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Abstract: Combinatorial cyclizations of imidates and hydrazides with methylene linked R groups, generated from the 

corresponding nitriles and carboxylic acids, respectively, provided a large library of 3,5-dimethylene substituted 1,2,4-

trizoles. 
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 Substituted 1,2,4-triazoles [1] have become very 

important in medicinal chemistry due to their ability to 

display a high degree of structural diversity around a rigid 

core, their ability to act as hydrogen bond donors or 

acceptors, and act as potent agonist or antagonist receptor 

ligands [2-5]. They have also been used as amide bond 

isosteres [6-8] in attempts to increase bioavailability of the 

parent bioactive molecules, and have been incorporated into 

peptides as cis-amide bond surrogates [9].
 
Although several 

different methods for the synthesis of 3,5-disubstituted 1,2,4-

triazoles have been reported [10-19] for the purposes of this 

file enrichment library, we chose to condense imidates with 

hydrazides to form the desired triazoles [20-27], allowing for 

a large degree of functional group compatibility in the set. 

 A diverse set of imidates 3 was synthesized from their 

corresponding nitriles 1 (Fig. 1), via the Pinner reaction [28-

31], followed by neutralization of the resulting imidate HCl 

salt 2 with the trialkylamine ion exchange resin, Amberlyst 

A-21 (Scheme 1). This resin was used in place of saturated 

K2CO3 solution to allow for a simple filtration work-up, so 

as to avoid losing water soluble imidate products during an 

aqueous work-up. 

 A diverse set of hydrazides 6 was then synthesized from 

their corresponding carboxylic acids 4 (Fig. 2), via 
esterification 5 followed by reaction with hydrazine [32] 

(Scheme 2). 

 In order to sample a different region of shape space in 

this library than what is achieved when R groups are directly 

attached to 5 and 6 membered rings, both the nitriles 1 and 

carboxylic acids 4 were chosen, in most cases, to include 

methylene groups between the functional group and the 

diversity element. This spacer allowed for increased side-

chain flexibility and a wider variety of R groups to be 

tolerated in the library by minimizing the impact of the  
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R group’s electronic and steric factors on the core forming 

reaction. As a result, R groups such as the amino acids could 

be additionally elaborated to further increase the complexity 

of the molecules. The target triazoles could also be alkylated 

to obtain a third point of diversity. 
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Fig. (1). Methylene substituted (R1) imidate 3 building blocks. 
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Scheme 1. Synthesis of methylene substituted imidates. 
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Scheme 2. Synthesis of methylene substituted hydrazides. 

 Once the imidates 3 and hydrazides 6 had been 

synthesized, they were thermally condensed in parallel 

sealed vials to first form an in situ acylamidrazone 

intermediate 7 at 50
o
C, followed by increased heating to 

105
o
C to form the target triazole 8 (Scheme 3). Attempts at 
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simply heating to 105
o
C for the entire reaction resulted in 

decreased yields of the target triazole. 

 

 It was necessary to neutralize the imidate salts 2 before 

the condensation step to avoid undesired 1,3,5-oxadiazole 10 

formation [33-35] (Scheme 4). 
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Fig. (2). Methylene substituted (R2) hydrazide building blocks. 
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Scheme 3. Synthesis of 3,5-dimethylene substituted 1,2,4-triazoles. 
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 The target triazoles 8 were labeled with the first letter 

corresponding to the R1 group from the imidate 3 and the 

second corresponding to the R2 group from the hydrazide 6 

(i.e. – triazole 8ad comes from imidate 3a and hydrazide 

6d). In the cases where a product contained a protecting 

group, the de-protected product was labeled with an * (i.e.- 

triazole 8am corresponds to the 3-methyl-5-BOC glycine 

analog, and triazole 8am* corresponds to the de-protected 3-

methyl-5-aminomethyl analog). From the 161 unique 

products synthesized, a representative selection of 3,5-

dimethylene substituted 1,2,4-trizoles 8 are shown in Fig. 

(3). Product yields for successful reactions ranged from 38-

99% after silica column purification, with an average yield 

being 75%. 

 In summary, several new 3,5-dimethylene substituted 

1,2,4-triazoles were synthesized in a parallel fashion, from 

the corresponding nitriles and carboxylic acids, via a two 

stage heating process. This synthesis strategy allowed for the 

successful incorporation of a large, diverse set of functional 

groups into the target molecules that were available for 

further elaboration. Amberlyst A-21 resin proved to be very 

useful in neutralizing imidate HCl salts, in a non-aqueous 

environment. 

EXPERIMENTAL 

 General Procedure A. Formation of Imidate 

hydrochlorides (2) from nitriles (1). A nitrile 1 (0.500 mol) 

and ethanol (29.9 ml, 0.510 mol) were added to a 100 ml 

round bottom flask under N2 and cooled to 0
o
C. Anhydrous 

HCl gas (18.8 g, 0.515 mol) was introduced over 5 minutes. 

The flask was sealed and placed in a 0
o
C freezer where 

crystallization of the imidate HCl took place (1 to 10 days), 

forming a solid cake in the flask. The solid was broken up 

and washed with cold diethyl ether via vacuum filtration, 

then vacuum dried. All products were characterized by 
1
H 

NMR. Representative compounds are shown below. 

 2a. Methyl imidate HCl. Used general procedure A to 

react acetonitrile with ethanol and HCl in 97% yield; 
1
H 

NMR (300 MHz, d-DMSO)  1.35 (t, 3H, J=7.05 Hz), 2.37 

(s, 3H), 4.40 (q, 2H, J=7.05 Hz), 11.05 (br s, 1H), 11.75 (br 

s, 1H). 

 2e. Benzyl imidate HCl. Used general procedure A to 

react benzylcyanide with ethanol and HCl in 92% yield; 
1
H 

NMR (300 MHz, d-DMSO)  1.28 (t, 3H, J=7.05 Hz), 4.01 

(s, 2H), 4.41 (q, 2H, J=7.05 Hz), 7.38 (m, 5H), 11.75 (br s, 

2H). 

 General Procedure B. Formation of Imidates (3) from 

Imidate hydrochlorides (2). An imidate hydrochloride 2 

(31.5 mmol) was added to a 100 ml round bottom flask, 

followed by Amberlyst A-21 resin (9.37 g, 48.4 mmol). 40 

ml of dry acetonitrile was added and the flask was hand-

swirled over 15 minutes. To test reaction completion, a very 

small amount of the solution was added to dilute nitric acid, 

followed by addition of AgNO3. After 5 minutes, the 

solution was checked to make sure no precipitates had 

formed. If not, the solution of the free imidate 3 was filtered 

away from the resin and the resin washed with acetonitrile. 

The solution was diluted to 200 ml for use in the parallel 

synthesis. 

 General Procedure C. Formation of Carboxylic esters 

(5) from carboxylic acids (4). Anhydrous HCl gas was 

introduced to the alcohol (methanol or ethanol) in a 500 ml 

flask. The carboxylic acid 4 was added and stirred at room 

temperature for 1-3 days. Reaction completion was checked 

periodically by NMR. After completion, the reaction mixture 

was evaporated and the resulting oil dissolved in ethyl 

acetate. The solution was then washed with a K2CO3 

solution, dried over MgSO4, evaporated and vacuum dried. 

All products were characterized by 
1
H NMR. Representative 

compounds are shown below. 

 5m. N-Carbobenzoxyglycine ethyl ester. Used general 

procedure C to react carbobenzoxyglycine with ethanol in 

91% yield; 
1
H NMR (300 MHz, CDCl3)  1.31 (t, 3H, 

J=7.55 Hz), 4.01 (m, 2H), 4.24 (q, 2H, J=7.65 Hz), 5.13 (s, 

2H), 5.36 (br s, 1H), 7.40-7.43 (m, 5H). 

 5s. N-Carbobenzoxyglutamine methyl ester. Used 

general procedure C to react 3-U with methanol in 72% 

yield; 
1
H NMR (300 MHz, d-DMSO)  1.65-2.03 (m, 2H), 

2.16 (m, 2H), 3.64 (s, 3H), 4.06 (m, 1H), 5.04 (s, 2H), 6.79 

(br s, 2H), 7.36 (m, 5H), 7.77 (d, 1H, J=9.66 Hz). 

 General Procedure D. Formation of Hydrazides (6) 

from carboxylic esters (5). Anhydrous hydrazine was added 

to a solution of the ester 4 in ethanol at 0
o
C and the reaction 

allowed to warm to room temperature while stirring. In most 

cases, a white precipitate formed, causing the reaction 

mixture to solidify. A few reaction had to be refluxed before 

the precipitate formed. The precipitate was collected, washed 

with ether and vacuum dried. All products were 
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Scheme 4. Undesired Formation of 1,3,5-oxadiazoles from imidate HCl salts 2. 
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characterized by 
1
H NMR. Representative compounds are 

shown below. 

 6c. Isovaleroic hydrazide. Used general procedure D to 

react ethyl isovalerate with hydrazine at reflux in 40% yield; 
1
H NMR (300 MHz, d-DMSO)  0.86 (d, 6H, J=6.44 Hz), 

1.89, (d, 2H, J=6.25 Hz), 1.94 (m, 1H), 4.17 (br s, 2H), 8.93 

(br s, 1H). 

 6d. Ethyl(methylthio)acetic hydrazide. Used general 

procedure D to react ethyl(methylthio)acetate with hydrazine 
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Fig. (3). 3,5-Dimethylene substituted 1,2,4-triazoles. 
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at reflux in 80% yield; 
1
H NMR (300 MHz, d-DMSO)  2.10 

(s, 3H), 3.00 (s, 2H), 4.26 (br s, 2H), 9.07 (br s, 1H). 

 General Procedure E. Formation of 3,5-dimethylene 

1,2,4-triazoles (8) from Imidates (3) and hydrazides (6). A 

solution of free imidate 3 (1.5 mmol) in 9.5 ml acetonitrile 

was added to a vial containing a hydrazide 6 (1.5 mmol). 

The resulting solution was stirred and heated in a sealed vial 

to 50
o
C in a Pierce reactor overnight. The reaction was then 

heated to 105
o
C for an additional 24 hours, except for any 

reaction containing hydrazide 6l, to which 5 ml of Hunig’s 

base and excess K2CO3 was added and heated for 6 hours. 

The reaction was cooled and evaporated. A silica column 

was done to afford pure dimethylene triazole 8. All products 

were fully characterized by GCMS and 
1
H NMR. 

Representative compounds are shown below. 

 8ab. 3-Methyl-5-ethyl-1H-1,2,4-triazole. Used general 

procedure E to react imidate 3a with hydrazide 6b in 71% yield; 
1
H NMR (300 MHz, CDCl3)  1.38 (t, 3H, J=7.55 Hz), 2.48 (s, 

3H), 2.81 (q, 2H, J=7.65 Hz), 6.83 (br s, 1H). GCMS 3.14 min, 

m/z 111, calcd. 111.17. 

 8ah. 3-Methyl-5-carbomethoxymethyl-1H-1,2,4-triazole. 

Used general procedure E to react imidate 3a with hydrazide 6h 

84% yield; 
1
H NMR (300 MHz, CDCl3)  2.54 (s, 3H), 3.80 (s, 

3H), 3.94 (s, 2H), 4.31 (br s, 1H). GCMS 4.76 min, m/z 155, 

calcd. 155.16. 

 8bj. 3-Ethyl-5-hydroxymethyl-1H-1,2,4-triazole. Used 

general procedure E to react imidate 3b with hydrazide 6j in 

82% yield; 
1
H NMR (300 MHz, d-DMSO)  1.37 (t, 3H, J=7.55 

Hz), 2.83 (q, 2H, J=7.65 Hz), 4.81 (s, 2H). GCMS 5.59 min, m/z 

127, calcd. 127.15. 

 8bm*. 3-Ethyl-5-aminomethyl-1H-1,2,4-triazole. Used 

general procedure E to react imidate 3b with hydrazide 6m, 

followed by deprotection of the BOC with TFA in 75% overall 

yield; 
1
H NMR (300 MHz, d-DMSO)  1.24 (t, 3H, J=7.55 Hz), 

2.74 (q, 2H, J=7.65 Hz), 4.04 (m, 2H), 8.38 (br s, 2H). 

 8ci. 3-Isovaleryl-5-cyanomethyl-1H-1,2,4-triazole. Used 

general procedure E to react imidate 3c with hydrazide 6i in 

80% yield; 
1
H NMR (300 MHz, CDCl3)  1.01 (d, 6H, J=6.65 

Hz), 2.16 (m, 1H), 2.72 (d, 2H, J=7.25 Hz), 3.92 (s, 2H). GCMS 

6.26 min, m/z 164, calcd. 164.20. 

 8ct. 3-Isovaleryl-5-(N-methylene-1,2,4-triazole)-1H-1,2,4-

triazole. Used general procedure E to react imidate 3c with 

hydrazide 6t in 81% yield; 
1
H NMR (300 MHz, d-DMSO)  

0.87 (d, 6H, J=6.65 Hz), 1.95 (m, 1H), 2.51 (d, 2H, J=7.25 Hz), 

5.40 (s, 2H), 7.95 (s, 1H), 8.58 (s, 1H). GCMS 7.78 min, m/z 

206, calcd. 206.25. 

 8de. 3-(Methylthio)methyl-5-benzyl-1H-1,2,4-triazole. 

Used general procedure E to react imidate 3d with hydrazide 6e 

in 69% yield; 
1
H NMR (300 MHz, CDCl3)  2.16 (s, 3H), 3.78 

(s, 2H), 4.15 (s, 2H), 7.32 (m, 5H). GCMS 8.46 min, m/z 219, 

calcd. 219.30. 

 8el. 3-Benzyl-5-(di-t-butyl phosphonomethyl)-1H-1,2,4-

triazole. Used general procedure E to react imidate 3e with 

hydrazide 6l in 51% yield; 
1
H NMR (300 MHz, CDCl3)  1.46 

(s, 18H), 3.28 (d, 2H, J=20.75 Hz), 4.09 (s, 2H), 7.31 (m, 5H). 
19

F NMR (d-DMSO)  14.55 (s). 

 8fa. 3-(4-Hydroxybenzyl)-5-methyl-1H-1,2,4-triazole. 

Used general procedure E to react imidate 3f with hydrazide 6a 

in quantitative yield; 
1
H NMR (300 MHz, d-DMSO)  2.19, 

2.25 (s, 3H), 3.72, 3.84 (s, 2H), 6.67 (m, 2H), 7.05 (d, 2H, 

J=8.25 Hz), 9.14, 9.25 (s, 1H). GCMS 8.85 min, m/z 189, calcd. 

189.27. 

 8gg. 3,5-Dimethoxymethyl-1H-1,2,4-triazole. Used 

general procedure E to react imidate 3g with hydrazide 6g in 

66% yield; 
1
H NMR (300 MHz, CDCl3)  3.52 (s, 6H), 4.65 (s, 

4H). GCMS 4.94 min, m/z 156, calcd. 157.18. 

 8hs. 3-Carbomethoxymethyl-5-(1-(N-benzylcarboxyl-

amino)-3-carboxamide-propyl)-1H-1,2,4-triazole. Used 

general procedure E to react imidate 3h with hydrazide 6s in 

95% yield; 
1
H NMR (300 MHz, CDCl3)  2.30 (m, 2H), 3.79 (s, 

3H), 3.89 (m, 2H), 3.91 (m, 2H), 5.02 (m, 1H), 5.09 (s, 2H), 

5.51 (m, 2H), 6.05 (m, 1H), 7.35 (m, 5H). 

 8iu. Bis(3-acetamide-5-thiomethyl-1H-1,2,4-triazole). 

Used general procedure E to react imidate 3i with hydrazide 

6u in 38% yield; 
1
H NMR (300 MHz, d-DMSO)  3.38 (s, 

4H), 3.92 (s, 4H), 7.15, 7.56 (br s, 4H). 
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