
This article was downloaded by: [University of Cambridge] On: 23 October 2014, At: 07:25 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

Synthesis and Fungicidal Activities of 2-Alkylthio-5phenylmethylene-4H-imidazol-4-ones

Yong Sun ^a & Ming-Wu Ding ^b

^a Yunyang Teachers College, Danjiangkou, P.R. China

^b Central China Normal University, Wuhan, P.R. China

Published online: 27 Oct 2010.

To cite this article: Yong Sun & Ming-Wu Ding (2003) Synthesis and Fungicidal Activities of 2-Alkylthio-5-phenylmethylene-4H-imidazol-4-ones, Phosphorus, Sulfur, and Silicon and the Related Elements, 178:10, 2137-2145, DOI: <u>10.1080/713744555</u>

To link to this article: http://dx.doi.org/10.1080/713744555

PLEASE SCROLL DOWN FOR ARTICLE

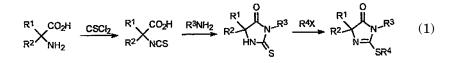
Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

SYNTHESIS AND FUNGICIDAL ACTIVITIES OF 2-ALKYLTHIO-5-PHENYLMETHYLENE-4H-IMIDAZOL-4-ONES

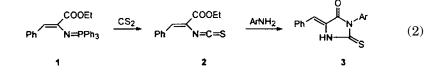
Yong Sun^a and Ming-Wu Ding^b Yunyang Teachers College, Danjiangkou, P.R. China^a and Central China Normal University, Wuhan, P.R. China^b

(Received January 8, 2003; accepted March 21, 2003)


2-Alkylthio-5-phenylmethylidene-4H-imidazol-4-ones **4** were synthesized by S-alkylation of 2-thioxo-3-aryl-4-imidazolidinones **3**, which were obtained via cyclization of isothiocyanate **2** with aromatic primary amines. **3** and **4** exhibited good fungicidal activity against Physalospora piricola.

Keywords: 4H-Imidazol-4-ones; alkylation; aza-Wittig reaction; fungicidal activities; synthesis

4H-Imidazol-4-ones are important heterocycles having biological and pharmaceutical activities,¹⁻³ and some 2-alkylthioimidazolones show significant fungicidal activities.⁴⁻⁶ However, most of the 2-alkylthioimidazolones reported are of the 5,5-disubstituted type and were generally synthesized from corresponding α -amino acetic acid^{6.7} (Eq. 1). Unfortunately, 5-arylmethylidene-2-alkylthioimidazolones cannot be prepared by this general method for the corresponding starting material needed would be unstable vinyl amino acetic acids. Recently, we are interested in the synthesis of biologically active imidazolones via tandem aza-Wittig reaction.⁸⁻¹⁰ Here we report a new efficient synthesis and fungicidal activity of some new 5-arylmethylidene-2-alkylthioimidazolone derivatives from the stable vinyliminophosphorane **1**.


We gratefully acknowledge financial support of this work by the Natural Science Foundation of China (Project No. 20102001).

Address correspondence to Yong Sun, Department of Chemistry, Yunyang Teachers College, Danjiangkou, 442700, P.R. China. E-mail: sunyong6111@sina.com

RESULTS AND DISCUSSION

The easily accessible vinyliminophosphorane 1 reacted with carbon disulfide to give vinyl isothiocyanate 2. The reaction of 2 with aromatic primary amines took place at refluxing acetonitrile in the presence of potassium carbonate to give 2-thioxo-4-imidazolidinones 3 in 75–85% yields (Table I).

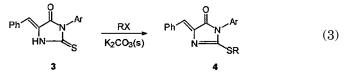
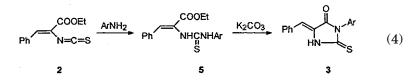


TABLE I Preparation of 2-Thioxo-4-imidazolidinones ${\bf 3}$ and 4H-Imidazol-4-ones ${\bf 4}$

Entry	Ar	RX	Condition	Yield $(\%)^a$	m.p. (°C)
3a	Ph		80°C/2 h	85	207-208
3b	3-Cl-Ph		80°C/2 h	75	244 - 245
4a	Ph	<i>n</i> -BuBr	60°C/4 h	80	121 - 122
4b	Ph	n-PrBr	50°C/6 h	75	125 - 126
4c	Ph	i-PrBr	50°C/10 h	69	146 - 147
4d	Ph	n-C ₆ H ₁₃ Br	50°C/8 h	71	71 - 72
4e	Ph	MeI	r.t./3 h	79	153 - 155
4f	Ph	EtI	r.t./2 h	70	127 - 128
4g	Ph	$PhCH_2Cl$	50°C/3 h	90	184 - 185
4h	Ph	$ClCH_2CN$	50° C/2 h	81	174 - 175
4i	Ph	$ClCH_2COOEt$	50° C/2 h	85	147 - 148
4j	Ph	$ClCH_2CONH_2$	50°C/3 h	74	225 - 227
4k	Ph	$BrCH_2COOMe$	r.t./2 h	75	161 - 163
41	Ph	BrCH(Me)COOEt	50° C/2 h	81	111 - 113
4m	Ph	$BrCH_2COPh$	r.t./2 h	66	202 - 203
4n	3-Cl-Ph	MeI	r.t./5 h	79	157 - 159
4o	3-Cl-Ph	$ClCH_2COOEt$	50° C/2 h	77	139 - 140
4 p	3-Cl-Ph	BrCH(Me)COOEt	50° C/2 h	61	91–93


^aA: Isolated yields of **3a-3b** based on vinyliminophosphorane **1**. B: Purified yields of **4a-4m** based on 2-thioxo-4-imidazolidinone **3a**. C: Purified yields of **4n-4p** based on 2-thioxo-4-imidazolidinone **3b**.

S-Alkylation of **3** with alkyl halides in presence of potassium carbonate provided 2-alkylthio-5-phenylmethylidene-4H-imidazol-4-ones **4** in 61-90% yields. When activated alkylating reagents (RI, BrCH₂COR) were used, the alkylation could be carried out at room temperature. When other alkylating reagents were applied, the alkylation had to be carried out at 50-60°C (Table I).

The structure of **3** and **4** has been characterized spectroscopically. For example, the ¹H NMR spectral data in **4e** show the signals of =CH and -SCH₃ at 7.00 ppm and 2.67 ppm as single absorption respectively. The chemical shift of aryl hydrogens is 8.16–7.27 ppm with multiple absorption. In the IR spectral data of **4e**, the strong stretching peak of imidazolone C=O appears at 1720 cm⁻¹. The stretching vibration of C=C shows relatively strong absorption at about 1633 cm⁻¹ due to a resonance effect. The MS of **4e** shows relatively strong molecule ion peak at m/z 295 with 20% abundance.

The formation of **3** can be rationalized in terms of an initial nucleophilic addition of aromatic primary amines to give the intermediate **5** which directly cyclized to give **3** in presence of solid potassium carbonate (Eq. 4).

The biological activity of **3** and **4** was investigated and the results showed that they exhibited fungicidal activities, especially against *Physalospora piricola*. For example, **4f** and **4m** showed 96% inhibition of *Physalospora piricola* in 50 mg/L (see Table II).

EXPERIMENTAL

Melting points are uncorrected. MS were measured on a HP5988A spectrometer. IR were recorded on a PE-983 infrared spectrometer as KBr pellets with absorption in cm^{-1} . NMR were recorded in CDCl₃ on a

Entry	Fusarium oxysporum	Gibberella zeae	Cercospora beticola sacc	Physalospora piricola	Pellicularia sasakii
3a	30	22	25	75	0
3b	20	17	17	50	14
4a	47	62	66	71	94
4b	75	83	61	92	70
4c	44	83	84	92	78
4d	38	62	61	88	74
4e	50	81	84	79	57
4f	59	79	66	96	26
4g	56	62	61	79	35
4h	50	76	61	79	94
4i	38	64	73	92	78
4j	50	64	55	83	13
4k	63	67	84	92	83
41	34	48	36	83	57
4m	47	98	61	96	35
4n	56	64	86	88	0
4o	63	67	80	92	44
4p	47	76	84	88	70

TABLE II The Fungicidal Activities of 4-Imidazolidinones **3** and 4H-Imidazol-4-ones **4** (50 mg/L, relative inhibition %)

Varian XL-200 spectrometer and resonances are given in ppm (δ) relative to TMS. Elemental analyses were taken on a Perkin-Elmer 2400 CHN Elementary Analysis Instrument. CS₂ is poisonous and a good hood should be used.

Preparation of Vinyliminophosphorane 1

Vinyliminophosphorane 1 was prepared by the Staudinger reaction of vinyl azide and triphenyl phosphine according to the literature report.¹¹ m.p. 148–150°C (Lit.¹¹ m.p. 149°C.)

Preparation of 2-Thioxo-3-aryl-4-imidazolidinones 3

To a solution of vinyliminophosphorane 1^{12} (2.25 g, 5 mmol) in dry methylene chloride (15 mL) was added excess carbon disufide (5 mL). After the reaction mixture was refluxed for 28 h, the solvent was removed under reduced pressure and ether/petroleum ether (1:2, 20 mL) was added to precipitate triphenylphosphine oxide which was removed by filtration. The filtrate was evaporated to give isothiocyanate **2**, which was used directly without further purification. To the solution of **2** in CH₃CN (15 mL) was added ArNH₂ (5 mmol) and solid potassium carbonate (0.05 g). The mixture was stirred for 2 h at refluxing temperature and filtered; the filtrate was then evaporated in vacua and the residue was recrystallized from methylene chloride/petroleum ether to give 2-thioxo-3-aryl-4-imidazolidinones **3**.

2-Thioxo-3-pheny-5-phenylmethylene-4-imidazolidinone (3a)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.99 (s, 1H, N–H), 7.49–7.22 (m, 10H, Ar–H), 6.80 (s, 1H, =CH); IR (cm⁻¹), 3217, 1744, 1645; MS (m/z), 280 (M⁺, 5%), 136 (17%), 117 (100%). Elemental Anal. Calcd. for C₁₆H₁₂N₂OS: C, 68.57; H, 4.28; N, 10.00. Found: C, 68.39; H, 4.17; N, 9.86.

2-Thioxo-3-(3-chloropheny)-5-phenylmethylene-4imidazolidinone (3b)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.84 (s, 1H, N–H), 7.60–7.22 (m, 9H, Ar–H), 6.81 (s, 1H, =CH); IR (cm⁻¹), 3223, 1745, 1642; MS (m/z), 314 (M⁺, 3%), 168 (12%), 117 (53%), 77 (99%), 45 (100%). Elemental Anal. Calcd. for C₁₆H₁₁ClN₂OS: C, 61.05; H, 3.50; N, 8.90. Found: C, 59.97; H, 3.39; N, 9.08.

Preparation of 2-Alkylthio-4H-imidazol-4-ones 4

A mixture of **3** (4 mmol), alkyl halide (5 mmol) and solid potassium carbonate (1.11 g, 8 mmol) in CH₃CN (30 mL) was stirred for 2–10 h at room temperature or 50–60°C and filtered, the filtrate was condensed and the residue was recrystallized from methylene chloride/petroleum ether to give 2-alkylthio-4H-imidazol-4-ones **4**.

2-(n-Butylthio)-3-pheny-5-phenylmethylene-4H-imidazol-4-one (4a)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.17–7.22 (m, 10H, Ar–H), 6.99 (s, 1H, =CH), 3.31 (t, 2H, SCH₂, J = 7.3 Hz), 1.86–1.44 (m, 4H, CH₂CH₂), 0.99 (t, 3H, CH₃, J = 7.3 Hz); IR (cm⁻¹), 1728, 1635; MS (m/z), 337 (M⁺ + 1, 2%), 280 (10%), 136 (37%), 117 (100%). Elemental Anal. Calcd. for C₂₀H₂₀N₂OS: C, 71.40; H, 5.99; N, 8.33. Found: C, 71.36; H, 5.73; N, 8.48.

2-(n-Propylthio)-3-pheny-5-phenylmethylene-4H-imidazol-4-one (4b)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.16–7.21 (m, 10H, Ar–H), 6.99 (s, 1H, =CH), 3.29 (t, 2H, SCH₂, J = 7.3 Hz), 1.92–1.81 (m, 2H, CH₂), 1.08 (t, 3H, CH₃, J = 7.3 Hz); IR (cm⁻¹), 1723, 1635; MS (m/z), 323 (M⁺ + 1, 3%), 280 (10%), 136 (51%), 117 (100%). Elemental Anal.

Calcd. for $C_{19}H_{18}N_2OS$: C, 70.78; H, 5.63; N, 8.69. Found: C, 70.84; H, 5.72; N, 8.57.

2-(i-Propylthio)-3-pheny-5-phenylmethylene-4H-imidazol-4-one (4c)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.15–7.20 (m, 10H, Ar–H), 6.99 (s, 1H, =CH), 4.21–4.14 (m, 1H, SCH, J = 6.8 Hz), 1.50 (d, 6H, 2CH₃, J = 6.8 Hz); IR (cm⁻¹), 1721, 1632; MS (m/z), 323 (M⁺ + 1, 9%), 280 (19%), 136 (43%), 117 (100%). Elemental Anal. Calcd. for C₁₉H₁₈N₂OS: C, 70.78; H, 5.63; N, 8.69. Found: C, 70.60; H, 5.85; N, 8.74.

2-(n-Hexylthio)-3-pheny-5-phenylmethylene-4H-imidazol-4-one (4d)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.16–7.21 (m, 10H, Ar–H), 6.99 (s, 1H, =CH), 3.30 (t, 2H, SCH₂, J = 7.3 Hz), 1.91–0.87 (m, 11H, (CH₂)₄CH₃); IR (cm⁻¹), 1718, 1636; MS (m/z), 365 (M⁺ + 1, 2%), 318 (4%), 281 (18%), 136 (18%), 117 (66%), 32 (100%). Elemental Anal. Calcd. for C₂₂H₂₄N₂OS: C, 72.49; H, 6.64; N, 7.69. Found: C, 72.45; H, 6.77; N, 7.62.

2-Methylthio-3-pheny-5-phenylmethylene-4H-imidazol-4-one (4e)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.16–7.27 (m, 10H, Ar–H), 7.00 (s, 1H, =CH), 2.67 (s, 3H, SCH₃); IR (cm⁻¹), 1720, 1633; MS (m/z), 295 (M⁺ + 1, 20%), 248 (6%), 150 (72%), 135 (54%), 116 (34%), 77 (100%). Elemental Anal. Calcd. for C₁₇H₁₄N₂OS: C, 69.36; H, 4.79; N, 9.52. Found: C, 69.15; H, 4.69; N, 9.63.

2-Ethylthio-3-pheny-5-phenylmethylene-4H-imidazol-4-one (4f)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.16–7.27 (m, 10H, Ar–H), 7.00 (s, 1H, =CH), 3.32 (q, 2H, SCH₂, J = 7.3 Hz), 1.47 (t, 3H, CH₃, J = 7.3 Hz); IR (cm⁻¹), 1721, 1630; MS (m/z), 309 (M⁺ + 1, 10%), 280 (7%), 248 (3%), 204 (7%), 136 (53%), 117 (50%), 32 (100%). Elemental Anal. Calcd. for C₁₈H₁₆N₂OS: C, 70.10; H, 5.23; N, 9.08. Found: C, 70.32; H, 5.18; N, 9.26.

2-Benzylthio-3-pheny-5-phenylmethylene-4H-imidazol-4-one (4g)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.19–7.19 (m, 15H, Ar–H), 7.03 (s, 1H, =CH), 4.55 (s, 2H, SCH₂Ph); IR (cm⁻¹), 1730, 1634; MS (m/z), 371 (M⁺ + 1, 1%), 167 (3%), 116 (8%), 77 (61%), 32 (100%).

Elemental Anal. Calcd. for $C_{23}H_{18}N_2OS$: C, 74.57; H, 4.90; N, 7.56. Found: C, 74.63; H, 4.78; N, 7.74.

2-Cyanomethylthio-3-pheny-5-phenylmethylene-4Himidazol-4-one (4h)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.15–7.21 (m, 10H, Ar–H), 7.11 (s, 1H, =CH), 4.04 (s, 2H, SCH₂CN); IR (cm⁻¹), 2258, 1726, 1627; MS (m/z), 320 (M⁺ + 1, 10%), 280 (4%), 175 (15%), 144 (24%), 135 (100%), 116 (77%). Elemental Anal. Calcd. for C₁₈H₁₃N₃OS: C, 67.69; H, 4.10; N, 13.16. Found: C, 67.62; H, 4.32; N, 13.21.

2-Ethoxycarbonylmethylthio-3-pheny-5-phenylmethylene-4H-imidazol-4-one (4i)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.13–7.22 (m, 10H, Ar–H), 7.02 (s, 1H, =CH), 4.24 (q, 2H, COOCH₂, J = 7.3 Hz), 4.05 (s, 2H, SCH₂COO), 1.30 (t, 3H, CH₃, J = 7.3 Hz); IR (cm⁻¹), 1737, 1722, 1634; MS (m/z), 367 (M⁺ + 1, 9%), 294 (14%), 248 (5%), 135 (37%), 116 (92%), 77 (100%). Elemental Anal. Calcd. for C₂₀H₁₈N₂O₃S: C, 65.56; H, 4.95; N, 7.64. Found: C, 65.43; H, 4.74; N, 7.83.

2-Aminocarbonylmethylthio-3-pheny-5-phenylmethylene-4H-imidazol-4-one (4j)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.08–7.22 (m, 10H, Ar–H), 7.08 (s, 1H, =CH), 5.51 (s, 2H, NH₂), 3.91 (s, 2H, SCH₂CO); IR (cm⁻¹), 3305, 3261, 1709, 1678, 1630; MS (m/z), 338 (M⁺ + 1, 2%), 280 (2%), 193 (2%), 135 (7%), 116 (26%), 77 (32%), 32 (100%). Elemental Anal. Calcd. for C₁₈H₁₅N₃O₂S: C, 64.08; H, 4.48; N, 12.45. Found: C, 64.30; H, 4.37; N, 12.63.

2-Methoxycarbonylmethylthio-3-pheny-5phenylmethylene-4H-imidazol-4-one (4k)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.13–7.22 (m, 10H, Ar–H), 7.02 (s, 1H, =CH), 4.04 (s, 2H, SCH₂COO), 3.79 (s, 3H, CH₃); IR (cm⁻¹), 1737, 1724, 1637; MS (m/z), 353 (M⁺ + 1, 12%), 294 (14%), 248 (4%), 208 (8%), 135 (44%), 116 (75%), 32 (100%). Elemental Anal. Calcd. for C₁₉H₁₆N₂O₃S: C, 64.76; H, 4.58; N, 7.95. Found: C, 64.63; H, 4.56; N, 8.12.

2-Ethoxycarbonyl(methyl)methylthio-3-pheny-5phenylmethylene-4H-imidazol-4-one (4l)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.13–7.21 (m, 10H, Ar–H), 7.00 (s, 1H, =CH), 4.65 (q, 1H, SCHCOO, J = 7.7 Hz), 4.24–4.18

(q, 2H, COOCH₂, J = 7.7 Hz), 1.69 (d, 3H, CH<u>CH₃</u>, J = 7.7 Hz), 1.24 (t, 3H, OCH₂<u>CH₃</u>, J = 7.7 Hz); IR (cm⁻¹), 1739, 1723, 1635; MS (m/z), 381 (M⁺ + 1, 1%), 308 (2%), 280 (2%), 136 (6%), 116 (18%), 44 (100%). Elemental Anal. Calcd. for $C_{21}H_{20}N_2O_3S$: C, 66.30; H, 5.30; N, 7.36. Found: C, 66.17; H, 5.58; N, 7.19.

2-Benzoylmethylthio-3-pheny-5-phenylmethylene-4Himidazol-4-one (4m)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.09–7.03 (m, 15H, Ar–H), 6.96 (s, 1H, =CH), 4.77 (s, 2H, SCH₂COPh); IR (cm⁻¹), 1721, 1694, 1634; MS (m/z), 399 (M⁺ + 1, 1%), 294 (3%), 135 (6%), 116 (12%), 105 (71%), 32 (100%). Elemental Anal. Calcd. for C₂₄H₁₈N₂O₂S: C, 72.34; H, 4.55; N, 7.03. Found: C, 72.38; H, 4.37; N, 7.26.

2-Methylthio-3-(3-chloropheny)-5-phenylmethylene-4Himidazol-4-one (4n)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.15–7.21 (m, 9H, Ar–H), 7.00 (s, 1H, =CH), 2.70 (s, 3H, SCH₃); IR (cm⁻¹), 1716, 1637; MS (m/z), 329 (M⁺ + 1, 2%), 184 (4%), 170 (4%), 116 (6%), 44 (100%). Elemental Anal. Calcd. for C₁₇H₁₃ClN₂OS: C, 62.10; H, 3.98; N, 8.52. Found: C, 62.26; H, 3.74; N, 8.64.

2-Ethoxycarbonylmethylthio-3-(3-chloropheny)-5phenylmethylene-4H-imidazol-4-one (40)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.12–7.19 (m, 9H, Ar–H), 7.02 (s, 1H, =CH), 4.24 (q, 2H, COOCH₂, J = 7.3Hz), 4.05 (s, 2H, SCH₂COO), 1.30 (t, 3H, CH₃, J = 7.3 Hz); IR (cm⁻¹), 1730, 1718, 1636; MS (m/z), 401 (M⁺ + 1, 1%), 328 (1%), 154 (1%), 116 (5%), 31 (100%). Elemental Anal. Calcd. for C₂₀H₁₇ClN₂O₃S: C, 59.92; H, 4.27; N, 6.99. Found: C, 59.73; H, 4.17; N, 7.21.

2-Ethoxycarbonyl(methyl)methylthio-3-(3-chloropheny)-5phenylmethylene-4H-imidazol-4-one (4p)

Yellow crystals, ¹H NMR (CDCl₃, 200 MHz) δ 8.12–7.21 (m, 9H, Ar–H), 7.01 (s, 1H, =CH), 4.65 (q, 1H, SCHCOO, J=7.7 Hz), 4.28–4.13 (q, 2H, COOCH₂, J=7.3 Hz), 1.70 (d, 3H, CH<u>CH₃</u>, J=7.7 Hz), 1.28 (t, 3H, OCH₂<u>CH₃</u>, J=7.3 Hz); IR (cm⁻¹), 1742, 1716, 1636; MS (m/z), 415 (M⁺ + 1, 7%), 342 (15%), 314 (10%), 250 (5%), 144 (25%), 116 (100%). Elemental Anal. Calcd. for C₂₁H₁₉ClN₂O₃S: C, 60.79; H, 4.62; N, 6.75. Found: C, 60.53; H, 4.83; N, 6.67.

REFERENCES

- T. S. Sulkowski, D. P. Strike, and H. M. Elockdah, U.S. 5599829 (1997); Chem. Abstr., 126, 195251h (1997).
- [2] B. L. Pilkington, S. E. Russell, A. J. Whittle, W. R. Mound, M. D. Turnbull, A. M. Kozakiewicz, and W. G. Whittingham, G.B. 2329180 (1999); *Chem. Abstr.*, 131, 44817z (1999).
- [3] M. Gaillard-Kelly, F. Goubet, D. Philibert, and J. G. Teutsch, U.S. 5411981 (1995); Chem. Abstr., 123, 55883d (1995).
- [4] G. Emeric, J. Hutt, and J. Perez, W.O. 9602538 (1996); Chem. Abstr., 125, 10818m (1996).
- [5] J. P. Bascou, A. Gadras, J. Perez, G. Emeric, G. Lacroix, and C. Veyrat, E.P. 668270 (1995); Chem. Abstr., 123, 340128t (1995).
- [6] G. Lacroix, R. Peignier, R. Pepin, J. P. Bascou, J. Perez, and C. Schmitz, U.S. 6002016 (1999); Chem. Abstr., 132, 35698e (2000).
- [7] J. P. Bascou, G. Lacroix, A. Gadras, and J. Perez, E.P. 629616 (1994); Chem. Abstr., 122, 187580s (1995).
- [8] M. W. Ding, Z. F. Xu, Z. J. Liu, and T. J. Wu, Synth. Commun., 31, 1053 (2001).
- [9] M. W. Ding, Z. F. Xu, and T. J. Wu, Synth. Commun., 29, 1171 (1999).
- [10] M. W. Ding, G. P. Zeng, and Z. J. Liu, Phosphorus, Sulfur, and Silicon, 177, 1315 (2002).
- [11] M. Mikolajczyk and P. Pielbasinski, Tetrahedron, 37, 233 (1981).
- [12] P. Molina, A. Pastor, and M. J. Vilaplana, Tetrahedron, 49, 7769 (1993).