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Introduction

Amides are very common in nature and technology as struc-
tural materials, and exhibit a wide range of biological func-
tionalities.1 Many drugs contain amide moieties, including 
paracetamol, amoxicillin, penicillin, zolpidem, and cefpimi-
zole (Figure 1). Such compounds have attracted the attention 
of scientists because of their important applications in phar-
maceuticals, natural products, agrochemicals, and biologi-
cally active molecules.2 Therefore, it is not surprising that 
significant effort has been directed toward developing syn-
thetic transformations3–5 for the preparation of amides. 
Several classic and successful synthetic approaches, such as 
the Beckmann, Ritter, Ugi, and Staudinger reactions, have 
been developed for the synthesis of amide derivatives. 
Recently, transition-metal-catalyzed reactions have become 
powerful tools for the formation of carbon-nitrogen bonds to 
prepare amides.6–25 Ahmed and colleagues26 reported a 
unique dimethyl sulfoxide (DMSO)-promoted oxidative 
amidation approach for synthesis of α-ketoamides from 
2-oxoaldehydes and aliphatic amines (Scheme 1(a)); Zhang 
and Wang27 and Wan and colleagues28 independently devel-
oped a facile TBHP/I2-promoted oxidative coupling reaction 

of acetophenones with aliphatic amines for the synthesis of 
α-ketoamides (Scheme 1(b)); Kaliappan and colleagues29 
has described a one-pot copper-catalyzed biomimetic route 
to N-heterocyclic amides from methyl ketones and pyridin-
2-amines (Scheme 1(c)). Although numerous investigations 
in this field have been conducted, the development of a new 
strategy is still highly desirable for the construction of α-
ketoamides, which are an important class of amide com-
pounds with the general structure (R1COCONR2).

Very recently, we have developed approaches for the 
formation of C–C, C–N, and C–O bonds to synthesize het-
erocycles.30–38 Our current interest is focused on the 
formation of C–N and C–O bonds in order to synthesize 
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N-(2-pyridyl)-α-ketoamides from methyl ketones and pyri-
din-2-amines (Scheme 1(d)).

Results and discussion

In our initial study, pyridin-2-amine (1a) and acetophe-
none (2a) were chosen as model substrates to optimize 
the reaction conditions. The results are summarized in 
Table 1. In a typical procedure, 1a (0.5 mmol), 2a (0.6 
mmol), Cu(OAc)2 (5 mol%), and AcOH (5 mol%) were 
stirred in DMSO using O2 as the oxidant at 120°C for 8 h. 
Interestingly, the products 3a and 4a were formed in 18% 
and 32% yields, respectively (Table 1, entry 1). We next 
attempted to improve the yield of 3a by using different 
catalysts. Thus, as catalysts CuCl2, Cu(OTf)2, CuI, and 
CuBr were employed (Table 1, entries 2–5). Among 
them, Cu(OAc)2 was the most efficient catalyst. 
Subsequently, our investigation focused on the synthesis 
of 3a by testing various additives. The product 3a was 
formed in 14% and 11% yields by using trifluoroacetate 
(TFA) or tosylic acid (TsOH) (Table 1, entries 6 and 7). 
To our delight, an improved yield was obtained by the 
addition of KI and acetic acid (AcOH) to the reaction 
(Table 1, entry 8). When n-Bu4NI, or n-Bu4NBr with 
AcOH were employed as co-additives, product 3a was 
obtained in 34% and 26% yields, respectively (Table 1, 

entries 9 and 10). Having gained some crucial insight into 
the effect of various additives, further studies were per-
formed to explore the effect of the oxidant. Interestingly, 
TBHP proved to be the best oxidant, and the desired 
product 3a was obtained in moderate yield, whereas other 
oxidants such as DDQ and K2S2O8 disfavored the reac-
tion to varying degrees (Table 1, entries 11–13). The 
effect of solvents was then tested. With the results indi-
cating that toluene was the most effective in comparison 
with DMSO, dioxane, dimethyl formamide (DMF), and 
dimethyl acetamide (DMA) (Table 1, entries 14–17).

Based on the optimized reaction conditions, the substrate 
scope of the oxidative coupling reaction for the synthesis of 
α-ketoamides was then studied. The results are described in 
Table 2. The oxidative coupling reaction of 1a with various 
methyl ketones was initially examined. The reactions were 
smooth under the optimized conditions in most cases and 
gave the α-ketoamides in moderate yields. Meanwhile, prod-
ucts 4a–i were also formed in poor yields. A variety of sub-
stituents, such as 4-Et, 3-Me, 2-Me, 4-nBu, 3,4-dimethoxy, 
3,4-dimethyl, and 4-F, on the benzene ring of the methyl 
ketones were well-tolerated for the synthesis of the 3 com-
pounds under the optimized conditions. However, the byprod-
uct 4e was formed in 43% yield, while only a trace of 3e was 
detected. Subsequently, substituted pyridin-2-amines were 
tested. The product 3j–n were afforded in 53%–73% yields.

Mechanism

To gain insight into the mechanism of the Cu-catalyzed trans-
formation, control experiments were performed. To prove 
that an organic radical species was involved in the reaction, 
we carried out the radical trapping reactions by adding a rad-
ical-trapping reagent (TEMPO) (Scheme 2(a)). The result 
indicated that the reaction had been inhibited and that a radi-
cal process was involved in this Cu-catalyzed strategy. In 
addition, the reaction of 1a with 2-oxo-2-phenylacetaldehyde 
was also carried out and the products were detected by gas 
chromatography–mass spectrometry (GC-MS) analysis. It 
was found that 2-oxo-2-phenylacetaldehyde may form as an 
intermediate in the reaction (Scheme 2(b)). Product 3a’ with 
an 18O in the carbonyl group was not observed in the presence 
of H2

18O (Scheme 2(c)). This result indicated that the oxygen 
source (CON) of the product was O2 rather than H2O.

On the basis of the above experiment results, a plausible 
mechanism is described in Scheme 3. Initially, radical 
intermediate A is generated from 2a via a single electron 
transfer (SET) oxidation in the presence of the Cu(II) spe-
cies and TBHP, which was further oxidized to intermediate 
B. Next, intermediate C is formed by protonation of inter-
mediate B; subsequent nucleophilic attack of 1a gave the 
intermediate D. Finally, intermediate D underwent dehy-
drogenation oxidation to give the product 3a.39,40

Conclusions

In conclusion, we have developed a novel and straightfor-
ward Cu-catalyzed reaction to prepare amides via oxida-
tive coupling of methyl ketones and pyridin-2-amines. 
This strategy represents a simple process for the formation 

Figure 1. Important amides.
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Table 1. Optimization of the reaction conditions.a.

solvent, additive, 8 h

catalyst, oxidant

N

H
N

Ph

O
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N

O

Ph

N NH2
Ph

O
+ +

1a 2a 3a 4a
O

Entry Catalyst Additive Oxidant Solvent Yield (%)b

3a 4a

1 Cu(OAc)2 AcOH O2 DMSO 18 32
2 CuCl2 AcOH O2 DMSO <5 19
3 Cu(OTf)2 AcOH O2 DMSO trace 16
4 CuI AcOH O2 DMSO – –
5 CuBr AcOH O2 DMSO – –
6 Cu(OAc)2 TFA O2 DMSO 14 27
7 Cu(OAc)2 TsOH O2 DMSO 11 30
8 Cu(OAc)2 AcOH/KI O2 DMSO 22 25
9 Cu(OAc)2 AcOH/n-Bu4NI O2 DMSO 34 13
10 Cu(OAc)2 AcOH/n-Bu4NBr O2 DMSO 26 <10
11 Cu(OAc)2 AcOH/n-Bu4NI TBHP DMSO 47 20
12 Cu(OAc)2 AcOH/n-Bu4NI DDQ DMSO trace trace
13 Cu(OAc)2 AcOH/n-Bu4NI K2S2O8 DMSO trace trace
14 Cu(OAc)2 AcOH/n-Bu4NI TBHP toluene 62 11
15 Cu(OAc)2 AcOH/n-Bu4NI TBHP dioxane 33 15
16 Cu(OAc)2 AcOH/n-Bu4NI TBHP DMF 36 18
17 Cu(OAc)2 AcOH/n-Bu4NI TBHP DMA 31 23

aReaction conditions: 1a (0.5 mmol), 2a (0.6 mmol), catalyst (5 mol%), additive (5 mol%), oxidant (2.0 equiv), solvent (2 mL), 120°C, 8 h.
bDetermined by gas chromatography (GC) analysis.

Table 2. Cu-catalyzed synthesis of amides.a
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of C−N and C=O bonds and provides a new route for the 
synthesis of α-ketoamides which are common structural 
motifs in natural products and pharmaceuticals. The mech-
anism was investigated, which suggested that the reaction 
occurs via a radical pathway. Further studies on the appli-
cations and development of amides are underway in our 
laboratory.

Experimental section

Commercially available chemicals were purchased from 
commercial sources and used without further purification. 
Fourier transform infrared spectra (FTIR) were recorded on 
a Perkin-Elmer Spectrum 100 Series with pressed KBr pel-
lets. The 1H and 13C NMR spectra were recorded with a 
Bruker Avance 400 MHz spectrometer (100 MHz for car-
bon). Mass spectra recorded were obtained on an electro-
spray ionization mass spectrometry (ESIMS). Elemental 
analyses were performed with an elemental analyzer. 
GC-MS was obtained using electron ionization. Thin-layer 
chromatography (TLC) was performed using commercially 
prepared 100–400 mesh silica gel plates.

Synthesis of 3a according to the following procedure: A 
25–mL schlenk tube was charged with a stirring bar, and 
added pyridin-2-amine 1a (0.5 mmol, 1.0 equiv), acetophe-
none 2a (0.6 mmol, 1.2 equiv), TBHP (2.0 equiv), 
n-Bu4NI(5 mol%), AcOH (5 mol%), Cu(OAc)2 (5 mol%), 
and toluene (2 mL). The reaction was allowed to stir at 
120°C until the complete consumption of 3a was monitored 
by TLC analysis. The reaction mixture was purified by 
TLC silica gel plate (eluent: petroleum ether: ethyl acetate, 

V: V = 4: 1) and then extracted with EtOAc. The solvents 
were dried in vacuo to afford the pure product.
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