

Bioorganic & Medicinal Chemistry Letters 11 (2001) 1123–1126

Phenoxypyrimidine Inhibitors of p38α Kinase: Synthesis and Statistical Evaluation of the p38 Inhibitory Potencies of a Series of 1-(Piperidin-4-yl)-4-(4-fluorophenyl)-5-(2-phenoxypyrimidin-4-yl) Imidazoles

Jeffrey C. Boehm,^{a,*} Michael J. Bower,^b Timothy F. Gallagher,^a Shouki Kassis,^c Stephen R. Johnson^d and Jerry L. Adams^a

^aDepartment of Medicinal Chemistry, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA ^bDepartment of Physical and Structural Chemistry, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA

^cDepartment of Bone and Cartilage Biology, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road,

King of Prussia, PA 19406, USA

^dDepartment of Cheminformatics, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA

Received 2 January 2001; accepted 20 February 2001

Abstract—As a continuation of our work with 1,4,5 substituted imidazole inhibitors of p38 α , we report a series of 1-(4-piperidinyl)-4-(4-fluorophenyl)-5-(2-phenoxy-4-pyrimidinyl) imidazoles related to 7. The compounds have IC₅₀'s for inhibition of p38 α ranging from 6.0 to 650 nM. Statistical analysis of the p38 α inhibitor potencies shows a correlation of IC₅₀'s with the electron donating strength of low molecular weight substituents. © 2001 Elsevier Science Ltd. All rights reserved.

Previously, we described a series of 4-aryl-5-(pyridin-4-yl) imidazole p38 inhibitors containing substitution at the imidazole N-1, and exemplified by 1.¹ Later, we found that replacement of the pyridyl group with a variety of substituted pyrimidinyl rings afforded more potent inhibitors (2–4).² Subsequent work seeking to enhance the in vitro and in vivo potency of this series led to the development of analogues such as 5, and 6, containing a piperidinyl at the imidazole N-1.³

Solution-phase synthesis of 1-(piperidin-4-yl)-4-(4fluorophenyl)-5-(2-aryloxypyrimidin-4-yl) imidazoles proceeded through either the methyl or propyl sulfides **9b,c**⁴ by procedures similar to those described previously (Scheme 1).⁵ As depicted, slight modification of the solution-phase methodology permitted solid-phase synthesis.⁶ About half of the compounds in Table 1 were prepared by the resin-based approach.

0960-894X/01/\$ - see front matter \odot 2001 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(01)00163-9

^{*}Corresponding author. Tel.: +1-610-270-6595; fax: +1-610-270-4490; e-mail: jeffrey_c_boehm@sbphrd.com

Scheme 1. (a) Neat, 100 °C; (b) thiourea, NaOMe; (c) alkyl halide (methyl iodide, propyl bromide); (d) Merrifield resin; (e) 3 N HCl $23 ^{\circ}$ C then Na₂CO₃; (f) TFA, Δ ; (g) 4-amino-1-Boc-piperidine, CH₂Cl₂; (h) **11b** or **11c**, K₂CO₃, DMF; (i) **11d**, TBD, CH₂Cl₂; (j) oxone, THF, H₂O; (k) tetrabutylammonium oxone, CH₂Cl₂; (l) MCPBA; (m) ArOH, NaH, THF then TFA then OH⁻; (n) ArOH, TMS₂N⁻ Na⁺, THF then TFA.

It has been reported that $p38\alpha$ inhibition is improved in a series of 2-(4-fluorophenyl)-3-(pyridin-4-yl) pyrrolopyridines when electron rich substituents were placed on the core heterocycle pyridine.⁷ This is likely the result of increased electron density on the 3-pyridyl nitrogen. Cocrystallographic studies of the imidazole p38 inhibitors have previously shown that this pyridyl nitrogen forms a hydrogen bond to the ATP binding region of p38 and is a key interaction required for potent inhibition by the pyridyl imidazole class of p38 inhibitors.⁸ With this in mind, it seemed that the potency of the analogues in Table 1 might correlate with the electron density of phenoxy substituents.

As a simple test of this idea, the Hammet σ_{para} for the 4-phenoxy substituted analogues were plotted against log IC₅₀.⁹ Consistent with the hypothesis, a correlation was obtained (R=0.64). If a single high molecular weight analogue (**15ao**) is omitted, the correlation improves (R=0.78) (Fig. 1).

This improvement is understandable on the basis of a comparison of the MacroModel¹⁰ structural searches for 7 and 15ao, in which the low energy binding conformations prevalent for 7 differ from those determined for 15ao (Fig. 2). The latter inhibitor appears to favor conformations in which the phenoxy π -stacks over the 4-fluorophenyl rather than over the piperidine. It is likely that the preferred binding conformation is the low energy conformation for 7 rather than that of 15ao. If this conformational effect is generally true, then it may be expected that the IC₅₀'s of analogues containing larger, aromatic substituents will not correlate with electronic effects. This prediction is supported by the observation that the feature which correlates most with the $log(1/IC_{50})$ data for all the compounds in Table 1 is the molecular weight (R = -0.75).

Further analysis was restricted to the low molecular weight compounds in Table 1 ($M_r < 460$). A pool of 62 structural features was analyzed using a stochastic optimization method. From these, three structural features were selected which afforded a multiple linear regression model which is statistically sound, with R=0.92 and F=36.6 with the removal of one outlier.¹¹ The parameters are the sum of the squared partial atomic charges (SSAC), the autocorrelated topological distance three lone-pair electronegativity, and the solvent-accessible surface area of atoms with a negative partial charge.

The sum of the squared partial atomic charges (SSAC) of the structure is calculated over all the atoms in the compound, $\sum(q_i^2)$. Of the three structural features, SSAC has the least effect on the IC₅₀'s. The auto-correlated^{12,13} electronegativity of lone pair electrons feature is calculated as:

Figure 1. p38 inhibition correlates with the electron donating strength of the low M_r 4-phenoxy substituents.

 Table 1.
 IC₅₀ for p38 inhibition by phenoxypyrimidines (15)

Compound	R	IC ₅₀ (nM)	M_r	$\sigma_{para}{}^9$
15a	2,4-Dimethyl	6.0	443	
15b	2-Hydroxy	6.6	431	
15c	4-Ethyl	7.4	443	-0.15
15d	2,5-Dimethyl	10.7	443	
15e	2-Fluoro	13.0	433	
15f	4-Hydroxy	14.0	431	-0.37
15g	2-Methyl	15.0	429	
15h	2,3-Dimethyl	15.2	443	
15i	4-Methoxy	15.7	445	-0.27
15j	3-Methoxy	18.7	445	
15k	4-Methyl	19.0	429	-0.17
7	Н	19.2	415	0
151	3-Hydroxy	20.0	431	
15m	3,4-Dimethyl	21.6	443	
15n	3.4-Methylenedioxy	23.0	459	
150	2-Methoxy	25.0	445	
15p	2.6-Dimethyl	34.3	443	
15g	4-Isopropyl	41.0	457	-0.15
15r	3,5-Dimethyl	41.0	443	
15s	3-Carboxamidyl	56.0	458	
15t	4-Phenyl	60.0	491	-0.01
15u	3-N-Methylcarboxamidyl	75.0	472	
15v	4- <i>tert</i> -Butvl	79.0	471	-0.20
15w	4-Carboxy	82.0	459	0.45
15x	4-Carboxyethyl	85.4	487	0.45
15v	4-Carboxamidyl	89.7	458	0.36
15z	3-Fluoro	95.0	433	
15aa	4-Chloro	114	449	0.23
15ab	4-Carboxymethyl	119	473	0.45
15ac	4-Phenoxy	130	507	
15ad	3-Trifluormethyl	132	483	
15ae	2-Acetamido	134	472	
15af	2-Propionamido	151	486	
15ag	3,4-Dichloro	165	484	
15ah	4-Carboxypropyl	174	501	
15ai	4-Cyano	177	440	0.66
15aj	3-N-Isopropylcarboxamidyl	189	500	
15ak	3,4-Difluoro	209	451	
15al	4-Trifluoromethyl	215	483	0.54
15am	4-Fluoro	300	433	0.06
15an	3-N,N-Dimethylcarboxamidyl	312	486	
15ao	4-Benzyloxy	317	521	-0.23
15ap	3-(Piperazin-1-yl)carboxamidyl	406	527	0
15ag	3-(Piperazin-1-yl)carboxamidomethyl	453	541	
15ar	3-(Piperidin-1-vl)carboxamidvl	599	526	
15as	4-Methylsulfonyl	650	493	0.72

where P_i is the atom-based lone-pair electronegativity of atom *i*. Atoms *i* and *j* are atom pairs separated by three bonds. This feature encodes how the lone-pair electronegativity is distributed across the molecule. For this data, substitution at the 2 position of the phenoxy has a greater effect on potency than substitution at the 3 or 4 positions. The presence of the partial negative surface area is likely encoding the presence of electron-withdrawing groups that, for this data, have larger exposed surfaces of heteroatoms. The partial negative surface area has the highest correlation, with the log(1/IC₅₀) p38 inhibition data (R = -0.76). The solvent-exposed

Figure 2. Comparison of low energy (MacroModel) structures for 7 (A) and 15ao (B).

electron withdrawing groups are on the least potent inhibitors.

These features represent a correlative relationship that is not necessarily causal. However, the statistical analysis seems to support the generalization that small electron rich substituents *ortho* to the phenoxy oxygen have the greatest effect on boosting potency. Conversely, large electron deficient substituents *para* to the phenoxy oxygen have a deleterious effect.¹⁴ The results can be partially rationalized as the consequence of changes in the H bond acceptor properties of the pyrimidine N-4.

The best p38 α inhibitors in Table 1 have potencies less than 10 nM. This level of activity is an improvement over the p38 inhibitors reported by our group up to this time.¹⁵

References and Notes

1. Boehm, J. C.; Smietana, J. M.; Sorenson, M. E.; Garigipati, R. S.; Gallagher, T. F.; Sheldrake, P. L.; Bradbeer, J.; Badger, A. M.; Laydon, J. T.; Lee, J. C.; Hillegass, D. E.; Griswold, D. E.; Breton, J. J.; Chabot-Fletcher, M. C.; Adams, J. L. J. Med. Chem. **1996**, *39*, 3929.

2. Adams, J. L.; Boehm, J. C.; Kassis, S.; Gorycki, P. D.; Webb, E. F.; Hall, R.; Sorenson, M.; Lee, J. C.; Ayrton, A.; Griswold, D. E.; Gallagher, T. F. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 3111.

 (a) Jackson, R. J.; Bolognese, B.; Hillegass, L.; Kassis, S.; Adams, J.; Griswold, D. E.; Winkler, J. D. J. Pharmacol. Exp. Ther. 1998, 284, 687. (b) Adams, J. L.; Gallagher, T. F.; Boehm, J. C.; Kassis, S.; Gorycki, P. D.; Gum, R. J.; Webb, E. F.; Sorenson, M. E.; Smietana, J. M.; Garigapati, R. S.; Hall, R. F.; Aryton, A.; Badger, A.; Griswold, D. E.; Young, P. R.; Lee, J. C. Book of Abstracts; XVth International Medicinal Chemistry Symposium; Cambridge, UK, September 1998.
 Bredereck, H.; Sell, R.; Effenberger, F. Chem. Ber. 1964,

4. Bredereck, H.; Sell, K.; Effenberger, F. Chem. Ber. 1964, 97, 3407.

5. Sisko, J.; Kassick, A. J.; Mellinger, M.; Filan, J. J.; Allen, A.; Olsen, M. A. J. Org. Chem. 2000, 65, 1516.

- 6. Gallagher, T. F.; Boehm, J. C.; Osifo, I. K.; Kassis, J.; Lee,
- J. C.; Aryton, A.; Griswold, D. E.; Adams, J. L.; Wang, Z.;

Goldsmith, E. J. *Book of Abstracts*, 215th ACS National Meeting, Dallas, 29 March–2 April 1998.

7. Henry, J. R.; Rupert, K. C.; Dodd, J. H.; Turchi, I. J.; Wadsworth, S. A.; Cavender, D. E.; Fahmy, B.; Olini, G. C.; Davis, J. E.; Pellegrino-Gensey, J. L.; Schafer, P. H.; Siekierka, J. J. J. Med. Chem. **1998**, *41*, 4196.

8. (a) Tong, L.; Pav, S.; White, D. M.; Rogers, S.; Crane, K. M.; Cywin, C. L.; Brown, M. L.; Pargellis, C. A. *Nat. Struct. Biol.* **1997**, *4*, 31116. (b) Wilson, K. P.; McCaffrey, P. G.; Hsiao, K.; Pazhinisamy, S.; Galullo, V.; Bemis, G. W.; Fitzgibbon, M. J.; Caron, P. R.; Murcko, M. A.; Su, M. S. S. *Chem. Biol.* **1997**, *4*, 423. (c) Wang, Z.; Canagarajah, B. J.; Boehm, J. C.; Kassis, S.; Cobb, M. H.; Young, P. R.; Abdel-Meguid, S.; Adams, J. L.; Goldsmith, E. J. *Structure (London)* **1998**, *6*, 117.

9. Hansch, C.; Leo, A.; Hoekman, D. *Exploring QSAR. Hydrophobic, Electronic, and Steric Constants*; American Chemical Society: Washington, DC, 1995.

10. Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. **1990**, 11, 440.

11. The lone outlier in this model is the 2,6-dimethyl substituted analogue (15p). This compound is expected to have high potency based on the inhibition of other 2-methyl substituted analogues (15a, 15d, 15g, and 15h); the model predicts a value in line with this expectation. In actuality, 15p is substantially less potent. We hypothesize that the 2,6-substitution partially occludes the 4-pyrimidinyl N thus making H-bond formation less favorable. As it is the only 2,6-substituted example in this data set, this hypothesis is only weakly supported.

12. Moreauo, G.; Broto, P. Nouv. J. Chim. 1980, 4, 359.

13. Wagener, M.; Sadowski, J.; Gasteiger, J. J. Am. Chem. Soc. 1995, 117, 7769.

14. Of interest is a comparison of 15e, 2-fluoro (13 nM), 15z, 3-fluoro (95 nM), and 15am, 4-fluoro (300 nM). This unexpected steric effect may illustrate steric differences between electron donating conjugative effects and electron withdrawing inductive effects in aryl fluorides.

15. Gallagher, T. F.; Seibel, G. L.; Kassis, S.; Laydon, J. T.; Blumenthal, M. J.; Lee, J. C.; Lee, D.; Boehm, J. C.; Fier-Thompson, S. M.; Abt, J. W.; Sorenson, M. E.; Smietana, J. M.; Hall, R. F.; Garigapati, G. S.; Bender, P. E.; Erhard, K. F.; Krog, A. J.; Hofmann, G. A.; Sheldrake, P. L.; McDonnell, P. C.; Kumar, S.; Young, P. R.; Adams, J. L. *Bioorg. Med. Chem.* **1997**, *5*, 49.