

0040-4020(95)00157-3

Carbon Based Nucleophilic Ring Opening of Activated Monocyclic β-lactams; Synthesis and Stereochemical Assignment of the ACE Inhibitor WF-10129

Jack E. Baldwin, Robert M. Adlington, Andrew T. Russell and Marie L. Smith

The Dyson Perrins Laboratory and the Oxford Centre for Molecular Sciences, South Parks Rd.,

Oxford, OX1 3QY, U.K.

Abstract: The preparation of γ -keto α -amino acids via carbon based nucleophilic ring opening of activated monocyclic β -lactams was examined and applied to the synthesis and stereochemical assignment of the dipeptide angiotensin converting enzyme (ACE) inhibitor, WF-10129.

The angiotensin converting enzyme (ACE) inhibitor WF-10129 (1), was isolated by Ando *et al.* from a culture of the fungus *Doratomyces putredinis.*¹ Its IC₅₀ for ACE was reported as 1.4×10^{-8} M, a potency comparable with that of the synthetic ACE inhibitor captopril (IC₅₀; 1.7×10^{-8} M¹) making (1) amongst the most potent inhibitors of this enzyme isolated from a microbial source.

Possible diastereoisomers: (1a) S, S, S, S; (1b) 6'R, 1'S, S, S (1c) R, R, S, S; (1d) 6'S, 1'R, S, S

The structure of (1) was elucidated by spectroscopy and chemical degradation and was proposed to be a dipeptide composed of (L)-tyrosine and the novel amino acid (2), itself encompassing an (L)-alanine residue. It is of interest to note that (1) is therefore a substituted N-carboxyalkyl dipeptide, a structural feature which is shared with the synthetic ACE inhibitors enalapril² and lisinopril.³ The relative and absolute stereochemistry at two centres (*), however, was not determined and to unambiguously prove the structure we required a synthetic strategy which would allow us to prepare any of the possible stereoisomers of (2).

Retrosynthetic analysis of (1) gives the novel amino acid (3), triflate (4) and (L)-tyrosine (5), Scheme 1.

As variously protected versions of both (4) and (5) are known the problem reduces to the stereochemically controlled preparation of the unusual γ -keto- α -amino acid (3).

Synthesis of γ -keto- α -amino acids via carbon based nucleophilic ring opening of activated monocyclic β lactams

The cornerstone of our strategy was nucleophilic ring opening of activated monocyclic β -lactams such as (6) (prepared from β -lactam (8) which is available in 3 steps from aspartic acid⁴⁻⁸), Scheme 2. We began by examining various stabilised and unstabilised carbon nucleophiles in this rôle.

Firstly, we considered sulphone stabilised carbanions, however, early attempts to ring open (6) with a lithiated form of methylphenylsulphone (7),⁹ indicated low selectivity for the β -lactam carbonyl over benzyl ester attack. *t*-Butyl esters such as (11) and (12) were therefore prepared, Scheme 3, and found to exhibit the desired chemospecificity.

(i) H₂, 10% Pd/C, THF, 24 h.; (ii) Cl₃CC=NH(O^tBu)¹⁰ (2 eq.), BF₃.Et₂O (cat.), THF/cyclohexane, R.T., 30 min.; (iii) Boc_2O^{11} (2 eq.), DMAP (0.1 eq), MeCN, R.T., 24 h. or (iv) Z₂O¹² (2 eq.), DMAP (0.1eq.), MeCN, R.T., 15 min.

Scheme 3

Thus attack of the lithiated forms of methylphenyl sulphone $(7)^9$ and butylphenylsulphone¹³ (13) occurred smoothly to give the β -ketosulphones (14). In view of the acidity of these products, it proved necessary to use 2 equivalents of sulphone to secure a high yield.¹ The sulphone group could then be reductively removed in high yield by treatment with Al amalgam,¹⁴ Scheme 4 and Table 1.

Hydrogenolysis of the benzyloxycarbonyl group in (15b) with 5% Pd/CaCO₃ as catalyst[†] was followed by coupling in turn to both enantiomers of Mosher's acid chloride, ¹⁵ Scheme 5. Examination of the ¹H and ¹⁹F n.m.r. of the resulting diastereoisomers (17) and (18) revealed that no detectable racemisation had occurred during the sulphone addition.

(i) H₂, 5% Pd/CaCO₃, EtOAc, R.T., 30min.; (ii) (<u>R</u>)-Mosher's acid chloride (1.2 eq.), DMAP (1.2 eq.), CH₂Cl₂, R.T., 24 h.; (iii) (<u>S</u>)-Mosher's acid chloride (1.2 eq.), DMAP (1.2 eq.), CH₂Cl₂, R.T., 24 h.

Scheme 5

I The unused equivalent could be recovered by column chromatography.

[†] Hydrogenolysis using 10% Pd/C led to decomposition.

 β -lactam ring opening with phosphonate stabilised carbon nucleophiles was also examined. Lithiated diethylmethylphosphonate ring opened (11) and (12) to afford (19) and (21) respectively. Hydrogenolysis of (21) to afford free amine (22) was again followed by formation of Mosher's derivatives¹⁵ whose ¹H and ¹⁹F n.m.r. again revealed that no detectable racemisation had occurred, Scheme 6. Additionally, (19) was smoothly deprotected to (2<u>S</u>)-4-0x0-5-phosphononorvaline (20).^{16‡}

CH2Cl2, R.T., 24 h.; (iv) TMSI (3 eq.), CH2Cl2, MeCN, R.T., 24h.

Scheme 6

To assess if organocuprates would react in an analogous fashion we attempted ring opening of (11) and (6) with a Lipshutz higher order cyano cuprate¹⁷ and found that moderate yields of the requisite ketones could be obtained, Scheme 7. In the case of (6) no attack of the cuprate on the benzyl ester was observed. Deprotection of (25) afforded the free amine (26). Analysis of the Mosher's esters¹⁵ as above indicated that no detectable racemisation had occurred. Furthermore, the specific rotation of (15c) prepared by this route [+19.4 (c 1, CHCl₃)] was found to be in agreement with that of the same compound prepared *via* the sulphone addition route, Scheme 4, [+20.8 (c 1, CHCl₃)].

[‡] (20) possessed a specific rotation of -5.4 (c 0.25, H₂O). An authentic sample of

 $^{(2\}underline{R})$ -4-oxo-5-phosphononorvaline possessed a specific rotation of +6.0 (c 0.25, H₂O).

Synthesis of S, S, S, S WF-10129 (1a)

The sulphone addition route offered a promising entry into the required $(2\underline{S})$ or $(2\underline{R})$ - γ -keto- α -amino acids (3) for the synthesis of WF-10129. Regioselective ring opening, with stereochemical control of the secondary alcohol was predicted upon Babler's observation that reaction of racemic propylene oxide with the lithiated form of methylphenylsulphone (7) afforded $(3\underline{RS})$ -1-phenylsulphonylbutan-3-ol.¹³ In order to prepare (1a), the lithiated form of methylphenylsulphone (7) was reacted with $(2\underline{S})$ -propylene oxide¹⁸ to afford (30a) after protection of the hydroxy group of (29a) as its silyl ether.¹⁹

Ring opening of (12) with the metallated form of sulphone (30a) proceeded in high yield and was followed by reductive removal of the sulphone group.¹⁴ Hydrogenolysis afforded the free amine (33a), Scheme 9.

(ii) Al/Hg, deoxygenated THF: H₂O 9:1; (iii) H₂, 5%Pd/CaCO₃, EtOAc.

Scheme 9

The next stage in the synthesis of (1a) involved S_N^2 reaction between the amine (33a) and a protected form of the triflate (4) derived from (D)-lactic acid.²⁰ Hence, (R)-benzyl α -trifluoromethane sulphonyloxy propanoate (34) and the amine (33a) were successfully coupled²¹ to give (35a), Scheme 10.

Hydrogenolysis of (35a) was followed by a DCC/HOBt mediated coupling to (L)-tyrosine t-butyl ester to afford the dipeptide (37a) which underwent complete deprotection on treatment with TFA/anisole affording (1a) as its TFA salt, Scheme 11.

(ii) (L)-tyrosine butylester (1 eq.), DCC (1.1 eq.), HOBt (1.1 eq.), CH₂Cl₂, 1 h.; (iii) TFA, anisole, R.T., 1 h.; Scheme 11

Synthesis of (1b), ent-(1c) and ent-(1d)

(1b) was prepared in an analogous manner to (1a). Hence, (2R)-1-phenylsulphonyl 3butyldimethylsilyloxybutane (30b) was prepared from (2R)-propylene oxide and the lithiated form of methylphenylsulphone (7) followed by silyl protection of the hydroxy group. Ring opening of (12) with (30b) followed by desulphonation, Z-deprotection, S_N2 reaction with (34) and hydrogenolysis afforded (36b) which was subsequently coupled to (L)-tyrosine to afford (37b). Global deprotection afforded (1b). We elected to prepare the enantiomers of (1c) and (1d) by coupling the fragments (33a) and (33b) respectively with protected forms of (L)-lactic acid and (D)-tyrosine.

Comparison of the ¹H n.m.r and specific rotations of (1a), (1b), ent-(1c) and ent-(1d), Table 2, with that reported for WF-10129 (1) indicated that the stereochemistry was that of (1a) i.e. S at all stereocentres. Derivatisation of (1a) in an analogous manner to that carried out by Ando et al. 1 on the natural material gave (38), Fig. 1, whose ¹H n.m.r. was in agreement with that reported. Inhibition studies of (1a) and (1b) with ACE showed that both had similar potencies indicating that the stereochemistry of the hydroxyl centre is not critical for activity, Table 3.

		Optical rotation	
WF-10129		+12.9	(c 0.375, H ₂ O)
(1a)		+14.2	(c 0.375, H ₂ O)
(1b)		+3.9	(c 0.375, H ₂ O)
ent-(1c)		+6.2	(c 0.37, H ₂ O)
ent-(1d)		+2.5	(c 0.37, H ₂ O)
	Table 2		

Table 2

Fig. 1

Inhibitor	<u>IC₅₀ (M)</u>
Captopril	3.6x10 ⁻⁸
(1 a)	5.5x10 ⁻⁸
(1b)	7.4x10 ⁻⁸
Table	3

Summary

In summary we have established a flexible route to optically pure γ -keto α -amino acids^{22,23} using carbon based nucleophilic ring opening of activated monocyclic β -lactams.²⁴ This methodology has been applied to a high yielding synthesis of the natural product WF-10129 (1)¹ whose stereochemistry has been assigned to be <u>S</u> at all stereocentres.

Acknowledgements

We wish to thank the SERC and Zeneca Pharmaceuticals Ltd for a CASE award (MLS), Fujiwara Pharmaceuticals Co. Ltd, Japan for supplying data on WF-10129 and performing inhibition studies on the synthetic samples and Marion Merrell Dow for a sample of (2R)-4-oxo-5-phosphononorvaline. We also thank the EPSRC mass spectrometry service (Swansea) for high resolution mass spectra, Mrs. E. McGuinness for high field n.m.r. experiments and Dr. N.P. Crouch for assistance with h.p.l.c.

EXPERIMENTAL SECTION

Melting points (m.p.) were obtained using a Büchi 510 capillary melting point apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 241 polarimeter at 20°C with a pathlength of 1dm.. Concentrations (c) are given in g/100ml. Microanalyses were performed in the Dyson Perrins Laboratory. Infrared (IR) spectra were recorded as thin films, KBr discs or in CDCl₃ solution on a Perkin-Elmer 1750 Fourier Transform spectrometer. The following abbreviations are used: m, medium; s, strong and br, broad. ¹H n.m.r. spectra were recorded at 200MHz and 500MHz on Varian Gemini 200 and Bruker AM500 spectrometers respectively. For ¹H n.m.r. recorded in CDCl₃ and D₂O chemical shifts (δ_H) are quoted in parts per million (p.p.m.) and are referenced to the residual solvent peak. The following abbreviations were used: s, singlet, d, doublet, t, triplet, q, quartet, m, multiplet and br, broad. Coupling constants (J) were recorded in Hertz to the nearest 0.5Hz. ¹³C n.m.r. spectra were recorded at 50.31MHz and 125.77MHz on Varian Gemini 200 and Bruker AM500 spectrometers respectively using DEPT editing. Chemical shifts (δ_C) are quoted in p.p.m. and referenced to CDCl₃ unless otherwise stated. Spectra recorded in D₂O are referenced to internal 1,4-dioxane. ¹⁹F n.m.r. spectra were recorded at 235MHz on a Bruker AM250 spectrometer. Chemical shifts are

quoted in p.p.m. and referenced to CFCl₃. Low resolution mass spectra (m/z) were recorded on a V.G Micromass ZAB 1F (FAB/CI/DCI), V.G.Masslab 20-250 (CI/DCI/EI) or a V.G. BIO-Q (Electrospray), with only molecular ions (M⁺), fragments from molecular ions and major peaks being reported. Flash chromatography was accomplished on silica gel using Baker silica gel (30-60 μ m). Thin layer chromatography was performed on glass plates pre-coated with Merck silica gel 60 F₂₅₄ which were visualised by the quenching of u.v. fluorescence (λ max=254nm), by staining with 10%w/v ammonium molybdate in 2M sulphuric acid or ninhydrin, followed by heat. All solvents were distilled before use. Anhydrous dichloromethane and anhydrous acetonitrile were obtained by distillation from calcium hydride under Ar. Anhydrous THF was obtained by distillation from sodium/benzophenone ketyl under nitrogen and anhydrous DMF by distillation from calcium hydride under reduced pressure. P.E. 30-40 refers to the the fraction of light petroleum ether boiling between 30-40°C. Solvents were evaporated at 40°C or below on a Büchi R110 Rotavapor; high boiling solvents were evaporated on a Büchi R110 Rotavapor fitted with a dry ice condenser at <2mmHg. Triethylamine was distilled from calcium hydride under Ar and stored over 4Å molecular sieves. All other reagents were purified in accordance with the instructions in D.D. Perrin and W.L.F. Armarego, 'Purification of Laboratory Chemicals', Pergamon Press, London, Third addition, 1988 or used as obtained from commercial sources.

(4S)-Benzyl N-('butoxycarbonyl)-azetidin-2-one-4-carboxylate. (6) To a stirred solution of (4S)benzyl azetidin-2-one-4-carboxylate⁴⁻⁸ (8) 1.00g, 4.87mmol.) in anhydrous acetonitrile (20ml), under an inert atmosphere of Ar, was added di-t-butyldicarbonate (2.13g, 9.74mmol.) and DMAP (59mg, 0.48mmol.). The mixture was stirred at room temperature for seventeen hours before being concentrated in vacuo. The resulting residue was dissolved in dichloromethane (100ml) and washed with 1M KHSO4 (40ml), saturated aqueous NaHCO3 (40ml) and saturated aqueous brine (40ml), dried (MgSO4), filtered and concentrated in vacuo to yield a yellow oil. Flash chromatography (SiO₂, P.E 30-40:ether; 60:40) afforded (4<u>S</u>)-benzyl N-(^tbutoxycarbonyl)azetidin-2-one-4-carboxylate (6) as a colourless oil which solidified on standing (1.40g, 94%), m.p. 55-57°C (from P.E. 30-40:ether), (Rf 0.25, P.E 30-40:ether 60:40), (Found: C, 62.93; H, 6.30; N, 4.44. C16H19N05 requires C, 62.95; H, 6.27; N, 4.59%); [α]_D -74.5° (c 1.0 in CHCl₃); ν_{max} (FT IR, CDCl₃ solution, NaCl plates), 2981br m (NH), 1821s, 1729s (C=O), 1337s, 1155s, 1047s and 736s cm⁻¹; $\delta_{\rm H}$ (200MHz; CDCl₃) 1.46 (9H, s, NHCO₂C(CH₃)₃), 2.99 (1H, dd, J 3Hz, J 16Hz, 1 x CH₂CH), 3.25 (1H, dd, J 6Hz, J 16Hz, 1 x CH2CH), 4.43 (1H, dd, J 3Hz, J 6Hz, CH2CH), 5.23 and 5.27 (2H, ABq, J 12Hz, CHCO2CH2(C6H5)) and 7.30-7.40 (5H, m, CHCO2CH2(C6H5)); &C (50MHz; CDCl3) 27.74 (NHCO2C(CH3)3), 41.23 (CH2CH), 49.58 (CH2CH), 67.60 (CHCO2CH2(C6H5)), 84.05 (NHCO2C(CH3)3), 128.71 and 128.89 (Aromatic CH), 135.04 (Aromatic ipso C), 147.07 (NHCO2C(CH3)3) and 162.53 and 169.43 (CHCO2CH2(C6H5) and C(O)CH₂CH); m/z (desorption chemical ionisation, NH₃) 323[(MNH₄)⁺, 15%], 223[100], 206[13], 178[15], 108[38], 91[75] and 57[14].

(4<u>S</u>)-Azetidin-2-one-4-carboxylic acid. (9) To a stirred solution of 10% Pd/C (cat.) in THF (20ml) was added (4<u>S</u>)-benzyl azetidin-2-one-4-carboxylate⁴⁻⁸ (8) (1.00g, 4.88mmol.) as a solution in THF (10ml). The mixture was then stirred for fourteen hours under an atmosphere of hydrogen before being filtered through celite[®] and concentrated *in vacuo* to afford (4<u>S</u>)-azetidin-2-one-4-carboxylic acid (9) as a white crystalline solid (552mg, 98%), m.p. 99-100°C (from P.E.30-40:ethylacetate), (Found: C, 56.14; H, 7.98; N, 8.08. C₄H₅NO₃ requires C, 56.13; H, 7.65; N, 8.18%); [α]_D -115.0° (*c* 1.0 in H₂O); ν_{max} (FT IR, KBr

disc) 3338br s (NH and OH), 1747s (C=O), 1725s (C=O), 1421s, 1262s, 1213s, 1196s, 1167s, 1044s, 864s, 805s, 646s and 625s cm⁻¹; $\delta_{\rm H}$ (200MHz; D₂O) 2.84 (1H, dd, J 2.5Hz, J 16Hz, 1 x CH₂CH), 3.15 (1H, dd, J 6Hz, J 16Hz, 1 x CH₂CH) and 4.10 (1H, dd, J 2.5Hz, J 6Hz, CH₂CH); $\delta_{\rm C}$ (50MHz; D₂O) 41.72 (CH₂CH), 46.98 (CH₂CH), 170.91 (CO₂H) and 175.41 (C(O)CH₂); m/z (chemical ionisation, NH₃) 133[(MNH₄)⁺, 100%], 122[9], 118[8], 88[20], 70[9] and 55[19].

(4<u>S</u>)-^fButyl azetidin-2-one-4-carboxylate. (10) To a stirred solution of (4<u>S</u>)-azetidin-2-one-4carboxylic acid (9) (850mg, 7.39mmol.) in anhydrous THF (8ml) and anhydrous cyclohexane (5ml) was added ¹butyltrichloroacetimidate¹⁰ (3.20g, 14.74mmol.) as a solution in anhydrous cyclohexane (8ml) followed by dropwise addition of boron trifluoride etherate (260µl, cat.). The mixture was stirred for twenty five minutes, solid NaHCO₃ (500mg) was added and the mixture stirred for a further ten minutes before being filtered and concentrated in vacuo. The residue was then taken up in dichloromethane (50ml) and filtered through a plug of celite® to yield a yellow oil. Flash chromatography (SiO₂, P.E. 30-40:ether; 80:20) afforded (4<u>S</u>)-tbutyl azetidin-2-one-4-carboxylate (10) as a white solid (948mg, 75%), m.p. 89-90°C (from P.E.30-40:ether), (Rf 0.25, P.E 30-40:ether 80:20), (Found: C, 42.02; H, 4.37; N, 12.00. C₈H₁₃NO₃ requires C, 41.75; H, 4.38; N, 12.17%); [α]_D -28.0° (c 0.5 in CHCl₃); v_{max} (FT IR, KBr disc) 3352s (NH), 2975m, 1767s (C=O), 1733s (C=O), 1479m, 1412m, 1370s, 1285s, 1247s, 1157s, 1053s, 844s, 759m and 605s cm⁻¹; δ_H (200MHz; CDCl₃) 1.50 (9H, s, CHCO₂C(CH₃)₃), 3.05 (1H, ddd, J 2Hz, J 5Hz, J 15Hz, 1 x CH₂CH), 3.21 (1H, ddd, J 1Hz, J 6Hz, J 15Hz, 1 x CH₂CH), 4.08 (1H, dd, J 5Hz, J 6Hz, CH₂CH) and 6.12 (1H, d, J 1Hz, NH); δ_C (50MHz; CDCl₃) 27.79 (CHCO₂C(CH₃)₃), 43.28 (CH₂CH), 47.87 (CH₂CH), 82.63 (CHCO₂C(CH₃)₃), 167.30 (CHCO2C(CH3)3) and 170.60 (C(O)CH2CH); m/z (chemical ionisation, NH3) 189[(MNH4)+, 100%], 172[(M+H)+, 20], 144[22], 133[44], 88[11], 74[10], 70[11] and 61[13].

(4<u>S</u>)-'Butyl N-('butoxycarbonyl)-azetidin-2-one-4-carboxylate. (11) To a stirred solution of (4<u>S</u>)-^{*t*}butyl-azetidin-2-one-4-carboxylate (10) (1.00g, 5.85mmol.) in anhydrous acetonitrile (15ml), under an inert atmosphere of Ar, was added di^tbutyldicarbonate¹¹ (2.55g, 11.70mmol.) as a solution in anhydrous acetonitrile (10ml) followed by DMAP (71mg, 0.58mmol.). The reaction mixture was stirred at room temperature for twenty four hours before being concentrated in vacuo. The residue was taken up in dichloromethane (100ml) and washed with 1M aqueous KHSO4 (2 x 50ml), saturated aqueous NaHCO3 (50ml) and saturated aqueous brine (50ml), dried (MgSO4), filtered and concentrated in vacuo to yield a yellow oil. Flash chromatography (SiO₂, P.E. 30-40:ether; 60:40) afforded (4<u>S</u>)-^tbutyl N-(^tbutoxycarbonyl)-azetidin-2one-4-carboxylate (11) as a colourless oil which solidified on standing (1.42g, 90%), m.p. 45-47°C (from P.E.30-40:ether), (Rf 0.5, P.E 30-40:ether 50:50), (Found: C, 57.68; H, 7.88; N, 5.41. C13H21NO5 requires C, 57.55; H, 7.80; N, 5.16%); [α]_D -52.0° (c 0.65 in CHCl₃); v_{max} (FT IR, CDCl₃ solution, NaCl plates) 2984m, 2259m, 1817s, 1729s (C=O), 1477s, 1396s, 1371s, 1338s, 1258s, 1152s, 1048s, 1000s, 840s and 774s cm⁻¹; δ_H (200MHz; CDCl₃) 1.40 and 1.51 (2 x 9H, 2 x s, CHCO₂C(CH₃)₃ and NHCO₂C(CH₃)₃), 2.92 (1H, dd, J 3Hz, J 16Hz, 1 x CH2CH), 3.23 (1H, dd, J 6Hz, J 16Hz, 1 x CH2CH) and 4.36 (1H, dd, J 3Hz, J 6Hz, CH₂C<u>H</u>); δ_{C} (50MHz; CDCl₃) 27.69 (CHCO₂C(<u>C</u>H₃)₃ and NHCO₂C(<u>C</u>H₃)₃), 41.10 (<u>C</u>H₂CH), 50.32 (CH2CH), 82.73 and 83.54 (NHCO2C(CH3)3 and CHCO2C(CH3)3), 146.91 (NHCO2C(CH3)3), 162.99 (CHCO2C(CH3)3) and 168.45 (C(O)CH2CH); m/z (chemical ionisation, NH3) 289[(MNH4)+, 30%], 233[15], 189[100], 172[7], 144[12], 133[35], 74[8] and 57[42].

(4<u>S</u>)-^f-Butyl N-(benzyloxycarbonyl)-azetidin-2-one-4-carboxylate. (12) To a stirred solution (4S)-¹butyl azetidin-2-one-4-carboxylate (10) (828mg, 4.84mmol.) in anhydrous acetonitrile (5ml), under an inert atmosphere of Ar, was added dibenzyldicarbonate¹² (2.77g, 9.68mmol.) as a solution in anhydrous acetonitrile (7ml) followed by DMAP (59mg, 0.48mmol.). The reaction mixture was stirred at room temperature for fifteen minutes before being concentrated in vacuo. The residue was taken up in dichloromethane (70ml) and washed with 1M aqueous KHSO₄ (2 x 30ml), saturated aqueous NaHCO₃ (30ml) and saturated aqueous brine (30ml), dried (MgSO4), filtered and concentrated in vacuo to yield a yellow oil. Flash chromatography (SiO₂, P.E. 30-40:ether; 70:30; 40:60; gradient elution) afforded (4<u>S</u>).¹-butyl N-(benzyloxycarbonyl)-azetidin-2-one-4-carboxylate (12) as a white crystalline solid (1.44g, 97%), m.p.82-83°C (from P.E. 30-40:ether), (Rf 0.2, P.E 30-40:ether 70:30), (Found: C, 62.89; H, 6.12; N, 4.41. C16H19NO5 requires C, 62.94; H, 6.27; N, 4.59%); $[\alpha]_D$ -86.9° (c 1.0 in CHCl₃); v_{max} (FT IR, KBr disc) 2361m, 2343s, 1808s, 1743s (C=O), 1726s (C=O), 1467s, 1397s, 1366s, 1330s, 1316s, 1236s, 1152s, 1044s, 1000s and 771s cm⁻¹; $\delta_{\rm H}$ (200MHz; CDCl₃) 1.43 (9H, s, CHCO₂C(CH₃)₃), 2.98 (1H, dd, J 3Hz, J 17Hz, 1 x CH2CH), 3.30 (1H, dd, J 6, J 17Hz, 1 x CH2CH), 4.33 (1H, dd, J 3Hz, J 6Hz, CH2CH), 5.22 and 5.32 (2H, ABq, J 12Hz, NHCO₂CH₂(C₆H₅)) and 7.34-7.42 (5H, m, NHCO₂CH₂(C₆H₅)); δ_C (50MHz; CDCl₃) 27.76 (CHCO₂C(<u>C</u>H₃)₃), 41.66 (<u>C</u>H₂CH), 50.31 (CH₂<u>C</u>H), 68.28 (NHCO₂<u>C</u>H₂(C₆H₅)), 83.24 (CHCO₂C(CH₃)₃), 128.53 and 128.78 (Aromatic <u>C</u>H), 135.00 (Aromatic ipso <u>C</u>), 148.20 (NHCO2CH2(C6H5)), 162.58 (CHCO2C(CH3)3) and 168.27 (C(O)CH2CH); m/z (desorption chemical ionisation, NH₃) 323[(MNH₄)+, 100%], 267[80], 250[12], 223[21], 206[81], 108[57] and 91[98].

General procedure for ring opening of β -lactams with metallated sulphones. Preparation of (14a)-(14c) and (31a)-(31b) To a stirred solution of of sulphone (7), (13), (30a) or (30b) (2 eq.) in anhydrous THF (\approx 10ml per mmol. of β -lactam) at -78°C, under an inert atmosphere of Ar, was added ⁿbutyllithium (2eq.). After stirring at -78°C for ten minutes the mixture was warmed to 0°C and stirred at 0°C for ten minutes, before being recooled to -78°C, whereupon β -lactam (11) or (12) was added as a solution in anhydrous THF (\approx 5ml per mmol. of β -lactam). The reaction mixture was then stirred for a further thirty minutes at -78°C before being quenched by the addition of saturated aqueous NH4Cl and diluted with ethyl acetate. The organic layer was separated and washed with saturated aqueous NH4Cl and saturated aqueous brine, dried (MgSO4), filtered and concentrated *in vacuo*.

(2<u>S</u>)-'Butyl N-('butoxycarbonyl)-2-amino-4-oxo-5-phenylsulphonyl pentanoate. (14a) The general procedure with β -lactam (11) (124mg, 0.46mmol.) and sulphone (7) followed by flash chromatography (SiO₂, P.E 30-40:ether; 50:50) afforded (2<u>S</u>)-'butyl N-('butoxycarbonyl)-2-amino-4-oxo-5phenylsulphonyl pentanoate (14a) as a white crystalline solid (160mg, 81%), m.p. 171-172°C (from P.E 30-40:ether), (R_f 0.2, P.E 30-40:ether 60:40), (Found: C, 56.14; H, 6.68; N, 3.18. C₂₀H₂₉NO₇S requires C, 56.19; H, 6.84; N, 3.28%); [α]_D +36.3° (c 0.4 in CHCl₃); v_{max} (FT IR, KBr disc) 3359m (NH), 2360m, 1733s (C=O), 1707s (C=O), 1654s, 1528s, 1472s, 1448s, 1403s, 1369m, 1340m, 1310s, 1232s, 1050s, 729s and 687s cm⁻¹; δ _H (200MHz; CDCl₃) 1.44 and 1.45 (2 x 9H, 2 x s, CHCO₂C(CH₃)₃ and NHCO₂C(CH₃)₃), 3.15-3.37 (2H, m, CH₂CH), 4.16 and 4.19 (2H, ABq, J 13Hz, CH₂SO₂(C₆H₅)), 4.38 (1H, m, CH₂CH), 5.42 (1H, d, J 8Hz, NH), 7.54-7.73 (3H, m, meta and para SO₂(C₆H₅)) and 7.80-7.93 (2H, m, ortho SO₂(C₆H₅)); δ_C (125MHz; CDCl₃) 27.93 and 28.43 (CHCO₂C(<u>C</u>H₃)₃) and NHCO₂C(<u>C</u>H₃)₃), 46.68 (<u>C</u>H₂CH), 50.24 (CH₂<u>C</u>H), 67.08 (<u>C</u>H₂SO₂(C₆H₅)), 80.14 and 82.73 (CHCO₂<u>C</u>(CH₃)₃) and NHCO₂<u>C</u>(CH₃)₃), 128.42, 129.47 and 134.42 (Aromatic <u>C</u>H), 138.97 (Aromatic ipso <u>C</u>), 155.80 (NH<u>C</u>O₂C(CH₃)₃), 169.76 (CH<u>C</u>O₂C(CH₃)₃) and 196.13 (<u>C</u>(O)CH₂SO₂(C₆H₅)); m/z (desorption chemical ionisation, NH₃) 445[(MNH₄)⁺, 12%], 428[(MH)⁺, 5], 389[22], 333[90], 328[13], 272[18], 226[100], 86[45] and 57[49].

(2<u>S</u>)-^fButyl N-(benzyloxycarbonyl)-2-amino-4-oxo-5-phenylsulphonyl pentanoate. (14b) The general procedure with β -lactam (12) (477mg, 1.56mmol.) and sulphone (7) followed by flash chromatography (SiO₂, dichloromethane; dichloromethane:ether; 50:50; gradient elution) afforded (2<u>S</u>)-*ibutyl* N-(benzyloxycarbonyl)-2-amino-4-oxo-5-phenylsulphonyl pentanoate (14b) as a white crystalline solid (60mg, 84%), m.p. 85-86°C (from P.E. 30-40:ether), (Rf 0.1, dichloromethane); [a]D +42.4° (c 1.0 in CHCl₃), (Found: C, 60.06; H, 5.77; N, 2.83. C₂₃H₂₇NO₇S requires C, 59.86; H, 5.90; N, 3.03%); v_{max} (FT IR, KBr disc) 3359br s (NH), 2360s, 2342s, 1733s (C=O), 1712s (C=O), 1707s (C=O), 1528s, 1340s, 1151s, 1064s, 1050s and 687s cm⁻¹; δ_{H} (200MHz; CDCl₃) 1.43 (9H, s, CO₂C(C<u>H</u>₃)₃), 3.30 (1H, dd, J 4.5Hz, J 18Hz, 1 x CH2CH), 3.40 (1H, dd, J 4.5Hz, J 18Hz, 1 x CH2CH), 4.17 (2H, ABq, J 15Hz, CH2SO2(C6H5)), 4.49 (1H, ddd, J 8Hz, J 4.5Hz, J 4.5Hz, CH₂CH), 5.12 (2H, s, CH₂(C₆H₅)), 5.58 (1H, d, J 8Hz, NH), 7.34 (5H, s, CH₂(C₆H₅)) and 7.48-7.90 (5H, m, SO₂(C₆H₅)); δ_C (125MHz; CDCl₃) 27.82 (CO₂C(<u>C</u>H₃)₃), 46.42 (CH2CH), 50.59 (CH2CH), 67.07 and 67.09 (CH2SO2(C6H5) and CH2(C6H5)), 82.90 (CO2C(CH3)3), 128.10, 128.19, 128.28, 128.54 and 129.37 (Aromatic CH), 134.29 and 136.34 (2 x Aromatic ipso C), 155.90 (NHCO2CH2(C6H5)), 169.24 (CO2C(CH3)3) and 195.80 (C(O)CH2SO2(C6H5)); m/z (desorption chemical ionisation, NH₃) 479[(MNH₄)+, 15%], 423[43], 406[12], 362[18], 316[19], 271[9], 226[10], 175[8], 160[9], 112[10], 108[39], 91[100, 78[9] and 57[6].

(2<u>S</u>, 5<u>RS</u>)-'Butyl N-('butoxycarbonyl)-2-amino-4-oxo-5-phenylsulphonyl octanoate. (14c) The general procedure with β -lactam (11) (120mg, 0.44mmol.) and sulphone (13) followed by flash chromatography (SiO₂, P.E 30-40:ether; 60:40) afforded (2<u>5</u>, 5<u>R5</u>)-¹butyl N-(¹butoxycarbonyl)-2-amino-4oxo-5-phenylsulphonyl octanoate (14c) as a colourless oil (166mg, 80%), (Rf 0.2, P.E 30-40:ether 60:40), (Found: C, 58.82; H, 7.45; N, 2.69. C₂₃H₃₅NO₇S requires C, 58.82; H, 7.51; N, 2.98%); v_{max} (FT IR, CDCl₃ solution, NaCl plates) 2981m, 1718s (C=O), 1499m, 1370s, 1311m, 1154s, 1084m and 707m cm⁻¹; $\delta_{\rm H}$ (200MHz; CDCl₃) 0.84-0.91 (3H, m, CH₂CH₃), 1.41 and 1.48 (2 x 9H, 2 x s, CHCO₂C(CH₃)₃ and NHCO₂C(CH₃)₃), 1.39-1.50 (2H, m, CH₂CH₃), 1.80-1.91 (2H, m, CH₂CH₂CH₃), 3.04-3.60 (2H, m, CH2CHCO2C(CH3)3), 4.02-4.12 (1H, m, CHSO2(C6H5)), 4.32-4.46 (1H, m, CHCO2C(CH3)3), 5.28-5.41 (1H, m, NH) and 7.51-7.82 (5H, m, SO₂(C₆H₅)); δ_C (50MHz; CDCl₃) 13.50 (CH₂CH₃), 19.81 (CH₂CH₃), 27.63 and 28.15 (CHCO₂C(<u>C</u>H₃)₃ and NHCO₂C(<u>C</u>H₃)₃), 28.73 (<u>C</u>H₂CH₂CH₃), 46.51 and 46.85 (CH2CHCO2C(CH3)3), 49.64 and 49.77 (CHCO2C(CH3)3), 74.73 and 74.83 (CHSO2(C6H5)), 79.83 and 82.36 (CHCO₂C(CH₃)₃ and NHCO₂C(CH₃)₃), 129.30, 129.51 and 134.56 (Aromatic CH), 134.56 (Aromatic ipso C), 155.56 (NHCO2C(CH3)3), 170.03 (CHCO2C(CH3)3) and 201.04 (C(O)CHSO2(C6H5)); m/z (desorption chemical ionisation, NH₃) 487[(MNH₄)+, 12%], 470[(MH)+, 12], 431[12], 375[55], 370[21], 314[21], 268[100], 127[43], 98[21], 78[20], 70[38] and 57[83].

(2<u>S</u>, 5<u>RS</u>, 7<u>S</u>)-'Butyl N-(benzyloxycarbonyl)-2-amino-7-'butyldimethylsilyloxy-4-oxo-5-phenylsulphonyl octanoate. (31a) The general procedure with β -lactam (12) (447mg, 1.47mmol.) and sulphone (30a) followed by flash chromatography (SiO₂, P.E 30-40:ether; 80:20) afforded (2<u>5</u>, 5<u>RS</u>, 7<u>S</u>)-¹butyl N-(benzyloxycarbonyl)-2-amino-7-¹butyldimethylsilyloxy-4-oxo-5-phenylsulphonyl octanoate (31a) as a colourless oil (774mg, 83%), (Rf 0.3, P.E 30-40:ether 70:30), (Found: C, 60.67; H, 7.63; N, 1.95. C32H47NO8SSi requires C, 60.64; H, 7.47; N, 2.21%); vmax (FT IR, Thin film, NaCl plates) 2956s, 2931s, 2897m, 2858s, 1724s (C=O), 1505s, 1427s, 1472s, 1394s, 1370s, 1324s, 1311m, 1220s, 1155s, 1084m, 1071s, 911s, 839m and 775s cm⁻¹; $\delta_{\rm H}$ (200MHz; CDCl₃) -0.03 and -0.02 (6H, 2 x s, Si(CH₃)₂), 0.82 and 0.84 (9H, 2 x s, SiC(CH₃)₃), 0.89 and 1.08 (3H, 2 x d, 2 x J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.41 and 1.46 (9H, 2 x s, CHCO₂C(CH₃)₃), 1.87-2.12 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 3.13-3.95 (3H, m, CH2CHCO2C(CH3)3 and CH(OSi(CH3)2C(CH3)3)), 4.28-4.57 (2H, m, CH2CHCO2C(CH3)3 and CHSO₂(C₆H₅)), 5.12-5.21 (2H, m, NHCO₂CH₂(C₆H₅)), 5.54-5.66 (1H, m, NH) and 7.29-7.80 (10H, m, $SO_2(C_{6H_5})$ and $NHCO_2CH_2(C_{6H_5})$; δ_C (50MHz; CDCl₃) -4.97, -4.96 and -3.99 (Si(<u>CH_3)</u>₂), 17.78 (SiC(CH3)3), 23.47 and 24.14 (CH(OSi(CH3)2C(CH3)3)CH3), 25.66 and 27.67 (CHCO2C(CH3)3 and SiC(CH₃)₃), 35.92 and 36.66 (CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 46.47 and 46.76 (CH₂CHCO₂C(CH₃)₃), 50.18 (CH2CHCO2C(CH3)3), 65.50 (CHSO2(C6H5)), 66.89 and 67.01 (NHCO2CH2(C6H5)), 70.85 and 72.01 (CH(OSi(CH₃)₂C(CH₃)₃), 82.52 (CHCO₂C(CH₃)₃), 128.23, 128.34, 128.70, 129.29, and 134.51 (Aromatic <u>CH</u>), 136.51 and 136.60 (Aromatic ipso <u>C</u>), 156.18 (NH<u>C</u>O₂CH₂(C₆H₅)), 169.80 (CHCO2C(CH3)3) and 200.51 and 200.70 (C(O)CHSO2(C6H5)); m/z (desorption chemical ionisation, NH3) 651[(MNH₄)+, 25%], 595[10], 400[20], 108[23], 91[100] and 57[28].

(2<u>S</u>, 5<u>RS</u>, 7<u>R</u>)-'Butyl N-(benzyloxycarbonyl)-2-amino-7-'butyldimethylsilyloxy-4-oxo-5-phenylsulphonyl octanoate. (31b) The general procedure with β -lactam (12) (489mg, 1.60mmol.) and sulphone (30b) followed by flash chromatography (SiO₂, P.E 30-40:ether; 80:20) afforded (2<u>S</u> 5<u>RS</u>, 7<u>R</u>)-¹butyl N-(benzyloxycarbonyl)-2-amino-7-¹butyldimethylsilyloxy-4-oxo-5-phenylsulphonyl octanoate (31b) as a colourless oil (808mg, 80%), (Rf 0.3, P.E 30-40:ether 70:30); vmax (FT IR, Thin film, NaCl plates) 3432br m (NH), 2956s, 2931s, 2897m, 1728s (C=O), 1505s, 1449s, 1472s, 1370s, 1324s, 1311m, 1256s, 1155s, 1070s, 911s and 735s cm⁻¹; $\delta_{\rm H}$ (200MHz; CDCl₃) -0.08, -0.04 and -0.01 (6H, 3 x s, Si(CH₃)₂), 0.81 and 0.85 (9H, 2 x s, SiC(CH₃)₃), 0.99 and 1.06 (3H, 2 x d, 2 x J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.41 and 1.47 (9H, 2 x s, CHCO₂C(CH₃)₃), 1.69-2.19 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 3.08-4.11 (3H, m, CH2CHCO2C(CH3)3 and CH(OSi(CH3)2C(CH3)3)), 4.28-4.60 (2H, m, CH2CHCO2C(CH3)3 and CHSO₂(C₆H₅)), 5.08-5.21 (2H, m, NHCO₂CH₂(C₆H₅)), 5.54-5.66 (1H, m, NH) and 7.28-7.82 (10H, m, $SO_2(C_{6H_5})$ and $NHCO_2CH_2(C_{6H_5})$; δ_C (50MHz; CDCl₃) -5.25, -5.08, -4.87 and -4.21 (Si(<u>C</u>H₃)₂), 17.81 (SiC(CH₃)₃), 23.60 and 23.81 (CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 25.68 and 27.68 (CHCO₂C(CH₃)₃ and SiC(CH3)3), 35.64 and 36.40 (CH2CH(OSi(CH3)2C(CH3)3)CH3), 46.14 and 46.95 (CH2CHCO2C(CH3)3), 50.12 (CH2CHCO2C(CH3)3), 65.34 (CHSO2(C6H5)), 66.97 (NHCO2CH2(C6H5)), 71.02 and 71.51 (CH(OSi(CH₃)₂C(CH₃)₃)), 82.65 (CHCO₂C(CH₃)₃), 128.34, 128.71, 129.39, and 134.53 (Aromatic CH), 136.51 and 136.67 (Aromatic ipso C), 156.20 (NHCO2CH2(C6H5)), 169.95 (CHCO2C(CH3)3) and 199.97 and 200.99 ($\underline{C}(O)CHSO_2(C_6H_5)$); m/z (desorption chemical ionisation, NH₃) 651[(MNH₄)+, 28%], 595[12], 400[17], 108[25], 91[100] and 57[27].

4745

General procedure for the preparation of γ -keto α -amino acids by Al/Hg reduction of β -ketosulphones. (15a)-(15c) and (32a)-(32b) To a stirred solution of β -ketosulphone in degassed THF:H₂O 9:1 (20mM solution) was added freshly prepared aluminium amalgam (24eq.).¹⁴ The mixture was stirred at room temperature for five hours and then further aluminium amalgam (24eq.) was added. The reaction mixture was stirred for a further fifteen hours before being filtered through celite[®] (ether eluent), dried (MgSO₄), filtered and concentrated *in vacuo*.

(2<u>S</u>)-'Butyl *N*-('butoxycarbonyl)-2-amino-4-oxo pentanoate. (15a) The general procedure with β-ketosulphone (14a) (89mg, 0.21mmol.) followed by flash chromatography (SiO₂, P.E. 30-40:ether; 60:40) afforded (2<u>S</u>)-'butyl *N*-('butoxycarbonyl)-2-amino-4-oxo pentanoate (15a) as a white crystalline solid (54mg, 90%), m.p.72-74°C (from P.E.30-40:ether), (R_f 0.4, P.E 30-40:ether 60:40), (Found: C, 58.8; H, 9.1; N, 4.7. C₁₄H₂₅NO₅ requires C, 58.52; H, 8.77; N, 4.87%); [α]_D +14.5° (*c* 1.0 in CHCl₃); v_{max} (FT IR, KBr disc) 3463m, 2980m, 1733s (C=O), 1720 (C=O), 1497s, 1405m, 1368s, 1338s, 1249m, 1222s, 1158s and 1059 cm⁻¹; δ_H (200MHz; CDCl₃) 1.44 (18H, s, NHCO₂C(CH₃)₃ and CHCO₂C(CH₃)₃), 2.19 (3H, s, C(O)CH₃), 2.90 (1H, dd, *J* 5Hz, *J* 17Hz, 1 x CH₂CH), 3.12 (1H, dd, *J* 5Hz, *J* 17Hz, 1 x CH₂CH), 4.35 (1H, ddd, *J* 5Hz, *J* 5Hz, *J* 9Hz, CH₂CH) and 5.45 (1H, d, *J* 9Hz, NH); δ_C (50MHz; CDCl₃) 27.69 and 28.15 (CHCO₂C(CH₃)₃) and NHCO₂C(CH₃)₃), 155.82 (NH₂O₂C(CH₃)₃), 170.58 (CH₂O₂C(CH₃)₃) and 206.93 (<u>C</u>(O)CH₃); m/z (chemical ionisation, NH₃) 288 [(MH)⁺, 12%], 232[20], 193[40], 176[39], 132[21], 86[100] and 57[22].

(2<u>S</u>)-^{*i*}Butyl *N*-(benzyloxycarbonyl)-2-amino-4-oxo pentanoate. (15b) The general procedure with β-ketosulphone (14b) (344mg, 0.75mmol.) followed by flash chromatography (SiO₂, P.E. 30-40:ether; 50:50) afforded (2<u>S</u>)-^{*i*}butyl *N*-(benzyloxycarbonyl)-2-amino-4-oxo pentanoate (15b) as a colourless oil (220mg, 92%), (R_f 0.3, P.E 30-40:ether 50:50), (Found: C, 63.88; H, 7.56; N, 4.32. C₁₇H₂₃NO5 requires C, 63.57; H, 7.21; N, 4.36%); [α]_D +20.0° (*c* 1.0 in CHCl₃); ν_{max} (FT IR, CDCl₃ solution, NaCl plates) 3345br m (NH), 3065m, 2979m, 1719s (C=O), 1509s, 1456s, 1395s, 1370s, 1256s, 1223s, 1156s, 1055s, 847s, 742s and 699s cm⁻¹; δ_{H} (200MHz; CDCl₃) 1.43 (9H, s, CO₂C(CH₃)₃), 2.15 (3H, s, C(O)CH₃), 2.90 (1H, dd, *J* 4Hz, *J* 16Hz, 1 x CH₂CH), 3.14 (1H, dd, *J* 4Hz, *J* 16Hz, 1 x CH₂CH), 4.44 (1H, td *J* 4Hz, *J* 8Hz, CH₂CH), 5.10 (2H, s, CH₂(C₆H₅) 5.73 (1H, d, *J* 8Hz, NH) and 7.34 (5H, s, NHCO₂CH₂(C₆H₅)); δ_{C} (50MHz; CDCl₃) 27.70 (CO₂C(CH₃)₃), 29.78 (C(O)CH₃), 45.33 (CH₂CH), 50.48 (CH₂CH), 66.89 (CH₂(C₆H₅)), 170.20 (CO₂C(CH₃)₃) and 205.10 (C(O)CH₃); m/z (chemical ionisation, NH₃) 339[(MNH₄)⁺, 8%], 322[(MH)⁺, 112], 283[35], 266[75], 222[14], 176[20], 108[40], 91[100] and 86[33].

(2<u>S</u>)-^{*i*}Butyl *N*-(^{*i*}butoxycarbonyl)-2-amino-4-oxo-octanoate. (15c) The general procedure with β -ketosulphone (14c) (100mg, 0.21mmol.) followed by flash chromatography (SiO₂, P.E. 30-40:ether; 70:30; 50:50; gradient elution) afforded (2<u>S</u>)-^{*i*}butyl *N*-(^{*i*}butoxycarbonyl)-2-amino-4-oxo-octanoate (15c) as a colourless oil (63mg, 90%), (R_f 0.4, P.E 30-40:ether 50:50), (Found: C, 62.27; H, 9.58; N, 4.09. C₁₇H₃₁NO₅ requires C, 61.98; H, 9.48; N, 4.25%); [α]_D +20.8° (c 1.0 in CHCl₃); v_{max} (FT IR, Thin film, NaCl plates) 3847m (NH), 3439s, 2977s, 2934s, 2875s, 1719br s (C=O), 1499s, 1393s, 1368s, 1252s and

1155s cm⁻¹; $\delta_{\rm H}$ (200MHz; CDCl₃) 0.91 (3H, t, J 7Hz, CH₂CH₃), 1.25-1.55 (4H, m, CH₂CH₃ and CH₂CH₂CH₂CH₃), 1.45 (18H, s, CHCO₂C(CH₃)₃ and NHCO₂C(CH₃)₃), 2.42 (2H, t, J 7Hz, CH₂CH₂CH₂CH₂CH₃), 2.87 (1H, dd, J 4Hz, J 17Hz, 1 x CH₂CH), 3.10 (1H, dd, J 4Hz, J 17Hz, 1 x CH₂CH), 4.35 (1H, td, J 4Hz, J 8Hz, CH₂CH) and 5.45 (1H, d, J 8Hz, NH); $\delta_{\rm C}$ (50MHz; CDCl₃) 13.62 (CH₂CH₃), 22.09 (CH₂CH₂CH₃), 25.67 (CH₂CH₂CH₂CH₃), 27.72 and 28.18 (CHCO₂C(CH₃)₃) and NHCO₂C(CH₃)₃), 42.40 (CH₂CH₂CH₂CH₃), 44.45 (CH₂CHCO₂C(CH₃)₃), 50.06 (CH₂CHCO₂C(CH₃)₃), 79.71 and 82.01 (CHCO₂C(CH₃)₃) and NHCO₂C(CH₃)₃), 155.89 (NHCO₂C(CH₃)₃), 170.68 (CHCO₂C(CH₃)₃) and 209.60 (C(O)CH₂CH₂CH₂CH₃); m/z (chemical ionisation, NH₃) 330 [(MH)+, 50%], 274[33], 235[28], 230[31], 218[50], 174[14], 128[100], 85[33] and 57[56].

(2<u>S</u>, 7<u>S</u>)-'Butyl N-(benzyloxycarbonyl)-2-amino-7-'butyldimethylsilyloxy-4-oxo octanoate. (32a) The general procedure with β -ketosulphone (31a) (700mg, 1.11mmol.) followed by flash chromatography (SiO₂, P.E. 30-40:ether; 80:20) afforded (25. 75)-tbutyl N-(benzyloxycarbonyl)-2-amino-7-^tbutyldimethylsilyloxy-4-oxo octanoate (32a) as a colourless oil (485mg, 89%), (Rf 0.2, P.E 30-40:ether 80:20), m/z (high resolution) Found 494.2938, C₂₆H₄₃NO₆Si+H⁺ requires 494.2938; [α]_D +25.2° (c 1.0 in CHCl3); vmax (FT IR, Thin film, NaCl plates) 3358br m (NH), 2956s, 1724s (C=O), 1505s, 1473m, 1457s, 1394m, 1370s, 1340s, 1256s, 1219s, 1157s and 776s cm⁻¹; δ_H (200MHz; CDCl₃) 0.02 and 0.04 (6H, 2 x s, Si(CH3)2) 0.99 (9H, s, SiC(CH3)3), 1.12 (3H, d, J 6Hz, CH(OSi(CH3)2C(CH3)3)CH3), 1.43 (9H, s, CHCO₂C(CH₃)₃), 1.55-1.80 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.38-2.58 (2H, m, CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 2.92 (1H, dd, J 4.5Hz, J 17.5Hz, 1 x CH2CHCO2C(CH3)3), 3.14 (1H, dd, J 4.5Hz, J 17.5Hz, 1 x CH2CHCO2C(CH3)3), 3.74-3.90 (1H, m, CH(OSi(CH3)2C(CH3)3)), 4.44 (1H, td, J 4.5Hz, J 8.5Hz, CH₂CHCO₂C(CH₃)₃), 5.11 (2H, s, NHCO₂CH₂(C₆H₅)), 5.72 (1H, d, J 8.5Hz, NH) and 7.35 (5H, s, NHCO₂CH₂(C₆H₅)); δ_C (50MHz; CDCl₃) -4.95 and -4.58 (Si(<u>C</u>H₃)₂), 17.89 (SiC(CH3)3), 23.52 (CH(OSi(CH3)2C(CH3)3)CH3), 25.74 and 27.71 (CHCO2C(CH3)3 and SiC(CH3)3), 32.80 (CH2CH(OSi(CH3)2C(CH3)3)CH3), 38.63 (CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 44.37 $(\underline{C}H_2CHCO_2C(CH_3)_3)$, 50.50 $(CH_2\underline{C}HCO_2C(CH_3)_3)$, 66.87 $(NHCO_2\underline{C}H_2(C_6H_5), 67.42)$ (CH(OSi(CH₃)₂C(CH₃)₃), 82.25 (CHCO₂C(CH₃)₃), 128.20 and 128.67 (Aromatic CH), 136.56 (Aromatic ipso <u>C</u>), 156.36 (NH<u>C</u>O₂CH₂(C₆H₅)), 170.28 (CH<u>C</u>O₂C(CH₃)₃) and 209.10 (C(O)CH2CH2CH(OSi(CH3)2C(CH3)3)CH3); m/z (chemical ionisation, NH3) 494[(MH)+, 27%], 438[8], 330[40], 306[7], 272[26], 229[10], 198[38], 108[30], 91[100], 74[25] and 57[13].

(2<u>S</u>, 7<u>R</u>)-^{*t*}Butyl *N*-(benzyloxycarbonyl)-2-amino-7-^{*t*}butyldimethylsilyloxy-4-oxo octanoate. (32b) The general procedure with β -ketosulphone (31b) (800mg, 1.26mmol.), followed by flash chromatography (SiO₂, P.E. 30-40:ether; 80:20) afforded (2<u>S</u>, 7<u>R</u>)-^{*t*}butyl *N*-(benzyloxycarbonyl)-2-amino-7-^{*t*}butyldimethylsilyloxy-4-oxo octanoate (32b) as a colourless oil (592mg, 95%), (R_f 0.2, P.E 30-40:ether 80:20); [α]_D +3.2° (*c* 1.3 in CHCl₃); ν_{max} (FT IR, Thin film, NaCl plates) 3431br, m (NH), 2957s, 2930m, 1719s (C=O), 1505s, 1370s, 1355m, 1219s, 1157s, 1068s, 837m and 776s cm⁻¹; δ_{H} (200MHz; CDCl₃) 0.01 and 0.03 (6H, 2 x s, Si(CH₃)₂) 0.87 (9H, s, SiC(CH₃)₃), 1.10 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.41 (9H, s, CHCO₂C(CH₃)₃), 1.51-1.76 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.31-2.60 (2H, m, CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃), 3.13 (1H, dd, J 4Hz, J 18Hz, 1 x CH₂CHCO₂C(CH₃)₃), 3.13 (1H, dd, J 4Hz, J 18Hz, 1 x CH₂CHCO₂C(CH₃)₃), 3.71-3.89 (1H, m, CH(OSi(CH₃)₂C(CH₃)₃)), 4.43 (1H, td, J 4Hz, J 4Hz, J 18Hz, 1 x CH₂CHCO₂C(CH₃)₃), 3.71-3.89 (1H, m, CH(OSi(CH₃)₂C(CH₃)₃)), 4.43 (1H, td, J 4Hz, J 4Hz, J 18Hz, 1 x CH₂CHCO₂C(CH₃)₃)), 4.43 (1H, td, J 4Hz, J 4Hz, J 18Hz, 1 x CH₂CHCO₂C(CH₃)₃)), 4.43 (1H, td, J 4Hz, J 4Hz, J 18Hz, 1 x CH₂CHCO₂C(CH₃)₃)), 4.43 (1H, td, J 4Hz, J 4Hz, J 18Hz, 1 x CH₂CHCO₂C(CH₃)₃)), 4.43 (1H, td, J 4Hz, J 4Hz, J 40, J 40,

J 8.5Hz, CH₂CH₂CO₂C(CH₃)₃), 5.09 (2H, s, NHCO₂CH₂(C₆H₅)), 5.76 (1H, d, J 8.5Hz, NH) and 7.33 (5H, s, NHCO₂CH₂(C₆H₅)); δ_{C} (50MHz; CDCl₃) -5.02 and -4.61 (Si(CH₃)₂), 17.88 (SiC(CH₃)₃), 23.57 (CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 25.72 and 27.70 (CHCO₂C(CH₃)₃) and SiC(CH₃)₃), 32.80 (CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 38.60 (CH₂CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 44.34 (CH₂CHCO₂C(CH₃)₃), 50.49 (CH₂CHCO₂C(CH₃)₃), 66.83 (NHCO₂CH₂(C₆H₅)), 67.31 (CH(OSi(CH₃)₂C(CH₃)₃)), 82.20 (CHCO₂C(CH₃)₃), 128.19 and 128.65 (Aromatic CH), 136.56 (Aromatic ipso C), 156.36 (NHCO₂CH₂(C₆H₅)), 170.27 (CHCO₂C(CH₃)₃) and 209.08 (C(O)CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃); m/z (chemical ionisation, NH₃) 494[(MH)⁺, 29%], 438[10], 330[38], 306[5], 272[27], 229[12], 198[39], 108[33], 91[100], 74[24] and 57[10].

(2<u>S</u>)-'Butyl N-('butoxycarbonyl)-2-amino-4-oxo octanoate. Cuprate route. (15c) To a stirred suspension of CuCN (122mg, 1.36mmol., 1.3 eq.) in anhydrous THF (2ml) at -78°C, under an inert atmosphere of Ar, was added "butyllithium (1.82ml of a 1.50M solution in hexanes, 2.72mmol., 2.6 eq.). The resulting mixture was allowed to warm to 0°C whereupon a clear tan solution was observed. The mixture was then recooled to -78°C and (4<u>S</u>)-'butyl N-('butoxycarbonyl)-azetidin-2-one-4-carboxylate (11) (285mg, 1.05mmol.) was added as a solution in anhydrous THF (5ml). The reaction mixture was then stirred at -60°C for one hour before being quenched by the addition of a 9:1 saturated NH₄Cl:NH₄OH solution (5ml). The organics layer was separated, diluted with ether (50ml), washed with 9:1 saturated NH₄Cl:NH₄OH (3 x 20ml), dried (MgSO₄), filtered and concentrated *in vacuo* to yield a brown oil. Flash chromatography (SiO₂, P.E. 30-40:ether; 70:30; 50:50; gradient elution) afforded (2<u>S</u>)-^tbutyl N-(^tbutoxycarbonyl)-2-amino-4-oxo octanoate (15c) as a colourless oil (145mg, 42%). ¹H n.m.r., t.l.c. analysis and I.R. were identical to (15c) prepared by the desulphonylation route above; [α]_D +19.4° (c 1 in CHCl₃).

(25)-Benzyl N-(^tbutoxycarbonyl)-2-amino-4-oxo octanoate. (25) The above procedure with β -lactam (6) (314mg, 1.03mmol.) followed by flash chromatography (SiO₂, P.E. 30-40:ether; 90:10; 70:30; gradient elution) afforded (25)-benzyl N-('butoxycarbonyl)-2-amino-4-oxo octanoate (25) as a yellow oil (150mg, 40%), (Rf 0.3, P.E 30-40:ether 80:20), (Found: C, 66.13; H, 8.07; N, 3.56. C₂₀H₂₉NO₅ requires C, 66.09; H, 8.04; N, 3.85%); [a]_D -8.3° (c 0.5 in MeOH); v_{max} (FT IR, Thin film, NaCl plates) 3035br m (NH), 2961m, 1742m (C=O), 1718s (C=O), 1499s, 1368s, 1251s, 1167s, 752s and 699m cm⁻¹; $\delta_{\rm H}$ (200MHz; CDCl₃) 0.88 (3H, t, J 7Hz, CH₂CH₃), 1.18-1.63 (4H, m, CH₂CH₂CH₃), 1.43 (9H, s, (NHCO₂C(CH₃)₃), 2.34 (2H, t, J 7Hz, CH₂CH₂CH₂CH₂CH₃), 2.90 (1H, dd, J 5Hz, J 17Hz, 1 x CH₂CH), 3.15 (1H, dd, J 5Hz, J 17Hz, 1 x CH2CH), 4.55 (1H, td, J 5Hz, J 8Hz, CH2CH), 5.14 and 5.18 (2H, ABq, J 14Hz, CHCO₂CH₂(C₆H₅)), 5.21 (1H, d, J 8Hz, NH) and 7.34 (5H, s, CHCO₂CH₂(C₆H₅)); δ_C (50MHz; CDCl₃) 13.78 (CH₂CH₃), 22.16 (CH₂CH₃), 25.64 (CH₂CH₂CH₃), 28.26 (NHCO₂C(CH₃)₃), 42.46 (CH₂CH₂CH₂CH₂CH₃), 44.31 (CH₂CH), 49.66 (CH₂CH), 67.33 (CHCO₂CH₂(C₆H₅)), 80.04 (NHCO2C(CH3)3), 127.40, 128.53 and 128.74 (Aromatic CH), 135.63 (NHCO2C(CH3)3), 171.66 (CHCO2CH2(C6H5) and 209.57 (C(O)CH2CH2CH2CH3); m/z (chemical ionisation, NH3) 364 [(MH)+, 7%], 325[11], 314[10], 308[47], 264[72], 228[11], 178[16], 172[10], 158[26], 128[92], 108[33], 91[100], 85[24] and 57[19].

(25)-'Butyl N-('butoxycarbonyl)-2-amino-5-diethylphosphono-4-oxo pentanoate. (19) To a stirred solution of diethyl methylphosphonate (168mg, 1.1mmol., 2 eq.) in anhydrous THF (2ml) at -78°C, under an inert atmosphere of Ar, was added "butyllithium (691 μ l of a 1.6M solution in hexanes, 1.1mmol., 2eq.). After stirring at -78°C for ten minutes the mixture was warmed to 0°C and stirred at 0°C for ten minutes, before being recooled to -78°C, whereupon (4<u>S</u>)-^fbutyl N-(^fbutoxycarbonyl)-azetidin-2-one-4carboxylate (11) (150mg, 0.55mmol.) was added as a solution in anhydrous THF (5ml). The reaction mixture was then stirred for a further thirty minutes at -78°C before being quenched by the addition of saturated aqueous NH4Cl (5ml) and diluted with dichloromethane (50ml). The organic layer was separated and washed with saturated aqueous NH4Cl (2 x 10ml) and saturated aqueous brine (10ml), dried (MgSO4), filtered and concentrated in vacuo to yield a yellow oil. Flash chromatography (SiO2, P.E. 40-60:ethylacetate; 10:90) afforded $(2\underline{S})$ -tbutyl N-(tbutoxyoxycarbonyl)-2-amino-5-diethylphosphono-4-oxo pentanoate (19) as a colourless oil (202mg, 87%), (Rf 0.2, P.E 40-60:ethylacetate 10:90), (Found: C, 50.7; H, 8.3; N, 3.5. $C_{18}H_{34}NO_8P$ requires C, 51.06; H, 8.09; N, 3.31%); [α]_D +16.2° (c 0.5 in CHCl₃); ν_{max} (FT IR, Thin film, NaCl plates) 3303m (NH), 2978s, 2933s, 1722br s (C=O), 1502s, 1456s, 1395s, 1367s, 1252s, 1156s, 1028s, 971s, 851s and 799s cm⁻¹; $\delta_{\rm H}$ (200MHz; CDCl₃) 1.34 (6H, t, J 6.5Hz, 2 x OCH₂CH₃), 1.43 and 1.45 (2 x 9H, 2 x s, CHCO₂C(CH₃)₃ and NHCO₂C(CH₃)₃), 3.08 (2H, d, J 21.5Hz, CH₂P(O)(OEt)₂), 3.09 (1H, dd, J 5Hz, J 17.5Hz, 1 x CH2CH), 3.27 (1H, dd, J 5Hz, J 17.5Hz, 1 x CH2CH), 4.02-4.22 (4H, m, 2 x OCH₂CH₃), 4.58- (1H, m, CH₂CH) and 5.49 (1H, d, J 8Hz, NH); δ_C (50MHz; CDCl₃) 16.06 and 16.20 (OCH2CH3), 27.93 and 28.43 (CHCO2C(CH3)3 and NHCO2C(CH3)3), 41.07, 43.62 (d, J C,P 128Hz, CH2P(O)(OEt)2), 45.95 (CH2CH), 49.91 (CH2CH), 62.59 (OCH2CH3), 79.77 and 82.22 (CHCO2C(CH3)3 and NHCO₂C(CH₃)₃), 155.77 (NHCO₂C(CH₃)₃), 170.36 (CHCO₂C(CH₃)₃) and 200.35 (C(O)CH₂P(O)(OEt)₂); m/z (FAB, +ve Na), 446[(MNa)⁺, 100%], 424[(M+H)⁺, 11], 324[14], 268[74], 251[50] and 222[42].

(2<u>S</u>)-^{*f*}Butyl *N*-(benzyloxycarbonyl)-2-amino-5-diethylphosphono-4-oxo pentanoate. (21) The above procedure with β-lactam (12) (60mg, 0.2mmol.) followed by flash chromatography (SiO₂, P.E. 40-60:ethylacetate; 10:90) afforded (2<u>S</u>)-^{*f*}butyl *N*-(benzyloxycarbonyl)-2-amino-5-diethylphosphono-4-oxo pentanoate (21) as a colourless oil (86mg, 94%) (R_f 0.2, P.E 40-60:ethylacetate 10:90); $[\alpha]_D$ +12.0° (*c* 1.0 in CHCl₃); v_{max} (FT IR, Thin film, NaCl plates) 3281br m, 2987s, 2935s, 1721br s (C=O), 1510m, 1455m, 1396s, 1371s, 1343s, 1254s, 1163s, 1092s, 973s, 849m, 752m and 701s; δ_H (200MHz; CDCl₃) 1.31 (6H, t, *J* 7Hz, 2 x OCH₂CH₃), 1.43 (9H, s, CHCO₂C(CH₃)₃), 3.06 (2H, d, *J* 23Hz, CH₂P(O)(OEt)₂), 3.12 (1H, dd, *J* 4Hz, *J* 20Hz, 1 x CH₂CH), 3.22 (1H, dd, *J* 4.5Hz, *J* 20Hz, 1 x CH₂CH), 4.03-4.20 (4H, m, 2 x OCH₂CH₃), 4.39-4.50 (1H, m, CH₂CH), 5.10 (2H, s, CH₂(C₆H₅)), 5.71 (1H, d, *J* 8Hz, NH) and 7.34 (5H, s, CH₂(C₆H₅)); δ_C (50MHz; CDCl₃) 16.06 and 16.18 (OCH₂CH₃), 27.66 (CHCO₂C(<u>C</u>H₃)₃), 41.13, 43.66 (d, *J* C,P 127.5Hz, CH₂P(O)(OEt)₂), 45.78 (CH₂CH), 50.36 (CH₂CH), 62.60 and 62.71 (OCH₂CH₃), 66.88 (CH₂C(C₆H₅)), 82.48 (CHCO₂C(CH₃)₃), 128.23 and 128.67 (Aromatic CH), 136.50 (Aromatic ipso C), 156.29 (NH<u>C</u>O₂CH₂(C₆H₅)), 169.94 (CH<u>C</u>O₂C(CH₃)₃) and 200.18 (<u>C</u>(O)CH₂P(O)(OEt)₂); m/z (FAB, +ve Na), 480[(MNa)+, 94%], 458[(MH)+, 80], 424[32], 402[100], 195[30] and 176[84].

 $(2\underline{S})$ -4-oxo-5-phosphononorvaline.¹⁶ (20) To a stirred solution of $(2\underline{S})$ -^{*i*}butyl N-(^{*i*}butoxyoxycarbonyl) 2-amino-5-diethylphosphono-4-oxo pentanoate (19) (50mg, 0.12mmol.) in acetonitrile:dichloromethane 50:50 (2ml) was added TMSI (135µl, 0.94mmol.). The reaction mixture was stirred at room temperature for eighteen hours then concentrated *in vacuo*. To the residue was added methanol (5ml) and the mixture was stirred at room temperature for one hour then concentrated *in vacuo*. The resulting brown residue was partitioned between ether (20ml) and water (50ml). The aqueous layer was separated and washed with ether (3 x 20ml) then concentrated *in vacuo* to afford a yellow oil which was purified by ion exchange on Dowex 50W-X8(H) resin 100-200 mesh (precharged with 2M HCl and washed with H₂O) eluting with 2M NH₄OH to afford ($2\underline{S}$)-4-oxo-5-phosphononorvaline (20) as a white solid (20mg, 80%), m.p. 110-112°C (authentic sample of enantiomer m.p. 113-115°C); [α]_D -5.4° (*c* 0.25 in H₂O) (authentic sample of the enantiomer [α]_D +6.0 (*c* 0.25 in H₂O); ν_{max} (FT IR, KBr disc) 3427br s (OH), 3143m, 2931s, 1708s (C=O), 1651m, 1634m, 1623m, 1144s and 1060s cm⁻¹; δ_{H} (200MHz; D₂O) 3.15 (2H, d, *J_{HP}* 21.5Hz, CH₂P(O)(OH)₂), 3.43-3.46 (2H, m, CH₂CH) and 4.32 (1H, t, *J* 5.5Hz, CH₂CH); δ_{C} (125MHz; D₂O) 45.51 (Ω_{P} CH), 47.74 (d, *J*_{C,P} 114Hz, Ω_{P} P(O)(OH)₂), 51.53 (CH₂CH), 174.48 (CH Ω_{O}) and 207.57 (Ω_{O} CH₂P(O)(OH)₂); m/z (negative ion electrospray) 210[(M-H⁻), 100%].

(2<u>S</u>)-^{*i*}Butyl-2-amino-4-oxo pentanoate. (16) To a stirred suspension of 5% Pd/CaCO₃ (cat.) in ethylacetate (0.5ml) was added (2<u>S</u>)-^{*i*}butyl *N*-(benzyloxycarbonyl)-2-amino-4-oxo-pentanoate (15b) (30mg, 0.93mmol.) as a solution in ethyl acetate (2ml). The resulting mixture was stirred under an atmosphere of H₂ for 1 hour before being filtered through a plug of celite[®] and concentrated *in vacuo* to afford (2<u>S</u>)-^{*i*}butyl-2-amino-4-oxo pentanoate (16) as a pale yellow oil (17mg, quant.); $\delta_{\rm H}$ (200MHz; CDCl₃) 1.47 (9H, s, CO₂C(CH₃)₃), 2.20 (3H, s, C(O)CH₃), 2.72-2.98 (2H, m, CH₂CH) and 3.69-3.73 (1H, m, CH₂CH).

(2<u>S</u>)-^tButyl-2-amino-5-diethylphosphono-4-oxo pentanoate.(22) The above procedure with $(2\underline{S})$ -^tbutyl *N*-(benzyloxycarbonyl)-2-amino-5-diethylphosphono-4-oxo pentanoate (21) (40mg, 0.09mmol.) afforded (2<u>S</u>)-^tbutyl-2-amino-5-diethylphosphono-4-oxo pentanoate (22) as a pale yellow oil (28mg, quant.); $\delta_{\rm H}$ (200MHz; CDCl₃) 1.34 (6H, t, *J* 7Hz, 2 x OCH₂CH₃), 1.45 (9H, s, CHCO₂C(CH₃)₃), 3.10-3.52 (4H, m, CH₂CH and CH₂P(O)(OEt)₂) and 4.05-4.38 (5H, m, 2 x OCH₂CH₃ and CH₂CH).

(2S)-Benzyl-2-amino-4-oxo octanoate. (26) To (2S)-benzyl N-(^tbutoxycarbonyl)-2-amino 4-oxo octanoate (25) (15mg, 0.04mmol.) was added trifluoroacetic acid and the mixture was stirred at room temperature for fifteen minutes before being concentrated *in vacuo*. The residue was taken up in ethyl acetate (50ml)/saturated aqueous NaHCO₃ (20ml). The organics were separated and the aqueous layer washed with ethylacetate (2 x 50ml). The organics were combined, dried (MgSO₄), filtered and concentrated *in vacuo* to afford (2S)-benzyl 2-amino 4-oxo octanoate (26) as a yellow oil (11mg, quant.); $\delta_{\rm H}$ (200MHz; CDCl₃) 0.90 (3H, t, J 7Hz, CH₃), 1.20-1.40 (2H, m, CH₂CH₃), 1.45-1.61 (2H, m, CH₂CH₂CH₃), 2.25-2.40 (2H, m, CH₂CH₂CH₃), 3.41 (2H, m, CH₂CH), 3.75-3.94 (1H, m, CH₂CH), 5.10-5.18 (2H, m, CHCO₂CH₂(C₆H₅)) and 7.33-7.37 (5H, m, CH₂(C₆H₅)).

General procedure for the preparation of Mosher's acid derivatives. (17), (18), (23), (24), (27) and (28) To a stirred solution of amine in anhydrous dichloromethane (\approx 1ml per 0.05mmol.of amine), under an inert atmosphere of Ar, was added (R) or (S)-Mosher's acid chloride (1.2 eq.) as a solution in anhydrous dichloromethane (\approx 0.5ml per 0.05mmol. of amine) followed by DMAP (1.2 eq.). The reaction mixture was stirred at room temperature for twenty four hours before being concentrated *in vacuo*. ¹H n.m.r. of the residue confirmed that the amine had been completely consumed. The residue was taken up in ether and washed with 1M HCl, saturated aqueous Na₂CO₃ and saturated aqueous brine, dried (MgSO₄), filtered and concentrated *in vacuo* to afford the Mosher's acid derivative.

Mosher's acid derivative. (17) The general procedure with $(2\underline{S})$ -fbutyl 2-amino-4-oxo pentanoate (16) (21mg, 0.11mmol.) and (R)-Mosher's acid chloride afforded the (\underline{S} , \underline{S})-Mosher's acid derivative (17) (48mg crude mass) as a yellow oil; $\delta_{\rm H}$ (200MHz; CDCl₃) 1.45 (9H, s, CHCO₂C(CH₃)₃), 2.08 (3H, s, C(O)CH₃), 2.91 (1H, dd, J 5Hz, J 17Hz, 1 x CH₂CH), 3.15 (1H, dd, J 5Hz, J 17Hz, 1 x CH₂CH), 3.53 (3H, d, J 2Hz, OCH₃), 4.69 (1H, td, J 5Hz, J 8Hz, CH₂CH) and 7.32-7.60 (6H, m, C₆H₅ and NH); $\delta_{\rm F}$ (235MHz; CDCl₃) -70.54 (s, CE₃).

Mosher's acid derivative (18). The general procedure with $(2\underline{S})$ -*f*butyl 2-amino-4-oxo pentanoate (16) (20mg, 0.11mmol.) and (\underline{S})-Mosher's acid chloride afforded the (\underline{S} , \underline{R})-Mosher's acid derivative (18) (47mg crude mass) as a yellow oil; $\delta_{\rm H}$ (200MHz; CDCl₃) 1.45 (9H, s, CHCO₂C(CH₃)₃), 2.19 (3H, s, C(O)CH₃), 2.98 (1H, dd, *J* 5Hz, *J* 18Hz, 1 x CH₂CH), 3.22 (1H, dd, *J* 5Hz, *J* 18Hz, 1 x CH₂CH), 3.35 (3H, s, OCH₃), 4.71 (1H, td, *J* 5Hz, *J* 8Hz, CH₂CH), 7.32-7.68 (5H, m, C_{6H5}) and 7.88 (1H, d, *J* 8Hz, NH); $\delta_{\rm F}$ (235MHz; CDCl₃) -71.07 (s, CE₃).

Mosher's derivative (23) The general procedure with (2<u>S</u>)-^tbutyl 2-amino-5-diethylphosphono-4-oxo pentanoate (22) (23mg, 0.07mmol.) and (<u>R</u>)-Mosher's acid chloride afforded the (<u>S</u>, <u>S</u>)-Mosher's acid derivative (23) (50mg crude mass) as a yellow oil; $\delta_{\rm H}$ (500MHz; CDCl₃) 1.29 (6H, dt, *J* 3.5Hz, *J* 7Hz, 2 x OCH₂CH₃), 1.45 (9H, s, CHCO₂C(CH₃)₃), 2.97 (1H, dd, *J* 11.5Hz, *J* 13.5Hz, 1 x CH₂P(O)(OEt)₂), 2.99 (1H, dd, *J* 11.5Hz, *J* 13.5Hz, 1 x CH₂CH), 3.32 (1H, dd, *J* 11.5Hz, *J* 18.5Hz, 1 x CH₂CH), 3.50 (3H, d, *J* 1.5Hz, OCH₃), 4.04-4.11 (4H, m, 2 x OCH₂CH₃), 4.71 (1H, ddd, *J* 4Hz, *J* 5Hz, *J* 8Hz, CH₂CH), 7.36-7.53 (5H, m, C₆H₅) and 7.56 (1H, d, *J* 8Hz, N<u>H</u>); $\delta_{\rm F}$ (235MHz; CDCl₃) -70.58 (s, C<u>F</u>₃).

Mosher's derivative (24) The general procedure with (2<u>S</u>)-^tbutyl 2-amino-5-diethylphosphono-4-oxo pentanoate (22) (22mg, 0.07mmol.) and (<u>S</u>)-Mosher's acid chloride afforded the (<u>S</u>, <u>R</u>)-Mosher' acid derivative (24) (53mg crude mass) as a yellow oil; $\delta_{\rm H}$ (500MHz; CDCl₃) 1.34 (6H, t, *J* 7Hz, 2 x OCH₂CH₃), 1.43 (9H, s, CHCO₂C(CH₃)₃), 3.11 (2H, d, *J* 22Hz, 1 x CH₂P(O)(OEt)₂), 3.20 (1H, dd, *J* 4Hz, *J* 18.5Hz, 1 x CH₂CH), 3.35 (1H, dd, *J* 4.5Hz, *J* 18.5Hz, 1 x CH₂CH), 3.35 (1H, dd, *J* 4.5Hz, *J* 18.5Hz, 1 x CH₂CH), 3.35 (3H, d, *J* 1Hz, OCH₃), 4.03-4.12 (4H, m, 2 x OCH₂CH₃), 4.71 (1H, ddd, *J* 4Hz, *J* 4.5Hz, *J* 8Hz, CH₂CH), 7.39-7.52 (5H, m, C₆H₅) and 7.56 (1H, d, *J* 8Hz, NH); $\delta_{\rm F}$ (235MHz; CDCl₃) -72.17 (s, CE₃).

Mosher's acid derivative. (27) The general procedure with (2<u>S</u>)-benzyl 2-amino-4-oxo octanoate (26) (22mg, 0.08mmol.) and (<u>R</u>)-Mosher's acid chloride afforded the (<u>S</u>, <u>S</u>) Mosher's acid derivative (27) (51mg crude mass) as a yellow oil; $\delta_{\rm H}$ (200MHz; CDCl₃) 0.92 (3H, t, J 7Hz, CH₂CH₃), 1.15-1.50 (4H, m, CH₂CH₂CH₂CH₃), 2.25 (2H, t, J 7Hz, CH₂CH₂CH₂CH₃), 2.90 (2H, dd, J 4Hz, J 17Hz, 1 x CH₂CH), 3.20 (2H, dd, J 4Hz, J 17Hz, 1 x CH₂CH), 3.48 (3H, s, OCH₃), 4.34 (1H, ddd, J 4Hz, J 4Hz, J 8Hz, CH₂CH),

5.12 and 5.23 (2H, ABq, J_{AB} 14Hz, CH₂(C₆H₅)), 7.20-7.60 (10H, m, 2 x (C₆H₅)) and 8.22 (1H, d, J 8Hz, NH); δ_F (235MHz; CDCl₃) -70.57 (s, CE₃).

Mosher's acid derivative. (28) The general procedure with (2<u>S</u>)-benzyl 2-amino-4-oxo octanoate (26) (21mg, 0.08mmol.) and (<u>S</u>)-Mosher's acid chloride afforded the (<u>S</u>, <u>R</u>) Mosher's acid derivative (28) (50mg crude mass) as a yellow oil; $\delta_{\rm H}$ (200MHz; CDCl₃) 0.89 (3H, t, J 7Hz, C<u>H</u>₃), 1.20-1.59 (4H, m, CH₂C<u>H₂CH₂CH₃), 2.40 (2H, t, J 8Hz, CH₂CH₂CH₂CH₂CH₃), 2.85-3.20 (2H, m, C<u>H₂CH), 3.29 (3H, s, OCH₃), 4.85 (1H, td, J 4Hz, J 8Hz, CH₂C<u>H</u>), 5.12 and 5.18 (2H, ABq, J_{AB} 13Hz, C<u>H₂(C₆H₅)), 7.31-7.63 (10H, m, 2 x (C₆H₅)) and 7.94 (1H, d, J 8Hz, N<u>H</u>); $\delta_{\rm F}$ (235MHz; CDCl₃) -71.14 (s, C<u>F₃).</u></u></u></u>

(3<u>S</u>)-1-Phenylsulphonyl-3-hydroxybutane. (29a) To a stirred solution of methylphenylsulphone (7) (700mg, 4.49mmol.) in anhydrous THF (10ml), under an inert atmosphere of Ar, and cooled to -78°C was added "butyllithium (3.1ml of a 1.45M solution in hexanes, 4.48mmol., 1 eq.). The reaction mixture was stirred at -78°C for fifteen minutes and then at 0°C for ten minutes before being recooled to -78°C whereupon (<u>S</u>)-propylene oxide (471µl, 6.72mmol., 1.5 eq.) was added. The mixture was allowed to warm to room temperature over one hour and then stirred at room temperature for a further sixteen hours before being quenched by the addition of saturated aqueous NH4Cl (10ml) and being diluted with dichloromethane (50ml), washed with saturated aqueous NH4Cl (20ml) and saturated aqueous brine (20ml), dried (MgSO4), filtered and concentrated *in vacuo* to afford a yellow oil. Flash chromatography (SiO₂, dichloromethane:ether; 80:20) afforded (3<u>S</u>) 1-phenylsulphonyl-3-hydroxybutane (29a) as a colourless oil (814mg, 85%); [α]_D +22.8° (*c* 1.0 in CHCl₃). ¹H n.m.r data was in accordance with that previously reported for the racemate.¹³

(3R)-1-Phenylsulphonyl-3-hydroxybutane. (29b) The procedure above with methylphenylsulphone (7) (753mg, 4.83mmol.) and (R)-propylene oxide afforded (3R)-1-phenylsulphonyl-3-hydroxybutane (29b) as a colourless oil (902mg, 87%); [α]_D -23.4° (c 1.0 in CHCl₃). ¹H n.m.r data was in accordance with that previously reported for the racemate.¹³

(3<u>S</u>)-1-Phenylsulphonyl 3-^{*t*}butyldimethylsilyloxybutane. (30a) To a stirred solution of (3<u>S</u>)-1-phenylsulphonyl-3-hydroxybutane (29a) (780mg, 3.64mmol.) in anhydrous DMF (25ml), under an inert atmosphere of Ar, was added ^{*t*}butyldimethylsilylchloride (660mg, 4.37mmol., 1.2 eq.) and imidazole (620mg, 9.11mmol., 2.5 eq.) The reaction mixture was then left to stir at 35°C for fourteen hours before being concentrated *in vacuo* and the residue being taken up in dichloromethane (80ml), washed with 1M HCl (2 x 40ml), saturated aqueous NaHCO₃ (40ml), saturated aqueous brine (40ml), dried (MgSO₄), filtered and concentrated *in vacuo* to yield a yellow oil. Flash chromatography (SiO₂, P.E. 30-40:ether; 80:20) afforded (3<u>S</u>)-1-phenylsulphonyl 3-^{*t*}butyldimethylsilyloxybutane (30a) as a colourless oil (1.16g, 97%), (R_f 0.3, P.E. 30-40:ether; 80:20), (Found: C, 58.53: H, 8.88. C₁₆H₂₈O₃SSi requires C 58.49; H, 8.59%); [α]_D +11.7° (*c* 1.0 in CHCl₃); v_{max} (FT IR, Thin film, NaCl plates) 2956s, 2931s, 2857s, 2742s, 1448s, 1307s, 1148s, 1088s, 1021s, 838s, 777s and 690s cm⁻¹; δ _H (200MHz; CDCl₃) -0.01 and 0.01 (6H, 2 x s, Si(CH₃)₂), 0.83 (9H, s, SiC(CH₃)₃), 1.10 (3H, d, *J* 6Hz, CHCH₃), 1.71-1.93 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)), 3.20-3.32 (2H, m, CH₂SO₂(C₆H₅), 3.80-3.90 (1H, m, CH(OSi(CH₃)₂C(CH₃)₃)), 7.53-7.70 (3H, m, meta and para SO₂(C₆H₅) and 7.89-7.93 (2H, m, ortho SO₂(C₆H₅)); δ _C (50MHz; CDCl₃) -5.16 and -4.65 (Si(CH₃)₂),

17.74 (SiC(CH₃)₃), 23.28 (CHCH₃), 25.60 (SiC(CH₃)₃), 33.01 (CH₂CH(OSi(CH₃)₂C(CH₃)₃)), 52.60 (CH₂SO₂(C₆H₅)), 66.40 (CH(OSi(CH₃)₂C(CH₃)₃)), 128.16, 129.45 and 138.84 (Aromatic CH) and 139.26 (Aromatic ipso C); m/z (chemical ionisation, NH₃) 329[(MH)⁺, 100%], 271[66], 197[66], 152[20], 135[30]. 90[18] and 74[22].

(3R)-1-Phenylsulphonyl 3-^tbutyldimethylsilyloxybutane. (30b) The procedure above with (3R)-1-phenylsulphonyl-3-hydroxybutane (29b) (880mg, 4.11mmol.) afforded (3R)-1-phenylsulphonyl 3-^tbutyldimethylsilyloxybutane (30b) as a colourless oil (1.31g, 97%); $[\alpha]_D$ -11.0° (c 1 in CHCl₃). All other physical and spectroscopic data were identical to that given for (29a) above.

(2<u>S</u>, 7<u>S</u>)-^{*t*}Butyl-2-amino-7-^{*t*}butyldimethylsilyloxy-4-oxo octanoate. (33a) To a stirred suspension of 5% Pd/CaCO₃ in ethyl acetate (1ml) was added (2<u>S</u>, 7<u>S</u>)-^{*t*}butyl *N*-(benzyloxycarbonyl) 2-amino-7-^{*t*}butyldimethylsilyloxy-4-oxo octanoate (32a) (212mg, 0.43mmol.) as a solution in ethyl acetate (1ml). The resulting mixture was stirred under an atmosphere of H₂ for one hour before being filtered through a plug of celite[®] and concentrated *in vacuo* to afford (2<u>S</u>, 7<u>S</u>)-^{*t*}butyl-2-amino-7-^{*t*}butyldimethylsilyloxy-4-oxo octanoate (33a) as a white foam (153mg, quant.); $\delta_{\rm H}$ (200MHz; CDCl₃) 0.04 and 0.05 (6H, 2 x s, Si(CH₃)₂), 0.89 (9H, s, SiC(CH₃)₃), 1.13 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃), CH₃), 1.46 (9H, s, CHCO₂C(CH₃)₃), 1.59-1.80 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.18 (2H, br s, NH₂), 2.38-2.64 (2H, m, CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.80-3.00 (2H, m, CH₂CHCO₂C(CH₃)₃) and 3.72-3.89 (2H, m, CH(OSi(CH₃)₂C(CH₃)₃)CH₃).

(2<u>S</u>, 7<u>R</u>)-'Butyl-2-amino-7-'butyldimethylsilyloxy-4-oxo octanoate. (33b) The above procedure with (2<u>S</u>, 7<u>R</u>)-'butyl *N*-(benzyloxycarbonyl)-2-amino-7-'butyldimethylsilyloxy-4-oxo octanoate (32b) (187mg, 0.38mmol.) afforded (2<u>S</u>, 7<u>R</u>)-'butyl-2-amino-7-'butyldimethylsilyloxy-4-oxo octanoate (33b) as a white foam (136mg, quant.); $\delta_{\rm H}$ (200MHz; CDCl₃) 0.05 (6H, 2 x s, Si(CH₃)₂) 0.89 (9H, s, SiC(CH₃)₃), 1.13 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.47 (9H, s, CHCO₂C(CH₃)₃), 1.55-1.80 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.40-2.51 (2H, m, CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.95-3.27 (4H, m, NH₂ and CH₂CHCO₂C(CH₃)₃) and 3.72-3.98 (2H, m, CH(OSi(CH₃)₂C(CH₃)₃).

General procedures for the preparation of (1a), (1b), ent-(1c) and ent-(1d) from (33a) and (33b)

General procedure for the coupling affording (35). To a stirred solution of amine (33a) or (33b) in anhydrous dichloromethane (\approx 7ml per mmol. of amine), under an inert atmosphere of Ar, was added triethylamine (2eq.) followed by (R) or (S)-benzyl α -trifluoromethanesulphonyloxy propanoate²⁰ (2eq.) as a solution in anhydrous dichloromethane (\approx 5ml per mmol of amine). The resulting mixture was stirred at room temperature for twelve hours before being diluted with dichloromethane and washed with water, dried (MgSO4), filtered and concentrated *in vacuo*.

General procedure for the hydrogenolysis of (35) to afford (36). To a stirred suspension of 10% Pd/C (cat.) in ethyl acetate (\approx 3ml per mmol. of ester) was added (35) as a solution in ethylacetate (\approx 3ml per

mmol. of ester). The resulting mixture was stirred under an atmosphere of H₂ for one hour before being filtered through a plug of celite[®] and concentrated *in vacuo*.

General procedure for the coupling of tyrosine to (36) to afford (37). To a stirred solution of (36) in anhydrous dichloromethane (\approx 4ml per mmol. of carboxylic acid) was added 1-hydroxybenzotriazole (1.1eq.), DCC (1.1eq.) and tyrosine *t*-butyl ester (1eq.). The reaction mixture was then stirred at room temperature for one hour before being diluted with CH₂Cl₂ washed with 1M HCl, saturated aqueous NaHCO₃ and saturated aqueous brine. The organics were dried (MgSO₄), filtered and concentrated *in vacuo*.

General procedure for full deprotection. Preparation of (1a), (1b), ent-(1c) and ent-(1d) To a stirred solution of (37) (\approx 30mg, 0.046mmol.) in anisole (0.5ml) was added TFA (2ml) and the mixture was stirred at room temperature for two hours before being concentrated *in vacuo*. The residue was taken up in water (30ml) and washed with Et₂O (10ml). The aqueous layer was then lyophilised three times. Further purification could be achieved by h.p.l.c. as indicated by Ando *et al.*¹

Synthesis of (1a)

N-((1<u>S</u>, 6<u>S</u>)-6-^tButyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>L</u>-alanine benzyl ester. (35a) The general procedure with (2<u>S</u>, 7<u>S</u>)-^{*j*}butyl 2-amino-7-^{*j*}butyldimethylsilyloxy-4-oxo octanoate (33a) (145mg, 0.40mmol.) and (R)-benzyl α -trifluoromethanesulphonyloxy propanoate (34) followed by flash chromatography (SiO₂, P.E 30-40:ether; 70:30) afforded N-((15, 65)-6-^tbutyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-L-alanine benzyl ester (35a) as a colourless oil (190mg, 91%), (Rf 0.25, P.E 30-40:ether 70:30); [a]_D -8.2° (c 1.3 in CHCl₃); v_{max} (FT IR, CDCl₃ solution, NaCl plates) 2957m, 2931m, 1738br s (C=O), 1456s, 1369s, 1256s and 776m cm⁻¹; $\delta_{\rm H}$ (200MHz; CDCl₃) 0.04 and 0.05 (6H, 2 x s, Si(CH₃)₂) and 0.89 (9H, s, SiC(CH₃)₂), 1.12 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.34 (3H, d, J 7Hz, NHCHCH₃), 1.45 (9H, s, CH₂CHCO₂C(CH₃)₃), 1.58-1.85 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.48 (2H, d of ABq, J 6Hz, J 15Hz, CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 2.70-2.92 (2H, m, CH2CHCO2C(CH3)3), 3.42-3.63 (2H, m, CH₂CH₂CO₂C(CH₃)₃ and NHCHCH₃), 3.83 (1H, m, CH(OSi(CH₃)₂C(CH₃)₃)), 5.16 and 5.18 (2H, ABq, J 12Hz, NHCHCO₂CH₂(C₆H₅) and 7.28-7.37 (5H, m, NHCHCO₂CH₂(C₆H₅)); δ_C (50MHz; CDCl₃) -4.95 and -4.61 (Si(CH3)2), 17.92 (SiC(CH3)3), 18.96 and 23.53 (CH(OSi(CH3)2C(CH3)3)CH3 and NHCHCH3), 25.74 and 27.85 (CHCO₂C(<u>C</u>H₃)₃ and SiC(<u>C</u>H₃)₃), 32.80 (<u>C</u>H₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 38.81 (CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 46.24 (CH2CHCO2C(CH3)3), 55.40 and 56.21 (NHCHCH3 and CH2CHCO2C(CH3)3), 66.49 (NHCHCO2CH2(C6H5)), 67.49 (CH(OSi(CH3)2C(CH3)3)CH3), 81.54 (CHCO_{2C}(CH₃)₃), 128.34 and 128.74 (Aromatic CH), 136.04 (Aromatic ipso C), 173.19 and 174.97 (CHCO2C(CH3)3 and NHCHCO2CH2(C6H5)) and 208.75 (C(O)CH2CH2CH(OSi(CH3)2C(CH3)3)CH3); m/z (chemical ionisation, NH₃) 522[(MH)⁺, 100%], 420[10], 288[31], 236[17], 180[20], 173[15], 108[11], 91[52] and 70[10].

 $N-((1\underline{S}, 6\underline{S})-6^{-t}Butyldimethylsilyloxy-1^{t}butyloxycarbonyl-3-oxo-heptyl)-L-alanine.$ (36a) The general procedure with $N-((1\underline{S}, 6\underline{S})-6^{-t}butyldimethylsilyloxy-1^{-t}butyloxycarbonyl-3-oxo-heptyl)-L-alanine benzyl ester (35a) (170mg, 0.33mmol.) afforded <math>N-((1\underline{S}, 6\underline{S})-6^{-t}butyldimethylsilyloxy-1-butyldimethylsilyloxy-1^{-t}butyldimethylsilylo$ *butyloxycarbonyl-3-oxo-heptyl)-L-alanine* (36a) as a white foam (139mg, quant.), (Found: C, 58.44; H, 9.75; N 3.06. C₂₁H₄₁NO₆Si requires C, 58.44; H, 9.57; N, 3.06%); [α]_D +17.7° (c 1.0 in CHCl₃); ν_{max} (FT IR, CDCl₃ solution, NaCl plates) 2957m, 1757s (C=O), 1715m, 1320s and 838m cm⁻¹; $\delta_{\rm H}$ (200MHz; CDCl₃) 0.03 and 0.05 (6H, 2 x s, Si(CH₃)₂), 0.89 (9H, s, SiC(CH₃)₃), 1.12 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.44 (3H, d, J 7Hz, NHCHCH₃), 1.47 (9H, s, CH₂CHCO₂C(CH₃)₃), 1.55- $C_{H_2}CH(OSi(CH_3)_2C(CH_3)_3)CH_3),$ 2.54-2.60 (2H, 1.88 (2H, m, m, CH2CH2CH(OSi(CH3)2C(CH3)2)CH3), 2.70-2.95 (2H, m, CH2CHCO2C(CH3)3), 3.32 (1H, q, J 7Hz, NHCHCH3), 3.42-3.52 (1H, m, CH2CHCO2C(CH3)3), 3.75-3.90 (1H, m, CH(OSi(CH3)2C(CH3)3)) and 5.25 (2H, br s, NH and OH); S_C (125MHz; CDCl₃) -4.95 and -4.58 (Si(<u>C</u>H₃)₂), 17.89 (Si<u>C</u>(CH₃)₃), 18.68 and 23.53 (CH(OSi(CH₃)₂C(CH₃)₃)<u>C</u>H₃ and NHCH<u>C</u>H₃), 25.74 and 27.82 (CH₂CHCO₂C(<u>C</u>H₃)₃ and SiC(CH₃)₃), 32.72 (CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 38.73 (CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 44.64 (CH₂CHCO₂C(CH₃)₃), 56.43 and 56.60 (NHCHCH₃ and CH₂CHCO₂C(CH₃)₃), 67.36 (CH(OSi(CH₃)₂C(CH₃)₃)), 82.92 (CH₂CHCO₂C(CH₃)₃), 171.91 and 175.59 (NHCHCO₂H and CH₂CH<u>C</u>O₂C(CH₃)₃) and 208.78 (C(O)CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃); m/z (chemical ionisation, NH₃) 432[(MH)+, 20%], 343[23], 211[30], 90[100].

N-((15, 65)-6-'Butyldimethylsilyloxy-1-'butyloxycarbonyl-3-oxo-heptyl)-L-alanyl-Ltyrosine^t-butylester. (37a). The general procedure with N-((1S, 6S)-6-^tbutyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-L-alanine (36a) (119mg, 0.28mmol.) and (L)-tyrosine t-butylester followed by flash chromatography (SiO2, P.E. 30-40:ether; 30:70) afforded N-((15, 65)-6-butyldimethylsilyloxy-1-'butyloxycarbonyl-3-oxo-heptyl)-L-alanyl-L-tyrosine 'butylester (37a) as a colourless oil (144mg, 79%), (Rf 0.2, P.E 30-40:ether 20:80), m/z (high resolution) Found 651.404, C34H58N2O8Si+H+ requires 651.404; [a]D -5.8° (c 1.0 in CHCl₃); v_{max} (FT IR, CDCl₃ solution, NaCl plates) 3347br m (NH and OH), 2932s, 2858s, 1728s (C=O), 1657s, 1615s, 1516s, 1451s, 1371s, 1256s, 1156s and 878s cm⁻¹; δ_H (500MHz; CDC13) 0.06 and 0.07 (6H, 2 x s, Si(CH3)2), 0.89 (9H, s, SiC(CH3)2), 1.14 (6H, 2 x d, 2 x J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃ and NHCHCH₃), 1.43 and 1.46 (2 x 9H, 2 x s, CH₂CHCO₂C(CH₃)₃ and NHCHCO₂C(CH₃)₃), 1.61-1.77 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.39-2.54 (2H, m, CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 2.75-2.83 (2H, m, CH2CHCO2C(CH3)3), 3.00 (1H, dd, J 7.5Hz, J 14Hz, 1 x CH2(C6H4)OH), 3.15 (1H, dd, J 5.5Hz, J 14Hz, 1 x CH2(C6H4)OH), 3.21-3.25 (1H, m, NHCHCH₃), 3.32-3.38 (1H, m, CH₂CHCO₂C(CH₃)₃), 3.83-3.87 (1H, m, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 4.68 (1H, ddd, J 5.5Hz, J 7.5Hz, J 8Hz, NHCHCH2(C6H4)OH), 6.28 (1H, br s, OH), 6.71 and 7.02 (2 x 2H, 2 x d, 2 x J 8.5Hz, (C₆H₄)OH) and 7.91 (1H, d, J 8Hz, NHCH(CO₂C(CH₃)₃)CH₂(C₆H₄)OH); $\delta_{\rm C}$ (50MHz; CDCl₃) -4.90 and -4.61 (Si(CH3)2), 17.92 (SiC(CH3)3), 19.68 and 23.52 (CH(OSi(CH₃)₂C(CH₃)₃)<u>C</u>H₃ and NHCH<u>C</u>H₃), 25.75 (SiC(<u>C</u>H₃)₃), 27.88 (CH₂CHCO₂C(<u>C</u>H₃)₃) and NHCHCO₂C(<u>CH</u>₃)₃)), 32.80 (<u>C</u>H₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 37.03 and 38.81 (CH2CH2CH2CH(OSi(CH3)2C(CH3)3)CH3 and CH2(C6H4)OH) 45.93 CH2CHCO2C(CH3)3), 53.29, 56.50 and 57.48 (NHCHCH3, CH2CHCO2C(CH3)3 and CHCH2(C6H4)OH), 67.59 (CH(OSi(CH3)2C(CH3)3)), 81.93 (CH2CHCO2C(CH3)3 and NHCHCO2C(CH3)3), 115.45 and 130.48 (Aromatic CH), 127.65 and 155.03 (2 x Aromatic ipso C), 171.23, 173.29 and 175.49 (CH₂CH₂CO₂C(CH₃)₃, NHCH<u>C</u>O₂C(CH₃)₃ and NH<u>C</u>(O)) and 209.07 (C(O)CH2CH2CH(OSi(CH3)2C(CH3)3)CH3); m/z (desorption chemical ionisation, NH3) 651[(MH)+, 10%], 343[42], 309[65], 253[100], 225[50], 211[49], 155[20] and 89[20].

N-((15, 65)-6-Hydroxy-1-carboxylic acid-3-oxo-heptyl)-L-alanyl-L-tyrosine (1a) (trifluoromethane sulphonate salt). The general procedure with $N-((6\underline{S})-6-t)$ butyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-L-alanyl-L-tyrosine^t butylester (37a) (30mg, 0.046mmol.) afforded N-((15, 65)-6-hydroxy-1-carboxylic acid-3-oxo-heptyl)-L-alanyl-L-tyrosine (1a) (trifluoromethane sulphonate salt) as a white powder (18mg, 73%), m.p. 95-97°C, (Found C, 49.35; H, 5.70; N, 5.40. C22F3H29N2O10 requires C, 49.07; H, 5.43; N, 5.20%; $[\alpha]_D$ +14.2° (c 0.375 in H₂O); ν_{max} (FT IR, KBr disc) 3386br m (NH and OH), 1775m, 1717s, 1674s, 1616s, 1518s, 1448s, 1384s, 1201s and 1141s cm⁻¹; δ_H (500MHz; D₂O) 1.05 (3H, d, J 6.5Hz, CH(OH)CH3), 1.42 (3H, d, J 7Hz, NHCHCH3), 1.54-1.60 (2H, m, CH2CH(OH)CH3), 2.44 (2H, t, J 7.5Hz, CH2CH2CH(OH)CH3), 2.69 (1H, dd, J 11Hz, J 14Hz, J x CH2(C6H4)OH), 2.82-2.88 (2H, m, 1 x CH2CHCO2H and CH2CHCO2H), 3.03 (1H, dd, J 5Hz, J 18Hz, 1 x CH2CHCO2H), 3.20 (1H, dd, J 5Hz, 14Hz, 1 x CH₂(C₆H₄)OH) 3.66-3.70 (1H, m, CH(OH)CH₃), 3.95 (1H, q, J 7Hz, NHCHCH₃), (NHCHCO₂H obscured by HOD signal) and 6.73 and 7.06 (4H, 2 x d, 2 x J 8.5Hz, (C_{6H4})OH); $\delta_{\rm C}$ (125MHz; CDCl₃) 16.96 and 22.48 (CH(OH)CH₃ and NHCHCH₃), 32.25 (CH₂CH(OH)CH₃), 37.06, 38.82 and 42.40 (CH2CHCO2H, CH2CH2CH(OH)CH3 and CH2(C6H4)OH), 55.50, 57.72 and 58.31 (3 x NHCHCO), 67.65 (CH(OH)CH₃), 116.22 and 131.40 (Aromatic CH), 129.33 and 155.26 (2 x Aromatic ipso C), 169.66, 171.45 and 175.00 (CH₂CH_CO₂H, NHCH_CO₂H and C(O)NH) and 211.55 (C(O)CH₂CH₂CH(OH)CH₃); δ_F (235MHz; CDCl₃) -77.65 (s, CF₃); m/z (FAB) 463[(MK⁺, 6%)], 447[(MNa+, 10], 407[37], 361[15], 309[35], 253[56], 155[100], 136[21], 107[26], 99[79], 83[20], 70[30] and 55[33].

The derivative (38) was prepared from (1a) according to the procedure of Ando *et al.*¹; δ_H (200MHz; CDC1₃) 1.22 (6H, 2 x d, 2 x J 6Hz, CH(OCOCH₃)CH₃ and NHCHCH₃), 1.70-1.90 (2H, m, CH₂CH(OCOCH₃)CH₃), 2.03 and 2.29 (2 x 3H, 2 x s, 2 x OCOCH₃), 2.38-2.50 (2H, m, CH₂CH₂CH(OCOCH₃)CH₃), 2.79 (2H, d, J 5.5Hz, CH₂CHCO₂CH₃), 3.15-3.27 (3H, m, CH₂(C₆H₄)OH and NHCHCH₃), 3.55 (1H, t, J 6Hz, CH₂CH₂CO₂CH₃), 3.70 and 3.75 (2 x 3H, 2 x s, 2 x CO₂CH₃), 4.72-4.93 (2H, m, CH₁(OCOCH₃)CH₃ and NHCHCH₂), 7.00 and 7.17 (2 x 2H, 2 x d, 2 x J 8.5Hz, (C₆H₄)OCOCH₃) and 7.93 (1H, d, J 8Hz, NHCHCO₂CH₃).

Synthesis of (1b)

N-((1<u>5</u>, 6<u>R</u>)-6-^tButyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>L</u>-alanine benzyl ester. (35b) The general procedure with (2<u>S</u>, 7<u>R</u>)-^tbutyl 2-amino-7-^tbutyldimethylsilyloxy-4-oxo octanoate (33b) (136mg, 0.38mmol.) and (<u>R</u>)-benzyl 2-trifluoromethanesulphonyloxypropanoate (34) followed by flash chromatography (SiO₂, P.E 30-40:ether; 70:30) afforded *N*-((*1S*, 6<u>R</u>)-6-^tbutyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>L</u>-alanine benzyl ester (35b) as a colourless oil (160mg, 81%), (R_f 0.25, P.E 30-40:ether 70:30), m/z (high resolution) Found 522.325. C₂₈H₄₇NO₆Si+H⁺ requires 522.325; [α]_D -25.7° (c 1.0 in CHCl₃); v_{max} (FT IR, CDCl₃ solution, NaCl plates) 2957m, 2930m, 1736br s (C=O), 1473s, 1369s, 1153s, 1084m, 837s and 776m cm⁻¹; $\delta_{\rm H}$ (200MHz; CDCl₃) 0.04 and 0.05 (6H, 2 x s, Si(CH₃)₂), 0.89 (9H, s, SiC(CH₃)₂), 1.12 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.33 (3H, d, J 7Hz, NHCHCH₃), 1.44 (9H, s, CH₂CHCO₂C(CH₃)₃), 1.55-1.80 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.42-2.55 (2H, m, CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.80 (2H, ABq, J 12.5Hz, CH₂CHCO₂C(CH₃)₃), 3.50-3.62 (2H, m, CH₂CHCO₂C(CH₃)₃) and NHCHCH₃), 3.75-3.88 (1H, m, CH(OSi(CH₃)₂C(CH₃)₃)), 5.12 and 5.18 (2H, ABq, J 15Hz, NHCHCO₂CH₂(C₆H₅) and 7.30 (5H, s, NHCHCO₂CH₂(C₆H₅)); δ_{C} (50MHz; CDCl₃) -4.97 and -4.61 (Si(CH₃)₂), 17.92 (SiC(CH₃)₃), 18.97 and 23.56 (CH(OSi(CH₃)₂C(CH₃)₃)CH₃ and NHCHCH₂H₃), 25.75 and 27.85 (CO₂C(CH₃)₃ and SiC(CH₃)₃), 32.83 (CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 38.92 (CH₂CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 46.30 (CH₂CHCO₂C(CH₃)₃), 55.41 and 56.16 (NHCHCH₃ and CH₂CHCO₂C(CH₃)₃), 66.47 (NHCHCO₂CH₂(C₆H₅)), 67.52 (CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 81.54 (CH₂CHCO₂C(CH₃)₃), 128.38 and 128.74 (Aromatic CH), 136.03 (Aromatic ipso C), 173.25 and 174.97 (CH₂CHCO₂C(CH₃)₃ and NHCHCO₂CH₂(C₆H₅)) and 208.72 (C(O)CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃); m/z (chemical ionisation, NH₃) 522[(MH)⁺, 8%], 343[10], 236[12], 180[100] and 91[23].

N-((1<u>S</u>, 6<u>R</u>)-6-'Butyldimethylsilyloxy-1-'butyloxycarbonyl-3-oxo-heptyl)-<u>L</u>-alanine (36b). The general procedure with N-((1S, 6R)- 6^{-t} butyldimethylsilyloxy-1-t-butyloxycarbonyl-3-oxo-heptyl)-Lalanine benzyl ester (35b) (140mg, 0.27mmol.) afforded N-((15, 6R)-6-^tbutyldimethylsilyloxy-1-¹butyloxycarbonyl-3-oxo-heptyl)-L-alanine (36b) as a white foam (116mg, quant.); $[\alpha]_D$ -6.0° (c 0.5 in CHCl₃); v_{max} (FT IR, CDCl₃ solution, NaCl plates) 2957m, 1753s and 1718s (C=O), 1372s, 1257s, 1149s, 1030s, 838m and 777s cm⁻¹; δ_H (200MHz; CDCl₃) 0.04 and 0.06 (6H, 2 x s, Si(CH₃)₂), 0.89 (9H, s, SiC(CH₃)₃), 1.14 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.44 (3H, d, J 7Hz, NHCHCH₃), 1.48 (9H, s, CH₂CHCO₂C(CH₃)₃), 1.52-1.88 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.53 (2H, t, J 7.5Hz, CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 2.65-2.90 (2H, m, CH2CHCO2C(CH3)3), 3.20 (2H, br s, OH and NH), 3.33 (1H, q, J 7Hz, NHCHCH3), 3.42 (1H, dd, J 4Hz, J 8Hz, CH2CHCO2C(CH3)3) and 3.78-3.90 (1H, m, CH(OSi(CH₃)₂C(CH₃)₃)); δ_{C} (50MHz; CDCl₃) -4.99 and -4.58 (Si(CH₃)₂), 17.92 (SiC(CH₃)₃), 18.94 and 23.56 (CH(OSi(CH₃)₂C(CH₃)₃)CH₃ and NHCHCH₃), 25.74 and 27.85 (CH₂CHCO₂C(CH₃)₃ and SiC(CH3)3), 32.73 (CH2CH(OSi(CH3)2C(CH3)3)CH3), 38.79 (CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 44.85 (CH₂CHCO₂C(CH₃)₃), 56.56 (NH<u>C</u>HCH₃ and CH₂CHCO₂C(CH₃)₃), 67.28 (CH(OSi(CH₃)₂C(CH₃)₃)), 82.88 (CH₂CHCO₂C(CH₃)₃), 172.24 and 175.62 (NHCHCO₂H and CH₂CH<u>C</u>O₂C(CH₃)₃) and 208.93 (<u>C</u>(O)CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃); m/z (chemical ionisation, NH₃) 432[(MH)+, 25%], 343[40], 211[27] and 90[100].

N-((1<u>S</u>, 6<u>R</u>)-6-^tButyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>L</u>-alanyl-<u>L</u>tyrosine^t-butylester. (37b) The general procedure with N-((1<u>S</u>, 6<u>R</u>)-6-^tbutyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>L</u>-alanine (36b) (95mg, 0.22mmol.) and (<u>L</u>)-tyrosine t-butylester followed by flash chromatography (SiO₂, P.E. 30-40:ether; 30:70) afforded N-((1<u>S</u>, 6<u>R</u>)-6-^tbutyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>L</u>-alanyl-<u>L</u>-tyrosine^t-butylester (37b) as a colourless oil (120mg, 84%), (R_f 0.3, P.E 30-40:ether 30:70); [α]_D -32.5° (c 0.75 in CHCl₃); v_{max} (FT IR, CDCl₃ solution, NaCl plates) 3347s (NH and OH), 2932s, 2858s, 1729s (C=O), 1662s, 1516s, 1371s, 1156s, 911s, 898s and 731s cm⁻¹; δ_H (500MHz; CDCl₃) 0.081 and 0.086 (6H, 2 x s, Si(CH₃)₂), 0.91 (9H, s, SiC(CH₃)₂), 1.16 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃) 1.18 (3H, d, J 7Hz, NHCHCH₃), 1.43 and 1.46 (2 x 9H, 2 x s, CH₂CHCO₂C(CH₃)₃ and NHCHCO₂C(CH₃)₃), 1.60-1.78 (2H, m, CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.40-2.52 (2H, m, CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.62 (2H, dd, J 3.5Hz, J 18Hz, 1 x CH₂CHCO₂C(CH₃)₃), 2.83 (1H, dd, J 11.5Hz, J 18Hz, 1 x CH₂CHCO₂C(CH₃)₃), 3.03 (1H, dd, J 7Hz, J 14Hz, 1 x CH₂(C₆H₄)OH), 3.08 (1H, dd, J 5.5Hz, J 14Hz, 1 x CH₂(C₆H₄)OH), 3.23 (1H, q, J 7Hz, NHCHCH₃), 3.28-3.31 (1H, m, CH₂CHCO₂C(CH₃)₃), 3.85-3.91 (1H, m, CH(OSi(CH₃)₂C(CH₃)₃)), 4.69 (1H, ddd, J 5.5Hz, J 7Hz, J 9Hz, NHCHCH₂(C₆H₄)OH), 6.72 and 7.02 (2 x 2H, 2 x d, 2 x J 8.5Hz, (C₆H₄)OH) and 7.88 (1H, d, J 9Hz, NHCH(CO₂C(CH₃)₃)CH₂(C₆H₄)OH); δ_{C} (50MHz; CDCl₃) -4.68 and -4.42 (Si(CH₃)₂), 18.14 (SiC(CH₃)₃), 19.87 and 23.43 (CH(OSi(CH₃)₂C(CH₃)₃)CH₃ and NHCHCH₃), 25.92 (SiC(CH₃)₃), 28.07 and 28.80 (CH₂CHCO₂C(C(CH₃)₃) and NHCHCO₂C(C(CH₃)₃), 32.96 (CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 37.06 and 38.88 (CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃ and CH₂(C₆H₄)OH) 46.07 CH₂CHCO₂C(CH₃)₃), 53.23, 56.71 and 57.74 (NHCHCH₃, CH₂CHCO₂C(CH₃)₃ and CH₂(C₆H₄)OH), 67.81 (CH(OSi(CH₃)₂C(CH₃)₃)), 81.79 (NHCHCO₂C(CH₃)₃ and CH₂CHCO₂C(CH₃)₃), 115.39 and 130.51 (Aromatic CH), 128.01 and 155.27 (2 x Aromatic ipso C), 170.83, 173.10 and 175.21 (NHCHCO₂C(CH₃)₃), CH₂CHCO₂C(CH₃)₃) and CO(NH)) and 208.42 (C(O)CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃); m/z (desorption chemical ionisation, NH₃) [651(MH)⁺, 6%], 386[10], 343[35], 309[37], 253[100], 229[20], 211[32], 155[20], 136[11], 89[25].

N-((1<u>S</u>, 6<u>R</u>)-6-Hydroxy-1-carboxylic acid-3-oxo-heptyl)-L-alanyl-L-tyrosine (1b) (trifluoromethane sulphonate salt). The general procedure with N-((6R)-6-^tbutyldimethylsilyloxy-1butyloxycarbonyl-3-oxo-heptyl)-L-alanyl-L-tyrosine¹-butylester (37b) (31mg, 0.048mmol.) afforded N-((15, 6R)-6-hydroxy-1-carboxylic acid-3-oxo-heptyl)-L-alanyl-L-tyrosine (1b) (trifluoromethane sulphonate salt) as a white powder (19mg, 76%), m.p. 105-107°C; $[\alpha]_D$ +3.9° (c 0.375 in H₂O); v_{max} (FT IR, KBr disc) 3420br m (NH and OH), 1720s, 1674s, 1616s, 1518s, 1447s, 1384s, 1201s and 1142s cm⁻¹; $\delta_{\rm H}$ (500MHz; D₂O) 1.04 (3H, d, J 6.5Hz, CH(OH)CH3), 1.40 (3H, d, J 7Hz, NHCHCH3), 1.54-1.58 (2H, m, CH2CH(OH)CH3), 2.40 (1H, ddd, J 15Hz, J 8Hz, J 6.5Hz, 1 x CH2CH2CH(OH)CH3), 2.47 (1H, ddd, J 15Hz, J 8.5Hz, J 6.5Hz, 1 x CH2CH2CH(OH)CH3), 2.66 (1H, dd, J 11Hz, J 14Hz, 1 x CH2(C6H4)OH), 2.84-2.88 (2H, m, 1 x CH2CHCO2H and CH2CHCO2H), 3.05 (1H, dd, J 6.5Hz, J 20Hz, 1 x CH2CHCO2H), 3.20 (1H, dd, J 4.5Hz, 14Hz, 1 x CH2(C6H4)OH) 3.65-3.68 (1H, m, CH(OH)CH3), 3.96 (1H, q, J 7Hz, NHCHCH₃), (NHCHCO₂H obscured by HOD signal) and 6.71 and 7.05 (4H, 2 x d, J 8.5Hz, (C_{6H4})OH); δ_C (125MHz; CDCl₃) 16.82 and 22.49 (CH(OH)<u>C</u>H₃ and NHCH<u>C</u>H₃), 32.26 (CH2CH(OH)CH3), 37.01, 38.69 and 42.23 (CH2CHCO2H, CH2CH2CH(OH)CH3 and CH2(C6H4)OH), 54.84, 56.73 and 58.37 (3 x NHCHCO), 67.60 (CH(OH)CH3), 116.20 and 131.42 (Aromatic CH), 129.22 and 155.27 (2 x Aromatic ipso C), 169.54, 171.10 and 174.82 (CH2CHCO2H, NHCHCO2H and C(O)NH) and 211.04 (C(O)CH2CH2CH(OH)CH3); m/z (FAB) 463[(MK+, 4%], 447[(MNa+, 17], 425[9], 407[55], 361[14], 337[5], 309[45], 253[66], 242[17], 172[12], 155[100], 136[20], 126[14], 107[30], 99[80], 83[20], 70[30] and 55[32].

Synthesis of ent-(1c)

N-((1**S**, **6S**)-**6**-*t***Butyldimethylsilyloxy**-1-*t***butyloxycarbonyl**-**3**-**oxo**-**heptyl**)-**D**-**alanine benzyl ester.** (**35c**). The general procedure with (2<u>S</u>, 7<u>S</u>)-*t***butyl** 2-amino-7-*t***butyldimethylsilyloxy**-4-oxo octanoate (33a) (150mg, 0.42mmol.) and (<u>S</u>)-benzyl 2-trifluoromethanesulphonyloxypropanoate followed by flash chromatography (SiO₂, P.E 30-40:ether; 70:30) afforded *N*-((*1S*, 6<u>S</u>)-6-*t***butyldimethylsilyloxy**-1*tbutyloxycarbonyl*-3-oxo-heptyl)-<u>D</u>-alanine benzyl ester (35c) as a colourless oil (182mg, 83%), (R_f 0.3, P.E 30-40:ether 70:30); [α]_D +12.2° (c 0.6 in CHCl₃); v_{max} (FT IR, CDCl₃ solution, NaCl plates) 2957m, 2930m, 1737br s (C=O), 1470s, 1369s, 1256s, 1153s, 837s and 776m cm⁻¹; δ_H (200MHz; CDCl₃) 0.04 and 0.05 (6H, 2 x s, Si(CH₃)₂), 0.89 (9H, s, SiC(CH₃)₂), 1.12 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃),

1.31 (3H, d, J 7Hz, NHCHCH3), 1.44 (9H, s, CH2CHCO2C(CH3)3), 1.55-1.82 (2H, m, CH2CH(OSi(CH3)2C(CH3)3)CH3), 2.35-2.61 (2H, m, CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 2.62-2.88 (2H, m, CH2CHCO2C(CH3)3), 3.50 (1H, q, J 7Hz, NHCHCH3), 3.65 (1H, t, J 6.5Hz, CH2CHCO2C(CH3)3), 3.75-3.90 (1H, m, CH(OSi(CH3)2C(CH3)3)), 5.12 and 5.20 (2H, ABq, J 12.5Hz, NHCHCO₂CH₂(C₆H₅) and 7.37 (5H, s, NHCHCO₂CH₂(C₆H₅)); δ_{C} (50MHz; CDCl₃) -4.95 and -4.61 (Si(CH3)2), 17.91 (SiC(CH3)3), 18.64 and 23.57 (CH(OSi(CH3)2C(CH3)3)CH3 and NHCHCH3), 25.74 and 27.83 (CO₂C(<u>CH</u>₃)₃ and SiC(<u>CH</u>₃)₃), 32.77 (<u>CH</u>₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 39.31 (CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 46.05 (CH2CHCO2C(CH3)3), 55.02 and 55.90 (NHCHCH3 and CH2CHCO2C(CH3)3), 66.56 (NHCHCO2CH2(C6H5)), 67.52 (CH(OSi(CH3)2C(CH3)3)CH3), 81.63 (CH2CHCO2C(CH3)3), 128.31, 128.41 and 128.71 (Aromatic CH), 135.96 (Aromatic ipso C), 172.99 and 174.98 $(CH_2CHCO_2C(CH_3)_3 \text{ and } NHCHCO_2CH_2(C_6H_5))$ and 208.48 (C(O)CH2CH2CH(OSi(CH3)2C(CH3)3)CH3); m/z (chemical ionisation, NH3) 522[(MH)+, 100%], 420[12], 288[23], 236[12], 180[48], 173[18], 108[17], 91[48] and 70[11].

N-((1<u>S</u>, 6<u>S</u>)-6-^tButyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanine. (36c) The general procedure with N-((15, 65)-6-butyldimethylsilyloxy-1-butyloxycarbonyl-3-oxo-heptyl)-Dalanine benzyl ester (35c) (100mg, 0.19mmol.) afforded N-((15. 65)-6-^tbutyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanine (36c) as a white foam (83mg, quant.), $[\alpha]_D$ -0.8° (c 1.0 in CHCl₃); v_{max} 2957m, 2897m, 1759s and 1719s (C=O), 1375s and 1157m cm⁻¹; δ_H (200MHz; CDCl₃) 0.03 (6H, s, Si(CH3)2), 0.87 (9H, s, SiC(CH3)3), 1.11 (3H, d, J 6Hz, CH(OSi(CH3)2C(CH3)3)CH3), 1.38 (3H, d, J 7Hz, NHCHCH₃), 1.45 (9H, s, $CH_2CHCO_2C(CH_3)_3$), 1.60-1.80 (2H, m, CH2CH(OSi(CH3)2C(CH3)3)CH3), 2.32-2.65 (2H, m, CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 3.02-3.20 (2H, m, CH2CHCO2C(CH3)3), 3.45 (1H, q, J 7Hz, NHCHCH3), 3.72-3.98 (2H, m, CH2CHCO2C(CH3)3) and CH(OSi(CH3)2C(CH3)3)) and 6.99 (2H, br s, OH and NH); SC (50MHz; CDCl3) -4.92 and -4.61 (Si(CH3)2), 15.96 (SiC(CH3)3), 17.89 and 23.53 (CH(OSi(CH3)2C(CH3)3)CH3 and NHCHCH3), 25.74 and 27.73 (CH2CHCO2C(CH3)3 and SiC(CH3)3), 32.73 (CH2CH(OSi(CH3)2C(CH3)3)CH3), 38.71 (CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 43.37 (CH2CHCO2C(CH3)3), 54.99 and 56.53 (NHCHCH3 and CH2CHCO2C(CH3)3), 67.49 (CH(OSi(CH3)2C(CH3)3)), 83.37 (CH2CHCO2C(CH3)3), 169.96 and 174.88 (NHCHCO2H and CH2CHCO2C(CH3)3) and 208.01 (C(O)CH2CH2CH(OSi(CH3)2C(CH3)3)CH3); m/z (chemical ionisation, NH₃) 432[(MH)⁺, 5%], 343[51], 229[28], 211[55] and 90[100].

N-((1<u>S</u>, 6<u>S</u>)-6-^{*t*}Butyldimethylsilyloxy-1-^{*t*}butyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanyl-<u>D</u>tyrosine^{*t*}-butylester (37c) The general procedure with *N*-((1<u>S</u>, 6<u>S</u>)-6-^{*t*}butyldimethylsilyloxy-1-^{*t*}butyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanine (36c) (70mg, 0.16mmol.) and (<u>D</u>)-tyrosine *t*-butylester followed by flash chromatography (SiO₂, P.E. 30-40:ether; 30:70) afforded *N*-((1<u>S</u>, 6<u>S</u>)-6-^{*t*}butyldimethylsilyloxy-1-^{*t*}butyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanyl-<u>D</u>-tyrosine^{*t*}-butylester (37c) as a colourless oil (84mg, 81%), (R_f 0.3, P.E 30-40:ether 30:70); [α]_D +10.2° (*c* 1.0 in CHCl₃); v_{max} (FT IR, CDCl₃ solution, NaCl plates) 2931s, 2858s, 1718s (C=O), 1462m, 1372s, 1257s, 1154s, 895s and 777m cm⁻¹; δ_H (500MHz; CDCl₃) 0.041 and 0.047 (6H, 2 x s, Si(CH₃)₂), 0.88 (9H, s, SiC(CH₃)₂), 1.10 (3H, d, J 7Hz, NHCHCH₃) 1.12 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.43 (18H, s, CH₂CHCO₂C(C(CH₃)₃) and NHCHCO₂C(C(CH₃)₃), 1.59-1.80 (2H, m, CH₋₂CH(OSi(CH₃)₂C(CH₃)₂)C(CH₃)₃) CH₃), 2.42-2.61 (2H, m, CH₂CH₂CH₁(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.76-2.91 (3H, m, CH₂CHCO₂C(CH₃)₃ and 1 x CH₂(C₆H₄)OH), 3.16-3.28 (2H, m, NHCHCH₃ and 1 x CH₂(C₆H₄)OH), 3.62 (1H, t, J 6Hz, CH₂CHCO₂C(CH₃)₃), 3.76-3.88 (1H, m, CH(OSi(CH₃)₂C(CH₃)₃)), 4.63-4.78 (1H, m, NHCHCH₂(C₆H₄)OH), 6.72 and 7.02 (2 x 2H, 2 x d, 2 x J 8.5Hz, (C₆H₄)OH) and 7.76 (1H, d, J 8.5Hz, NHCH(CO₂C(CH₃)₃)CH₂(C₆H₄)OH); δ_{C} (125MHz; CDCl₃) -4.69 and -4.41 (Si(CH₃)₂), 18.06 (SiC(CH₃)₃), 19.24 and 23.56 (CH(OSi(CH₃)₂C(CH₃)₃)CH₃ and NHCHCH₃), 25.87 (SiC(CH₃)₃), 27.96 and 28.01 (CH₂CHCO₂C(CH₃)₃) and NHCHCO₂C (CH₃)₃), 33.04 (CH₂CH(OSi(CH₃)₂C(CH₃)₃), CH₃), 37.42 and 39.31 (CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃CH₃ and CH₂(C₆H₄)OH) 43.83 CH₂CHCO₂C(CH₃)₃), 53.48, 55.61 and 55.86 (NHCHCH₃, CH₂CHCO₂C(CH₃)₃ and CH₂CHCO₂C(CH₃)₃), 115.38 and 130.46 (Aromatic CH), 128.00 and 155.20 (2 x Aromatic ipso C), 170.61, 172.24 and 174.82 (NHCHCO₂C(CH₃)₃, CH₂CHCO₂C(CH₃)₃ and CO(NH)), 208.49 (C(O)CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃); m/z (desorption chemical ionisation, NH₃) [651(MH)⁺, 15%], 343[51], 309[100], 253[89], 211[34] and 89[27].

N-((15, 65)-6-Hydroxy-1-carboxylic acid-3-oxo-heptyl)-D-alanyl-D-tyrosine (ent-1c) (trifluoromethane sulphonate salt). The general procedure with $N-((1\underline{S}, 6\underline{S})-6^{-t})$ butyl dimethyl silv loxy-1-^butyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanyl-<u>D</u>-tyrosine ^butylester (37c) (30mg, 0.046mmol.) afforded N-((15, 65)-6-hydroxy-1-carboxylic acid-3-oxo-heptyl)-D-alanyl-D-tyrosine ent-(1c) (trifluoromethane sulphonate salt) as a white powder (19mg, 77%), m.p. 92-94°C; [a]D +6.2° (c 0.37 in H₂O); v_{max} (FT IR, KBr disc) 3382br m (NH and OH), 1780m, 1720s, 1673s, 1616s, 1559s, 1518s, 1448s, 1385s, 1350s, 1200s and 1142s cm⁻¹; δ_H (500MHz; D₂O) 1.16 (3H, d, J 6.5Hz, CH(OH)CH₃), 1.40 (3H, d, J 7Hz, NHCHCH₃), 1.62-1.75 (2H, m, CH2CH(OH)CH3), 2.45-2.52 (2H, m, CH2CH2CH(OH)CH3), 2.66 (1H, dd, J 10.5Hz, J 14Hz, 1 x CH2(C6H4)OH), 3.04-3.89 (3H, m, CH2CHCO2H and CH2CHCO2H), 3.25 (1H, dd, J 5Hz, 14Hz, 1 x CH2(C6H4)OH) 3.78-3.82 (1H, m, CH(OH)CH3), 4.06 (1H, q, J 7Hz, NHCHCH3), (NHCHCO2H obscured by HOD signal) and 6.84 and 7.16 (4H, 2 x d, J 8.5Hz, (C_{6H4})OH); δ_{C} (125MHz; CDCl₃) 16.02 and 22.50 (CH(OH)CH3 and NHCHCH3), 32.26 (CH2CH(OH)CH3), 36.21, 38.79 and 40.95 (CH2CHCO2H, CH2CH2CH(OH)CH3 and CH2(C6H4)OH), 54.85 and 56.00 (3 x NHCHCO), 66.92 (CH(OH)CH₃), 115.90 and 130.87 (Aromatic CH), 128.61 and 154.95 (2 x Aromatic ipso C), 169.57, 170.93 and 174.53 (CH₂CH₂O₂H, NHCH₂O₂H and C(O)NH) and 210.96 (C(O)CH₂CH₂CH(OH)CH₃); m/z (negative ion electrospray) 423[(M-H⁻), 100%].

Synthesis of ent-(1d)

N-((1<u>S</u>, 6<u>R</u>)-6-^tButyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanine benzyl ester. (35d) The general procedure with (2<u>S</u>, 7<u>R</u>)-^tbutyl 2-amino-7-^tbutyldimethylsilyloxy-4-oxo octanoate (33b) (160mg, 0.45mmol.) and (<u>S</u>)-benzyl 2-trifluoromethanesulphonyloxypropanoate followed by flash chromatography (SiO₂, P.E 30-40:ether; 70:30) afforded *N*-((1<u>S</u>, 6<u>R</u>)-6-^tbutyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanine benzyl ester (35d) as a colourless oil (192mg, 82%), (R_f 0.3, P.E 30-40:ether 70:30); [α]_D -4.1° (*c* 0.7 in CHCl₃); v_{max} (FT IR, CDCl₃ solution, NaCl plates) 2957m, 2930m, 2895m, 2857m, 1737br s (C=O), 1473s, 1456m, 1152s, 1063s, 837s and 776s cm⁻¹; δ_H (200MHz; CDCl₃) 0.03 and 0.04 (6H, 2 x s, Si(CH₃)₂), 0.88 (9H, s, SiC(CH₃)₂), 1.12 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.29 (3H, d, J 7Hz, NHCHCH₃), 1.43 (9H, s, CH₂CHCO₂C(CH₃)₃), 1.551.80 (2H, m, CH₂C H (O S i (C H $_3$) $_2$ C (C H $_3$) $_3$) C H $_3$), 2.32-2.65 (2H, m, CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.70-2.88 (2H, m, CH₂CHCO₂C(CH₃)₃), 3.46 (1H, q, J 7Hz, NHCHCH₃), 3.63 (1H, t, J 6Hz, CH₂CHCO₂C(CH₃)₃), 3.73-3.89 (1H, m, CH(OSi(CH₃)₂C(CH₃)₃)), 5.10 and 5.18 (2H, ABq, J 12.5Hz, NHCHCO₂CH₂(C₆H₅) and 7.35 (5H, s, NHCHCO₂CH₂(C₆H₅)); m/z (chemical ionisation, NH₃) 522[(MH)⁺, 100%], 420[12], 288[30], 180[20] and 91[32].

N-((1<u>S</u>, 6<u>R</u>)-6-^tButyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanine. (36d). The general procedure with *N*-((1<u>S</u>, 6<u>R</u>)-6-^tbutyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanine benzyl ester (35d) (120mg, 0.23mmol.) afforded *N*-((1<u>S</u>, 6<u>R</u>)-6-^tbutyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanine (36d) as a white foam (99mg, quant.), m/z (high resolution) Found 432.2781, C₂₁H₄₁NO₆Si+H⁺ requires 432.2781; [α]_D -25.64° (*c* 0.85 in CHCl₃); v_{max} 2958m, 1754s and 1719s (C=O), 1372s, 1257m, 1157m cm⁻¹; δ_H (200MHz; CDCl₃) 0.04 and 0.05 (6H, 2 x s, Si(C<u>H</u>₃)₂), 0.89 (9H, s, SiC(C<u>H</u>₃)₃), 1.13 (3H, d, *J* 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.42 (3H, d, *J* 7Hz, NHCHC<u>H</u>₃), 1.46 (9H, s, CH₂CHCO₂C(C<u>H</u>₃)₃), 1.50-1.82 (2H, m, C<u>H</u>₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.53 (2H, t, *J* 7.5Hz, C<u>H</u>₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 2.85-2.97 (2H, m, C<u>H</u>₂CHCO₂C(CH₃)₃), 3.39 (1H, q, *J* 7Hz, NHC<u>H</u>CH₃), 3.68-3.90 (2H, m, C<u>H</u>(OSi(CH₃)₂C(CH₃)₃) and CH₂C<u>H</u>CO₂C(CH₃)₃); m/z (chemical ionisation, NH₃) 432[(MH)⁺, 33%], 343[55], 211[15] and 90[100].

N-(((1<u>S</u>, 6<u>R</u>)-6-⁴Butyldimethylsilyloxy-1-⁴butyloxycarbonyl-3-oxo-heptyl)-<u>D</u>-alanyl-<u>D</u>tyrosine^t-butylester (37d) The general procedure with N-((6R)-6-t) butyldimethylsilyloxy-1-^tbutyloxycarbonyl-3-oxo-heptyl)-D-alanine (36d) (70mg, 0.16mmol.) and (D)-tyrosine t-butylester followed by flash chromatography (SiO₂, P.E. 30-40:ether; 30:70) afforded N-((15, 6R)-6-tbutyldimethylsilyloxy-1-¹butyloxycarbonyl-3-oxo-heptyl)-D-alanyl-D-tyrosine ¹butylester (37d) as a colourless oil (83mg, 80%), (Rf 0.3, P.E 30-40:ether 30:70); [a]D -19.2° (c 0.6 in CHCl₃); vmax (FT IR, CDCl₃ solution, NaCl plates) 2932m, 1724s (C=O), 1661s, 1516s, 1371s, 1256s, 1156s, 923s and 839s cm⁻¹; δ_H (500MHz; CDCl₃) 0.00, 0.04 and 0.05 (6H, 3 x s, Si(CH3)2), 0.88 (9H, s, SiC(CH3)2), 1.10 (3H, d, J 7Hz, NHCHCH3) 1.12 (3H, d, J 6Hz, CH(OSi(CH₃)₂C(CH₃)₃)CH₃), 1.43 (18H, s, CH₂CHCO₂C(CH₃)₃ and NHCHCO₂C(CH₃)₃), 1.59-1.75 (2H, m, $CH_2CH(OSi(CH_3)_2C(CH_3)_3)CH_3), 2.48$ (2H, m, CH2CH2CH(OSi(CH3)2C(CH3)3)CH3), 2.77 (2H, m, CH2CHCO2C(CH3)3), 2.86 (1H, dd, J 8Hz, J 14Hz, CH2(C6H4)OH), 3.10 (1H, dd, J 5.5Hz, J 14Hz, 1 x CH2(C6H4)OH), 3.21 (1H, q, J 7Hz, NHCHCH3), 3.61 (1H, t, J 6Hz, CH₂CHCO₂C(CH₃)₃), 3.82 (1H, m, CH(OSi(CH₃)₂C(CH₃)₃)), 4.67 (1H, m, NHCH2(C6H4)OH), 6.72 and 7.01 (2 x 2H, 2 x d, 2 x J 8.5Hz, (C6H4)OH) and 7.77 (1H, d, J 8.5Hz, NHCH(CO₂C(CH₃)₃)CH₂(C₆H₄)OH); δ_{C} (125MHz; CDCl₃) -4.72 and -4.41 (Si(<u>CH₃</u>)₂), 18.05 (SiC(CH₃)₃), 19.26 and 23.60 (CH(OSi(CH₃)₂C(CH₃)₃)CH₃ and NHCHCH₃), 25.87 (SiC(CH₃)₃), 27.94 and 27.99 (CH2CHCO2C(CH3)3 and NHCHCO2C(CH3)3), 32.98 (CH2CH(OSi(CH3)2C(CH3)3)CH3), 37.44 and 39.21 (CH2CH2CH(OSi(CH3)2C(CH3)3CH3 and CH2(C6H4)OH) 43.68 CH2CHCO2C(CH3)3), 53.50, 56.60 and 55.87 (NHCHCH₃, CH₂CHCO₂C(CH₃)₃ and CHCH₂(C₆H₄)OH), 67.55 (CH(OSi(CH₃)₂C(CH₃)₃)), 81.80 and 81.89 (NHCHCO₂C(CH₃)₃ and CH₂CHCO₂C(CH₃)₃), 115.37 and 130.41 (Aromatic CH), 127.85 and 155.32 (2 x Aromatic ipso C), 170.63, 172.26 and 174.97 $(NHCHCO_2C(CH_3)_3, CH_2CHCO_2C(CH_3)_3)$ and CO(NH))and 208.64

4760

(C(O)CH₂CH₂CH(OSi(CH₃)₂C(CH₃)₃)CH₃); m/z (desorption chemical ionisation, NH₃) [651(MH)⁺, 10%], 617[10], 343[40], 309[100], 253[90], 229[20], 211[30] and 89[25].

N-((15, 6R)-6-Hydroxy-1-carboxylic acid-3-oxo-heptyl)-D-alanyl-D-tyrosine (ent-1d) (trifluoromethane sulphonate salt). The general procedure with N-((1S, 6R)-6-butyldimethylsilyloxy-1butyloxycarbonyl-3-oxo-heptyl)-D-alanyl-D-tyrosine butylester (37d) (30mg, 0.046mmol.) afforded N-((15. 6R)-6-hydroxy-1-carboxylic acid-3-oxo-heptyl)-D-alanyl-D-tyrosine (ent-1d) (trifluoromethane sulphonate salt) as a white powder, (19mg, 77%), m.p. 89-91°C; $[\alpha]_D$ +2.5° (c 0.37 in H₂O); ν_{max} (FT IR, KBr disc) 3400br m (NH and OH), 1775m, 1719s, 1673s, 1518s, 1448s, 1384s, 1201s and 1141s cm⁻¹; $\delta_{\rm H}$ (500MHz; D₂O) 1.05 (3H, d, J 6.5Hz, CH(OH)CH3), 1.43 (3H, d, J 7Hz, NHCHCH3), 1.52-1.65 (2H, m, CH2CH(OH)CH3), 2.35-2.99 (2H, m, CH2CH2CH(OH)CH3), 2.79 (1H, dd, J 10Hz, J 14Hz, 1 x CH2(C6H4)OH), 2.85-2.98 (3H, m, CH2CHCO2H and CH2CHCO2H), 3.20 (2H, dd, J 4.5Hz, 14Hz, 1 x CH2(C6H4)OH) 3.65-3.68 (1H, m, CH(OH)CH3), 3.94 (1H, q, J 7Hz, NHCHCH3), (NHCHCO2H obscured by HOD signal) and 6.74 and 7.06 (4H, 2 x d, J 8.5Hz, (C₆H₄)OH); δ_C (125MHz; CDCl₃) 16.17 and 22.20 (CH(OH)CH3 and NHCHCH3), 31.96 (CH2CH(OH)CH3), 36.15, 38.68 and 40.77 (CH2CHCO2H, CH2CH2CH(OH)CH3 and CH2(C6H4)OH), 49.30, 54.82, 55.83 (3 x NHCHCO), 67.30 (CH(OH)CH₃), 115.97 and 130.93 (Aromatic CH), 128.84 and 154.97 (2 x Aromatic ipso C), 169.75, 171.50 and 174.76 (CH₂CH<u>C</u>O₂H, NHCH<u>C</u>O₂H and <u>C</u>(O)NH) and 211.05 (<u>C</u>(O)CH₂CH₂CH(OH)CH₃); m/z (negative ion electrospray) 423[(M-H-), 100%].)

REFERENCES AND NOTES

- Ando, T.; Okada, S.; Uchida, I.; Hemmi, K.; Nishikawa, M.; Tsurumi, Y.; Fujie, A.; Yoshida. K.; Okuhara, M. J. Antibiot, 1987, 40, 468.
- Patchett, A.A.; Harris, E.; Tristram, E.W.; Wyvratt, M.J.; Wu, M.T.; Taub, D.; Peterson, E.R.; Ikeler, T.J.; ten Broeke, J.; Payne, L.G.; Ondeyka, D.L.; Thorsett, E.D.; Greenlee, W.J.; Lohr, N.S.; Hoffsommer, R.D.; Joshua, H.; Ruyle, W.V.; Rothrock, J.W.; Aster, S.D.; Maycock, A.L.; Robinson, F.M.; Hirschmann, R. Nature, 1980, 288, 280.
- 3. Wu, M.T.; Douglas, A.W.; Ondeyka, D.L.; Payne, L.G.; Ikeler, T.J.; Joshua, H.; Patchett, A.A.; J. Pharm. Sci., 1985, 74, 352.
- Salzmann, T.N.; Ratcliffe, R.W.; Christensen, B.G.; Bouffard, F.A.J. Am. Chem. Soc., 1980, 102, 6161.
- 5. Birkofer, L.; Schramm, J. Liebigs Ann. Chem., 1975, 2195.
- 6. Labia, R.; Morin, C.Chem. Lett., 1984, 1007.
- 7. Zervas, L.; Winitz, M.; Greenstein, J.P. J. Org. Chem., 1957, 22, 1515.
- 8. Baldwin, J.E.; Adlington, R.M.; Gollins, D.W.; Schofield, C.J. Tetrahedron, 1990, 46, 4733.
- 9. Trost, B.M.; Curran, D.P. Tetrahedron Lett., 1981, 22, 1287.
- 10. Armstrong, A.; Brackenridge, I.; Jackson, R.F.W.; Kirk, J.M. Tetrahedron Lett., 1988, 29, 2483.
- 11. Grehn, L.; Ragnarsson, U. Angew. Chem. Int. Ed. Engl., 1984, 23, 296.
- 12. Sennyey, G.; Barcelo, G.; Senet, J.-P. Tetrahedron Lett., 1986, 27, 5375.
- 13. Babler, J.H. J. Org. Chem., 1987, 52, 4614.

- 14. Corey, E.J.; Chaykovsky, M. J. Am. Chem. Soc., 1965, 87, 1345.
- 15. Dale, J.A.; Dull, D.L.; Mosher, H.S. J. Org. Chem., 1969, 34, 2541.
- Whitten, J.P.; Baron, B.M.; Muench, D.; Miller, F.; White, H.S.; McDonald, I.A., J. Med. Chem., 1990, 33, 2961; Rudisill, D.E.; Whitten, J.P., Synthesis, 1994, 851.
- 17. Lipshutz, B.H.; Parker, D.; Kozlowski, J.A.J. Org. Chem., 1983, 48, 3334.
- 18. Seebach, D.; Pohmakotr, M.; Helv. Chim. Acta, 1979, 62, 843.
- 19. Corey, E.J.; Venkateswarlu, A. J. Am. Chem. Soc., 1972, 94, 6190.
- Escher, R.; Bünning, P. Angew. Chem. Int. Ed. Engl., 1986, 25, 277;
 Vedejs, E.; Engler, D.A.; Mullins, M.J. J. Org. Chem., 1977, 42, 3109.
- 21. Effenberger, F.; Burkard, U.; Willfahrt, J. Angew. Chem. Int. Ed. Engl., 1983, 22, 65.
- Baldwin, J.E.; Adlington, R.M.; Godfrey, C.R.A.; Gollins, D.W.; Smith, M.L.; Russell, A.T. Synlett, 1993, 51.
- 23. For other studies on the synthesis of γ-keto α-amino acids, see Ben-Ishai, D.; Altman, J.; Bernstein, Z.; Peled, N. Tetrahedron, 1978, 34, 467.
 Jackson, R.F.W.; James, K.; Wythes, M.J.; Wood, A. J. Chem. Soc., Chem. Commun., 1989, 644.
 Jackson, R.F.W.; Wood, A.; Wythes, M.J. Synlett, 1990, 735.
 Jackson, R.F.W.; Wishart, N.; Wood, A.; James, K.; Wythes, M.J. J. Org. Chem., 1992, 57, 3397.
 Aubrey, N.; Plante, R.; Déziel, R. Tetrahedron Lett., 1990, 31, 6311.
 Burger, K.; Rudolph, M.; Neuhauser, H. Liebigs Ann. Chem., 1991, 1365.
- 24. For the ring opening of simpler β-lactams by alkyl lithiums to provide β-amino ketones see: Kano, S.; Ebata, T.; S. Shibuya, S. Chem. Pharm. Bull., 1979, 27, 2450

(Received in UK 12 January 1995; revised 15 February 1995; accepted 17 February 1995)