 
reagent 8 (Ep

red = –0.52 V in MeCN)7,10g would regenerate 
photocatalyst 1 while inducing the production of the 
trifluoromethyl radical (9).13 Rapid capture of 9 by CuI species 
10 would produce CuII–CF3 adduct 11.  Subsequent 
combination of this CuII–CF3 adduct with alkyl radical 7, a step 
that is considered to happen with kinetics approaching diffusion 
rates, would afford critical alkyl-CuIII-CF3 species 12, which 
upon reductive elimination would afford the desired product 13 
and regenerate the CuI catalyst.14  

Initial experiments on a representative alkyl bromide, 15, 
revealed that the combination of silanol 4, trifluoromethyl-
sulfonium salt 8, photocatalyst 1, and CuCl2 was highly 
effective, affording the desired CF3-bearing product 16 in 94% 
yield (Table 1, entry 1).  In agreement with our previous studies, 
silanol 4 proved to be superior to tris(trimethylsilyl)silane, 
presumably due to the feature that supersilane has a weak Si–H 
bond (BDE = 84 kcal/mol)15 and can participate in competitive 
hydrogen-atom transfer to produce protodehalogenated 
material (entry 2). Notably, the Adachi-Zhang organic 
photocatalyst, 4CzIPN (17), was also highly effective for this 
transformation (entry 3)16 While control reactions revealed that 
the copper catalyst, silanol, blue light, and photocatalyst were 
all individually necessary (entries 4–7, 0% yield), the omission  

of base resulted in decreased but measurable product formation 
(entry 8). Moreover, the use of ligated copper salts led to 
decreased yields. Lastly, an examination of alternate metal 
chlorides including Ni, Fe, Co, and Pd salts showed no activity, 
further highlighting the unique effectiveness of Cu.17 

With these conditions in hand, we next turned our attention 
to evaluating the scope of this new alkyl trifluoromethylation 
reaction. First, with a diverse set of primary alkyl bromides, we 
determined that excellent functional group compatibility was 
possible with substrates containing alcohols, esters, amides, and 
protected amines (Table 2, 18–22, 61–83% yield).  Next, 
secondary cyclic alkyl bromides were converted to their 
trifluoromethyl congeners in good to excellent yield (23–25, 
52–95% yield), presaging the utility of this transformation for 
rapid access to analogs of drug-like molecules. The observed 
lack of diastereoselectivity for cyclobutane adduct 24 is 
consistent with a carbon-centered, radical-based mechanism.  
Saturated hetero-cycles such as tetrahydropyrans and 
piperidines, prevalent moieties in medicinal agents, 
 

Table 1. Control reactions of optimized conditionsa,b 

 

aPerformed with 15 (0.05 mmol), CuCl2 (20 mol%), 1 or 17 (1 
or 5 mol%, respectively), 8 (2 equiv.), (TMS)3SiOH (2 equiv.), 
and Na2CO3 (4 equiv.) in DMSO (0.025 M) for 4 h at 30 °C. 
bYields are reported on the basis of 19F NMR analysis using 
PhCF3 as an internal standard. 
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Table 2.  Scope of the copper-catalyzed trifluoromethylation reaction of alkyl bromides via metallophotoredoxa,b 

 
aPerformed with CuCl2 (20 mol%), 8 (2 equiv.), 4 (2 equiv.), Na2CO3 (4 equiv.), and with either 1 (1 mol%) or 17 (5 mol%) in MeCN 
or DMSO, respectively (see SI for full experimental details). bDue to the volatility of a number of products, yields are reported on the 
basis of 19F NMR analysis using PhCF3 as an internal standard. Isolated yields are in parentheses. c Performed with 17 in DMSO for 
1 h. dPerformed with 1 in MeCN for 4 h. ePerformed with 17 in DMSO for 30 min. 
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could also be readily employed (13, 26–28, 61–91% yield). 
Notably, homobenzylic bromides,which are prone to E2 
elimination in base-mediated cross- coupling reactions, were 
well-tolerated using this mild protocol (30, 63% yield).18 
Similarly, rigid frameworks such as 2-bromoadamantane and 5-
bromo-2-adamantanone readily afforded CF3-bearing analogs 
31 and 32 (74% and 43% yield, respectively).  

We next examined activated allylic and benzylic bromides 
substrates, given the prevalence of benzylic CF3 substituents in 
medicinal chemistry. A series of diversely substituted benzyl 
bromides could be readily functionalized in good yield (34–41, 
39–87% yield). Notably, an alkyl bromide was engaged faster 
than an aryl bromide (39, 39% yield), enabling the possibility 
of sequential cross-coupling functionalization. We were 
delighted to find that other activated substrates such as allylic 
and secondary benzylic bromides were also tolerated (42–45, 
38–81% yield).19 

Heteroarenes, among the most widely used core structures 
in pharmaceutical synthesis, were also evaluated as trifluoro- 
methylation substrates.20 (Bromomethyl)pyridines afforded the 
corresponding CF3-adducts in good yield (46 and 47, 72% and 
59% yield, respectively). Surprisingly, anilines, substrates that 
can be easily oxidized in photocatalytic SET processes, were 
competent substrates for trifluoromethyl incorporation (48, 
67% yield). Heterocycles that are often susceptible to N–O and 
N–N bond cleavage,21 such as isoxazoles, oxadiazoles, and 
pyrazoles, were all accommodated in this new copper-mediated 
transformation, yielding the corresponding trifluoromethylated 
adducts (51–54, 42–89% yield). Moreover, imidazoles such as 
55, which are often problematic in metal-catalyzed protocols, 
provided a level of efficiency suitable for medicinal chemistry 
purposes.  

 
Figure 3. Studies into the proposed open-shell mechanism. 

We next sought to establish the intermediacy of alkyl 
radicals by testing the functionalization of cyclopropyl-bearing 
substrates 56 and 57 (Figure 3). Cross-coupling of halomethyl 
cyclopropanes under reducing Grignard conditions is known to 
proceed without cyclopropane opening. As such, 
functionalization of these radical clock substrates would enable 
us to distinguish the mechanistic basis for the current protocol 
from direct oxidative addition by either low-valent or 
nanoparticulate copper in solution.22 Upon exposure of 56 to our 
standard protocol, we observed the production of 58 in 14% 
yield. Similarly, cross-coupling of 57 also afforded ring-opened 
product 59 in 17% yield. These results directly support the 

presence of discrete alkyl radical intermediates in the reaction, 
consistent with our proposed mechanism.  

 
Figure 4. Late-stage trifluoromethylation of medicinal agents. 

To demonstrate the utility of this transformation in late-
stage functionalization of drug analogs, we next undertook the 
rapid synthesis of trifluoromethylated celecoxib and ticagrelor 
derivatives 60 and 61 in 61% and 55% yield, respectively, from 
the corresponding alkyl bromides. These relatively complex 
medicinal agents underwent trifluoromethylation using the 
standard conditions outlined in Table 1, further demonstrating 
the general utility of this new protocol. Moreover, the 
trifluoromethyl moiety has also been recognized as an isopropyl 
group isostere in medicinal chemistry based on their similarities 
in molecular volume and hydrophobicity.23 With this goal in 
mind, we successfully synthesized trifluoromethyl isostere of 
pregabalin 62 (92% yield, dehydrated, cyclic form) from the 
commercial precursor bromide. The application of this new 
trifluoromethylation protocol to a diverse range of medicinally 
relevant structural classes serves to emphasize the real-world 
utility and versatility of this new copper-mediated protocol for 
both early- and late-stage applications. 
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