

РП: S0960-894X(96)00325-3

DNA THREADING AGENTS: EFFECT OF SIDECHAIN BULK ON DNA BINDING AND CYTOTOXICITY OF 9-ANILINOACRIDINE-4-CARBOXAMIDES

Mark Searcey, P. Noel Martin, Nicola M. Howarth, Bernie Madden and Laurence P. G. Wakelin^{*} Cancer Drug Discovery, Chemistry Department, University College, Belfield, Dublin 4, Ireland. Fax no. Intl code-353-1-706-1178. E-mail msearcey@ollamh.ucd.ie

Abstract. A series of 9-anilinoacridine-4-carboxamides with cycloalkyl sidechains has been synthesised to study the effect of sidechain bulk on the DNA binding properties and biological activity of these potential threading intercalators. With sidechains larger than cyclohexane the pKa of the acridine is exceptionally low, so that DNA binding is restricted to pHs below 5. The compounds are cytotoxic to human colon carcinoma cells in the μ M range irrespective of their ability to bind to DNA. Copyright © 1996 Elsevier Science Ltd

Compounds which bind to DNA by intercalation are of interest both as potential therapeutic agents and also as probes in the study of ligand-DNA interactions and investigation of nucleic acid structure. Nogalamycin [1] is an antitumour antibiotic which binds to DNA by a threading mode, in which the nogalose sugar is positioned in the minor groove and the fused bicyclic sidechain lies in the major groove¹. A number of other compounds have also been shown to bind by the threading mechanism^{2,3}. Nogalamycin is a potent inhibitor of transcription⁴. Its large lipophilic groups positioned in each groove lead to long residence times on DNA and to profound inhibition of the passage of RNA polymerase. It is therefore possible that synthetic analogues designed to bind in a similar fashion may also inhibit transcription and have potential as antitumour agents. 9-anilinoacridine-4-carboxamides have been shown² to bind to DNA via the threading mechanism, with the 9- and 4-substituents sited in different grooves and the acridine chromophore intercalated between the base pairs. Previous work² with hydrophilic and cationic carboxamide sidechains has shown that these compounds have DNA residence times much longer than those of 9-anilinoacridines unsubstituted at the 4-position. We have now synthesised a series of compounds in which the 4-carboxamide substituent is uncharged and varied systematically to explore the effect of hydrophobic bulk on DNA binding and cytotoxicity. Minimising the charge density of the compounds in this way will lower their affinity for DNA and may promote solid tumour activity through better tumour penetration and tissue distribution. In this communication we describe the synthesis of these compounds, initial DNA binding studies and the variation of biological activity with structure.

Scheme. Synthetic route to 9-anilinoacridines and 9-aminoacridines

R Ŕ' m.p. (°C) %Yield (CH₃)₂NCH₂CH₂ 226-228 2 4-(MeSO₂NH)-2-(CH₃O)PhNH 38 3 Cyclopropyl 4-(MeSO₂NH)-2-(CH₃O)PhNH 106-109 47 218-220 4 Cyclohexyl 4-(MeSO₂NH)-2-(CH₃O)PhNH 77 5 52 Cyclooctyl 4-(MeSO₂NH)-2-(CH₃O)PhNH 130-132 Cyclododecyl 160-164 79 4-(MeSO₂NH)-2-(CH₃O)PhNH 6 7 4-(MeSO₂NH)-2-(CH₃O)PhNH 174-175 50 Adamantyl 8 290-292 83 (CH₃)₂NCH₂CH₂ NH_2 9 111-115 70 Cyclopropyl NH_2 10 Cyclohexyl NH₂ 114-116 71 11 NH_2 206-210 74 Cyclooctyl 189-193 52 12 cyclododecyl NH₂ 79 13 adamantyl NH_2 321-323

Table 1. 9-Anilinoacridines and 9-aminoacridines synthesised.

The compounds synthesised are shown in Table 1. The cycloalkane sidechains were varied in size from cyclopropane, which was expected to have a similar effect on DNA binding and cytotoxicity to the methyl carboxamide, up to cyclododecane and adamantane which might be expected to have large effects on these properties. The rigid adamantyl cage allows comparison with the flexible cyclic structures. The synthesis of the analogous 9-aminoacridine-4-carboxamides permits comparison of threading with non-threading derivatives. The N,N-dimethylaminoethyl-carboxamides [2] and [8] were included as examples of compounds which have a high affinity for DNA and which have been studied previously. All compounds were synthesised as shown in the Scheme. 9-Chloroacridine-4-carbonyl chloride was prepared by reaction of acridone-4-carboxylic acid⁵ with thionyl chloride containing a few drops of DMF. The acid chlorides were then reacted in DMF with amine to give the required 4-carboxamide substituent⁶. Yields of the 9-chloro- derivatives were 40-70%. Reaction of these derivatives in phenol with either dry ammonia or 2-methoxy-4-methanesulphonamidoaniline gave the required acridines in 38-83% yield⁶. An interesting observation in the proton NMR (270MHz) of the 9aminoacridine series is a significant downfield shift in the amide proton resonance compared to the 9-chloroprecursor (1-1.5ppm). This is consistent with significant hydrogen bonding between the pyridinic nitrogen N10 and the amide hydrogen, as described in the crystal structure of N-[2-(N,N-dimethylamino)ethyl]-9aminoacridine-4-carboxamide⁷.

The binding of intercalators to DNA may be studied by a number of spectroscopic means⁸. Acridines have been shown to undergo characteristic bathochromic and hypochromic changes to their UV/visible absorption spectra in the presence of DNA and while this is not a definitive test for intercalation, it indicates that DNA binding is occurring in a similar fashion to other, well studied, derivatives, such as amsacrine and 9-aminoacridine². Values of extinction coefficients at λ max of the anilinoacridines [2]-[7] free in solution, and in the presence of DNA are shown in Table 2.

	Free Drug pH 7		Drug with DNA		Free Drug + SDS	
Compound	λmax(nm)	ε x 10 ⁻³	λmax(nm)	ε x 10 ⁻³	λmax(nm)	ε x 10 ⁻³
2	434	9.25	464	7.42	450	11.9
3	440	9.75	460	7.35	450	11.5
4	440	7.33	460	8.43	450	12.4
5	448	7.70	453	7.99	450	13.6
6	446	7.68	448	7.69	450	14.1
7	452	7.54	452	7.68	450	12.8
8	408	9,94	422	5.25	412	10.9
9	408	10.67	422	5.45	414	11.3
10	408	12.91	422	6.82	414	14.1
11	406	4,15	420	4.68	412	10.9
12	400	3.82	404	4.49	414	8.0
13	406	4.93	418	5.51	414	11.8

 Table 2⁹ UV/visible spectral characteristics of compounds free, in the presence of DNA and in SDS (Sodium dodecylsulphate)

The known threading compound $[2]^2$, the N,N-dimethylaminoethyl derivative, displays bathochromic and hypochromic shifts consistant with intercalation. Amongst the compounds with uncharged sidechains the cyclopropyl derivative [3] also shows bathochromic and hypochromic changes in the presence of DNA suggesting it too binds by intercalation. By contrast, the compounds with bulky sidechains, [5], [6] and [7], appear not to be binding as judged by spectral measurements, since their absorption characteristics are little altered in the presence of DNA. The cyclohexyl compound [4] behaves somewhat enigmatically since λ max shifts 20nm in the presence of DNA to a value typical of that of bound amsacrine-4-carboxamides, but its extinction coefficient is enhanced. The bulky sidechain derivatives [4-7] share the characteristic that their free absorption spectra have unusually low extinction coefficients suggestive of aggregation¹⁰. To explore whether this is the case, absorption spectra were measured in the presence of SDS which is known to disaggregate stacked acridines. Table 2 shows a 18-30% enhancement in the extinction coefficient values for the charged compound [2] as well as for the smaller cycloaliphatic compound [3] in SDS solution. However the larger

neutral derivatives [4-7] have significantly greater increases in ε values (70-85%) in the presence of detergent. This supports the notion that these compounds are substantially aggregated when free in solution.

Table 2 also includes the wavelengths and extinction coefficients of the 9-aminoacridine-4-carboxamides when free and in the presence of DNA or SDS. The established intercalating N,N-dimethylaminoethyl derivative [8] again shows characteristic bathochromic and hypochromic shifts in the presence of DNA. The small-ring carboxamides [9, 10] show similar evidence of binding. However for the larger derivatives [11] and [13], although increases in λ max are seen in the presence of DNA typical of binding, as with the anilino-cyclohexane carboxamide [4], the extinction coefficient actually rises. The cyclododecyl derivative [12] shows no spectral evidence of binding. Again, as in the anilino series, the bulky compounds [11-13] have very low extinction coefficients suggestive of aggregation which was confirmed by the more than 2-fold increase in absorbance values obtained when measured in the presence of SDS.

Studies with CPK molecular models of the compounds that show little or no changes in λ max or ε values [5,6,7,11,12,13] in the presence of DNA, reveal that all appear to be capable of intercalation, there being no obvious steric restraint on fitting the bulkier sidechains into the minor or the major grooves. Thus, it seems likely that the apparent failure of these compounds to intercalate is a consequence of their propensity to aggregate, which may be related to the hydrophobicity of their sidechains and/or to the possibility that their acridine pKa's may be abnormally low. If the compounds are uncharged at pH 6-7, their affinity for DNA can be expected to be minimal and their potential for aggregation high. Examination of the CPK models of compounds [5-7] and [11-13] reveals that the acridine N₁₀ would be sterically hindered by the carboxamide sidechain if there is free rotation about the C₄-C=O bond, suggesting that the pKa of these compounds may be lower than expected. Table 3 shows the spectral properties of the relevant ligands recorded over the pH range 4 to 7.

No.	ε @ pH 7.0	ε@pH 6.0	ε @ pH 5.0	ε@pH 4.0
	(10 ³)	(10^3)	(10 ³)	(10 ³)
5	7.6	8.2	9.9	13.6
6	7.6	8.1	8.1	8.4
7	7.5	7.4	8.3	12.5
11	4.2	4.4	8.9	8.5
12	3.8	3.8	4.6	5.6
13	4.9	7.0	8.3	12.1

Table 3. Effect of pH on Extinction Coefficient of Compounds [5]-[7], [11]-[13]

As the pH is lowered, the extinction coefficients increase to values typical of protonated 9-aminoacridine- and 9anilinoacridine-4-carboxamides. The only exceptions are the cyclododecyl derivatives [6,12] whose spectra are little perturbed. These data indicate that with the exception of the cyclododecyl derivatives, the compounds are charged and not aggregated at pH 4. Repeating the DNA-binding studies at this pH confirmed that, again with the exception of the cyclododecyl derivatives, all the ligands bind as judged by the distinctive bathochromic and hypochromic shifts seen in their absorption spectra in the presence of DNA (Table 4).

Table 4¹¹. UV/visible Spectral Characteristics at pH 4.0 of compounds [5]-[7] and [11]-[13] free and in

Free Drug Drug + DNA Free Drug Drug+DNA				
Compound	λmax/ε	λmax/ε	λmax/ε	λmax/ε
	@ pH 7.0	@ pH 7.0	@ pH 4.0	@ pH 4.0
5	448/7.7	453/8.0	442/13.5	454/9.4
6	446/7.6	448/7.7	448/8.4	452/8.0
7	452/7.5	452/7.7	442/12.5	452/9.4
11	406/4.2	420/4.2	406/8.5	420/4.7
12	400/3.8	404/4.5	404/5.6	416/4.8
13	406/4.9	418/5.5	406/12.1	420/5.7

the presence of DNA

The biological activity of the compounds was measured in the human colon carcinoma cell line HT29/219 and the results are shown in Table 5.

Compound	IC ₅₀ (μM)		
2	0.061		
3	3.6		
4	4.7		
5	5.8		
6	3.3		
7	9.8		
8	0.14		
9	5.8		
10	5.6		
11	5.2		
12	7.7		
13	0.57		

 Table 5¹² Biological Activity of Compounds [2]-[13]

In the threading series, the N,N-dimethylaminoethyl compound [2] has high activity, its IC50 being 2-fold lower than that found for its non-threading analogue [8], which is itself a known inhibitor of topoisomerase II^{13} .

Compounds [3] and [4], which bind to DNA at physiological pH, have much lower activity in this cell line, indicating that these two derivatives are poor topoisomerase II poisons. The inactivity of the cyclopropane derivative is somewhat surprising given that we find the threading N-methyl-4-carboxamide analogue (data not shown) and the N,N-dimethylaminoethyl compound [2] to have IC₅₀ values in the range 0.06 to 0.09 μ M. Clearly, the steric interactions between topoisomerase II, DNA and the ligand sidechain are subtle and unpredicatable for threading 9-anilinoacridine-4-carboxamides. Since compounds [5] to [7] do not bind to DNA at physiological pH their modest activity may be due to interactions with a different target, perhaps with the cell membrane. The activity of the DNA-binding 9-aminoacridine adamantyl derivative [13] is notable since it is 10-fold more active than its alkane homologues. The reasons for this are unclear.

Acknowledgements

We thank Professor W. A. Denny for helpful discussion on the synthesis of the acridines and for the kind donation of the anilino portion of amsacrine. This work was funded by the St. Luke's Institute for Cancer Research and the Irish Health Research Board.

References and Notes.

1) Searle M. S.; Hall, J. G.; Denny, W. A.; Wakelin, L. P. G. Biochemistry, 1988, 27, 4340

2) a) Wakelin, L. P. G.; Atwell, G. J.; Rewcastle, G. W.; Denny, W. A. J. Med. Chem, 1987, 30, 855 b) Wakelin
L. P. G.; Chetcuti, P.; Denny, W. A. J. Med Chem, 1990, 33, 2039 c) Wakelin, L. P. G.; Denny W. A.
Molecular Basis of Specificity in Nucleic Acid Drug Interactions, Pullman B. and Jortner J. Eds.; Kluwer
Academic Publishers: Netherlands, 1990; pp191-206

3) a) Agbandje, M.; Jenkins, T. C.; McKenna, R.; Reszka, A. P.; Neidle S. J. Med Chem., **1992**, 35, 1418 b) Zhao, M; Janda, L.; Nguyen, J.; Strekowski, L.; Wilson, W. D. Biopolymers, **1994**, 34, 61. c) Tanious, F. A., Yen, S-F, Wilson W.D. Biochemistry, **1991**, 30, 1813

4) a) Fok, J.; Waring, M. J. Mol. Pharmacol., 1972, 8, 65 b) Li, L. H.; Kuentzel, S. L.; Murch, L. I.; Pschigoda, L. M.; Krueger, W. C. Cancer Res., 1979, 39, 4816 c) Ennis, H. L. Antimicrob. Agents Chemother., 1981, 19, 657-665

5) Rewcastle, G.W.; Denny, W. A. Synthesis, 1985, 220

6)The structure of all new compounds was verified by mass, ¹H, ¹³C NMR spectroscopy and microanalysis.

7) Hudson, B.D., Kuroda, R., Denny, W. A., Neidle, S. J. Biomol. Struct. Dyn. 1987, 5, 145

8) a)Norden, B.; Kubista, M.; Kurucsev, T. Quart. Rev. Biophysics 1992, 25, 51 b)McFadyen, W. D.; Sotirellis, N.; Denny, W. A.; Wakelin, L. P. G. Biochim. Biophys. Acta. 1990, 1048, 50

9)UV/visible spectra were obtained using a Hewlett Packard Vectra 286/12 at 20°C with 10mm path length length cuvettes. Concentrations of drug (10-20 μ M to minimise aggregation) were added to SHE buffer (I = 0.1) or to DNA (0.5mM) in SHE buffer (I = 0.1) or to 10 mM SDS in 0.1 SHE buffer. The spectra were run between 300 and 600 nm.

10)Denny, W.A, Wakelin, L.P.G; Cancer Res, 1986, 46, 1717

11) These experiments were carried out as per the procedures outlined earlier for pH 7.0, except that in place of 0.1 SHE at pH 7.0, 0.1 sodium acetate buffer was used

12) For each drug treatment the test compound was added to cells at concentrations of 0.01, 0.1, 1.0 and 10μ M. Cells were exposed continually to drug for 72 hours after which time they were trypsinized and counted using a Coulter Counter. IC₅₀ is the concentration of drug required for 50% growth inhibition.

13) Denny, W.A.; Roos, I. A. G.; Wakelin, L. P. G. Anti-Cancer Drug. Des. 1986, 1, 141-147