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Abstract—As a continuation of our work with 1,4,5 substituted imidazole inhibitors of p38a, we report a series of 1-(4-piperidinyl)-
4-(4-fluorophenyl)-5-(2-phenoxy-4-pyrimidinyl) imidazoles related to 7. The compounds have IC50’s for inhibition of p38a ranging
from 6.0 to 650 nM. Statistical analysis of the p38a inhibitor potencies shows a correlation of IC50’s with the electron donating
strength of low molecular weight substituents. # 2001 Elsevier Science Ltd. All rights reserved.

Previously, we described a series of 4-aryl-5-(pyridin-4-yl)
imidazole p38 inhibitors containing substitution at the
imidazole N-1, and exemplified by 1.1 Later, we found
that replacement of the pyridyl group with a variety of
substituted pyrimidinyl rings afforded more potent
inhibitors (2–4).2 Subsequent work seeking to enhance
the in vitro and in vivo potency of this series led to the
development of analogues such as 5, and 6, containing a
piperidinyl at the imidazole N-1.3

Another variation of this general structure is the phe-
noxypyrimidine 7, a potent inhibitor of p38a. For com-
parison, the prototypical p38a inhibitor SB-203580
inhibits the enzyme with an IC50 of 48 nM while the
corresponding value for 7 was 19 nM. In the present
report we describe the effects of substitution on the
phenoxy substituent of 7 on p38a inhibition.

Solution-phase synthesis of 1-(piperidin-4-yl)-4-(4-
fluorophenyl)-5-(2-aryloxypyrimidin-4-yl) imidazoles
proceeded through either the methyl or propyl sulfides
9b,c4 by procedures similar to those described pre-
viously (Scheme 1).5 As depicted, slight modification of
the solution-phase methodology permitted solid-phase
synthesis.6 About half of the compounds in Table 1
were prepared by the resin-based approach.
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It has been reported that p38a inhibition is improved in
a series of 2-(4-fluorophenyl)-3-(pyridin-4-yl) pyrrolo-
pyridines when electron rich substituents were placed on
the core heterocycle pyridine.7 This is likely the result of
increased electron density on the 3-pyridyl nitrogen. Co-
crystallographic studies of the imidazole p38 inhibitors
have previously shown that this pyridyl nitrogen forms
a hydrogen bond to the ATP binding region of p38 and
is a key interaction required for potent inhibition by the
pyridyl imidazole class of p38 inhibitors.8 With this in
mind, it seemed that the potency of the analogues in
Table 1 might correlate with the electron density of
phenoxy substituents.

As a simple test of this idea, the Hammet spara for the
4-phenoxy substituted analogues were plotted against
log IC50.

9 Consistent with the hypothesis, a correlation
was obtained (R=0.64). If a single high molecular
weight analogue (15ao) is omitted, the correlation
improves (R=0.78) (Fig. 1).

This improvement is understandable on the basis of a
comparison of the MacroModel10 structural searches
for 7 and 15ao, in which the low energy binding con-
formations prevalent for 7 differ from those determined
for 15ao (Fig. 2). The latter inhibitor appears to favor
conformations in which the phenoxy p-stacks over the
4-fluorophenyl rather than over the piperidine. It is
likely that the preferred binding conformation is the low
energy conformation for 7 rather than that of 15ao. If
this conformational effect is generally true, then it may
be expected that the IC50’s of analogues containing lar-
ger, aromatic substituents will not correlate with elec-
tronic effects. This prediction is supported by the
observation that the feature which correlates most with
the log(1/IC50) data for all the compounds in Table 1 is
the molecular weight (R=�0.75).

Further analysis was restricted to the low molecular
weight compounds in Table 1 (Mr < 460). A pool of 62
structural features was analyzed using a stochastic opti-
mization method. From these, three structural features
were selected which afforded a multiple linear regression
model which is statistically sound, with R=0.92 and
F=36.6 with the removal of one outlier.11 The para-
meters are the sum of the squared partial atomic
charges (SSAC), the autocorrelated topological distance
three lone-pair electronegativity, and the solvent-acces-
sible surface area of atoms with a negative partial charge.

The sum of the squared partial atomic charges (SSAC)
of the structure is calculated over all the atoms in the
compound,

P
ðq2i Þ. Of the three structural features,

SSAC has the least effect on the IC50’s. The auto-
correlated12,13 electronegativity of lone pair electrons
feature is calculated as:

AENLPð3Þ ¼
X

i;j

PiPj

Scheme 1. (a) Neat, 100 �C; (b) thiourea, NaOMe; (c) alkyl halide (methyl iodide, propyl bromide); (d) Merrifield resin; (e) 3N HCl 23 �C then
Na2CO3; (f) TFA, �; (g) 4-amino-1-Boc-piperidine, CH2Cl2; (h) 11b or 11c, K2CO3, DMF; (i) 11d, TBD, CH2Cl2; (j) oxone, THF, H2O; (k) tetra-
butylammonium oxone, CH2Cl2; (l) MCPBA; (m) ArOH, NaH, THF then TFA then OH�; (n) ArOH, TMS2N

� Na+, THF then TFA.

Figure 1. p38 inhibition correlates with the electron donating strength
of the low Mr 4-phenoxy substituents.
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where Pi is the atom-based lone-pair electronegativity of
atom i. Atoms i and j are atom pairs separated by three
bonds. This feature encodes how the lone-pair electro-
negativity is distributed across the molecule. For this
data, substitution at the 2 position of the phenoxy has a
greater effect on potency than substitution at the 3 or 4
positions. The presence of the partial negative surface
area is likely encoding the presence of electron-with-
drawing groups that, for this data, have larger exposed
surfaces of heteroatoms. The partial negative surface
area has the highest correlation, with the log(1/IC50)
p38 inhibition data (R=�0.76). The solvent-exposed

electron withdrawing groups are on the least potent
inhibitors.

These features represent a correlative relationship that is
not necessarily causal. However, the statistical analysis
seems to support the generalization that small electron
rich substituents ortho to the phenoxy oxygen have the
greatest effect on boosting potency. Conversely, large
electron deficient substituents para to the phenoxy oxy-
gen have a deleterious effect.14 The results can be par-
tially rationalized as the consequence of changes in the
H bond acceptor properties of the pyrimidine N-4.

The best p38a inhibitors in Table 1 have potencies less
than 10 nM. This level of activity is an improvement
over the p38 inhibitors reported by our group up to this
time.15
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Figure 2. Comparison of low energy (MacroModel) structures for 7

(A) and 15ao (B).
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