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Abstract: A practical and environmentally friendly protocol for the selective oxidation of aryl 

olefins to arylethanone derivatives by using a Cu(I) catalyst and tert-butyl hydroperoxide (TBHP) 

has been developed. A series of 2-tert-butoxy-1-arylethanones were obtained in moderate to good 

yields under mild conditions with high selectivity. In this method, TBHP acts not only as an 

oxidant but also as the tert-butoxy and carbonyl oxygen sources. This enables one-step 

oxidation/tert-butoxylation. Various allyl peroxides were also synthesized from allyl substrates.

Alkenes are abundant organic molecules and represent a useful chemical feedstock. They are 

extensively used in organic synthesis because of their simplicity, low cost, ready availability, and 

unique reactivity profiles. Methods for their direct, selective functionalization are attractive as an 

important approach to assembling more complex molecular structures.1 With the renaissance of radical 

chemistry, the radical three-component difunctionalization of alkenes is attracting increasing attention 

and has been intensively studied in recent years.2-3
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Scheme 1. Difuctionlization of Alkenes with TBHP.
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Tert-butyl hydroperoxide (TBHP) is a commercially available, inexpensive, and versatile reagent, 

with roles such as an oxidant,4 radical initiator,5 and precursor of the tert-butoxy6 and tert-butyl 

peroxide7 radicals. For example, in 2012, Wang’s group reported a novel and efficient 

TBHP/I2-promoted oxidative coupling reaction of acetophenones with amines for the synthesis of 

α-ketoamides.4f Recently, Bao et al. developed the Cu-catalyzed radical acyl-cyanation of alkenes with 

aldehydes, by using TBHP as an initiator, to access various unsymmetrical β-cyano ketones with 

various functional groups.5a In 2019, Yang and co-workers reported a convenient Fe-catalyzed 

decarbonylative alkylation–peroxidation of alkenes with aliphatic aldehydes and TBHP to provide 

chain-elongated peroxides.7c Syntheses of aldehydes,8 styrene epoxides,9 and acidic compounds10 

through the selective oxidation of styrenes by peroxides in the presence of transition-metal catalysts 

have been well documented. However, to the best of our knowledge, relatively few studies have 

focused on the oxidation/tert-butoxylation of styrenes. Here, as a continuation of our work on 
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TBHP-mediated oxidative coupling reactions (Scheme 1a–c),11 we report a highly efficient and general 

strategy for the preparation of various 2-tert-butoxy-1-arylethanones via Cu(I)-catalyzed 

oxidation/tert-butoxylation of alkenes with TBHP under mild conditions (Scheme 1d). Notably, the 

oxygen atom in the newly formed carbonyl moiety is derived from TBHP.

Table 1. Optimization Studies a

Catalyst (10 mol%), TBHP

Solvent, R.T.

O
OtBu

1a 2a

Entry Catalyst Solvent Time /h Yieldb /%
1 CuCl DMSO 12 26
2 CuCl DMSO 24 45
3 CuI DMSO 24 32
4 CuBr DMSO 24 20
5 Cu2O DMSO 24 28
6 CuBr2 DMSO 24 trace
7 CuCl2 DMSO 24 trace
8 CuO DMSO 24 trace
9 Cu(OAc)2 DMSO 24 trace
10 CuCl Hexane 24 25
11 CuCl Dioxane 24 68
12 CuCl DMF 24 trace
13 CuCl DCE 24 77
14c CuCl DCE 24 36
15d CuCl DCE 24 77
16e CuCl DCE 24 77
17 - DCE 36 trace
18f CuCl DCE 24 77
19g CuCl DCE 24 77

a Reaction conditions: 1a (0.5 mmol), TBHP (2.0 equiv.), solvent (2.0 mL), catalyst (10 mol%). b GC 
yield. c TBHP: 1.0 equiv. d TBHP: 3.0 equiv. e CuCl: 50 mol%. f O2 (balloon). g N2 (balloon).

Initially, we selected styrene 1a as a model substrate for optimization of the reaction conditions 

(Table 1). First, the reaction was performed in the presence of CuCl (10 mol%) in combination with 

TBHP (2.0 equiv) in DMSO at room temperature for 12 h. The desired product 2a was obtained in 26% 

yield; most of the starting material was recovered (entry 1). Prolonging the reaction time to 24 h 
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increased the yield of 2a to 45% (entry 2). We next explored the use of various Cu salts for this 

transformation (entries 3–9). The results indicate that the type of metal catalyst significantly affects the 

reaction yield and CuCl is a better choice than other Cu salts. In the next optimization step, we 

examined the effects of the solvent by screening various reaction media, namely hexane, dioxane, DMF, 

and DCE. The results show that the conversion is sensitive to the solvent; DCE is the best solvent 

because the other solvents gave smaller yields of the expected product 2a (entries 10–13). A lower 

yield was obtained when the TBHP loading was decreased to 1.0 equiv (entry 14). However, increasing 

the amount of TBHP or CuCl had no obvious effect on the outcome (entries 15 and 16). It is worth 

noting that in the absence of the CuCl catalyst only a trace amount of 2-tert-1-butoxyphenylethanone 

(2a) was formed and the starting material remained almost intact (entry 17). The yields of the desired 

product 2a were the same under an O2 or N2 atmosphere (entries 18 and 19).

With the optimum conditions in hand (Table 1, entry 13), we then systematically studied the 

generality and limitations of this oxidation/tert-butoxylation reaction; the results are summarized in 

Table 2. Groups with different electronic properties at the para position of the aromatic ring were 

examined. All the reactions proceeded smoothly to give the desired products in moderate to good 

yields (2b–k). The reactivities of phenyl rings with strongly electron-withdrawing substituents (–CF3, 

–NO2) were higher than those of phenyl rings with electron-donating substituents. This suggests that 

electron-withdrawing groups enhance the reaction efficiency (2j and 2k). Substrates with substituents 

at the ortho or meta positions were also compatible with this mild Cu-catalyzed protocol. The 

corresponding products were obtained in 60%–73% yields (2l–p).
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Table 2. Scope of the Substratesa

DCE (2 mL), R.T., 24 h
CuCl (10 mol%), TBHP (2.0 equiv.)

Ar

1 2
Ar

O
OtBu

O
OtBu

2a, 72%

O
OtBu

2d, 69%

O
OtBu

2n, 70%

O
OtBu

tBu

2e, 67%

O
OtBu

Ph

2f, 64%

O
OtBu

2q, 63%

2b, 62%

O
OtBuH3CO

2m, 60%
O

OtBuCl

2p, 69%

O
OtBu

F

2h, 73%

O
OtBuF

2o, 73%

F O
OtBu

2l, 70%

O
OtBu

Cl

2i, 72%

O

Cl

OtBu

2g, 65%

F3C

OtBu
O

2j, 85%

OtBu
O

O2N

2k, 82%

OtBu
O

S

2u, 89%

O
OtBu

AcO
2c, 63%

O
OtBu

tBuO

OtBu

OtBu
O

O

Ph

2t, n.d.c

2r, R = CH3, n.d.c

2s, R = n-Pr, n.d.c

R

a Unless otherwise specified, all reactions were carried out on 1.0 mmol scale for 24 h. b Isolated yield. 
c A complex system was obtained, and no desired product was detected.
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Notably, the position of the substituent did not affect the reaction productivities and yields (2h, 2l, 

and 2o). 2-Naphthyl-substituted 1q was also tolerated in the present system, and the 

oxidation/tert-butoxylation product 2q was obtained in reasonable yield. Disubstituted alkenes are not 

good candidates for this Cu-catalyzed reaction. 1r–1t cound not provided the desired products under 

the optimum conditions, and complex reaction systems were formed. The phenyl ring in 1a can be 

replaced by a heterocycle (thienyl, 1u) to yield 2u.

Scheme 2. Explore the Substrate Scope.
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To further expand the substrate scope, we investigated the use of alkenes with a terminal alkyl 

group, i.e., 3a–d, as substrates for this oxidation/tert-butoxylation reaction under the standard 

conditions. These alkenes proved to be poor substrates for this transformation. When the reactions were 

performed at 70 °C, these substrates failed to provide the desired products, and the allyl peroxide 

products 5a–d were obtained as the main products (Scheme 2b–e). Organic peroxides not only serve as 

key reactive intermediates in diverse organic synthetic reactions such as Kornblum–DeLaMare 

reactions12 and epoxidations,13-14 but also have important roles in cell damage, food safety, and as 

therapeutic drugs in medicinal chemistry. We investigated the need to use CuCl and found that its 

presence was unnecessary (Scheme 2). The reactions of other internal or terminal alkenes, i.e., 

(E)-non-4-ene (3e) and oct-1-ene (3f), were also examined under these conditions, but the reactions 

were sluggish and no major products were formed.

Scheme 3. Control Experiments.

Ph
CuCl, DCE, R. T. Ph

O
OtBu (a)tBuOOH

TEMPO (4.0 eq.)

2a: n.d.

Ph DCE, R. T. Ph

O
OtBu (b)tBuOOH

2a: n.d.

O CuCl

Several control experiments were conducted to clarify the reaction mechanism (Scheme 3). The 

reaction was completely inhibited by TEMPO (4.0 equiv), which suggests that a radical pathway is 

probably involved (Scheme 3a). When acetophenone was treated with TBHP under the standard 

conditions, 2a was not detected (Scheme 3b).
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Scheme 4. Possible Mechanism for Cu(I)-Catalyzed Oxidation/tert-Butoxylation Transformation.

Cu(I)
tBuO

Cu(I)

Cu(II)tBuOOH

Ph
tBuO

Ph
OtBu

Cu(I)

Ph
OtBu

Ph
OtBu

OH
TBHP

Ph
OtBu

O

1a

2a

B C

D

path A:

path B:

OH

Cu(I) tBuO Cu(II)tBuOOH OH

Cu(II) OHtBuOOH tBuOO Cu(I) H2O

Ph
tBuO

Ph
OtBu

B
Ph

OtBu
OOtBu

VI

Kornbium-DeLaMare
rearrangement

Ph
OtBu

O

2a

A

Cu(II) OH

A

E

F1a

H2O

Based on the these results and literature reports,4-7,11 a possible mechanism for this Cu(I)-catalyzed 

oxidation/tert-butoxylation transformation, with 1a as an example, is shown in Scheme 4. Initially, 

TBHP is reduced by low-valent Cu(I) to generate a tert-butoxy radical A and a Cu(II) complex.14-15 

Radical addition to styrene then produces benzyl radical B, which undergoes direct oxidation to C by 

Cu(II),16 along with regeneration of Cu(I) for the next catalytic cycle. Next, species C is trapped by 

H2O17 to form species D, which is further oxidized by TBHP to give the final product 2a (path a).18 

Another possible mechanism, namely path b, cannot be excluded. First, alkyloxy radical A and 

alkylperoxy radical E are generated via a series of steps. Benzyl radical B is then obtained via a radical 

addition process and is selectively trapped by the tBuOO. radical to afford the tert-butyl peroxide 
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intermediate F.19 In the final step, F undergoes a Kornblum–DeLaMare rearrangement12 to give the 

desired product 2a.

In conclusion, we have developed an efficient and general method for the highly selective 

construction of 2-tert-1-butoxyarylethanone frameworks via a Cu(I)-catalyzed 

oxidation/tert-butoxylation reaction. This synthetic method has many advantages such as simple 

starting materials, green reaction conditions, and high selectivity, and is expected to provide a valuable 

alternative protocol in appropriate areas. In this method, TBHP acts not only as the oxidant but also as 

the tert-butoxy and carbonyl oxygen sources for this oxidation/tert-butoxylation transformation. 

Various allyl peroxides were also synthesized from allyl substrates. Further investigations into the 

difunctionalization of alkenes with TBHP are currently underway in our laboratory.

EXPERIMENTAL SECTION

General Information. All the reactions were carried out at room temperature for 24 h in a 

round-bottom flask equipped with a magnetic stir bar. Unless otherwise stated, all reagents and 

solvents were purchased from commercial suppliers and used without further purification. 1H 

NMR and 13C NMR spectra were recorded on a 400 MHz spectrometer in solutions of CDCl3 

using tetramethylsilane as the internal standard; δ values are given in ppm, and coupling constants 

(J) in Hz. Mass spectra were obtained from high resolution ESI mass spectrometer. HR-MS were 

obtained on a Q-TOF micro spectrometer.

Typical procedure for the synthesis of 2a: 2-tert-butoxy-1-phenylethanone (2a). A mixture of 

styrene (1a) (104 mg, 1.0 mmol), CuCl (9.8 mg, 0.1 mmol), TBHP (258 mg, 2.0 mmol, 70% in 

water), and 1,2-dichloroethane (DCE) (2.0 mL) was added successively in a round-bottom flask, 
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and the resulting solution was stirred for 24 h at room temperature. The mixture was purified by 

column chromatography on silica gel to afford product 2a with PE/EA = 30:1 as the eluent.

2-tert-butoxy-1-phenylethanone (2a) 20

O
OtBu

Yield: 72% (138 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.97 (d, J = 8.4 Hz, 

2H), 7.57 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.2 Hz, 2H), 4.66 (s, 2H), 1.29 (s, 9H); 13C NMR {1H} 

(CDCl3, 100 Hz) δ 197.2, 135.4, 133.1, 128.5, 128.1, 74.6, 66.3, 27.4.

2-tert-butoxy-1-(4-tert-butoxyphenyl)ethanone (2b)

O
OtBu

tBuO

Yield: 62% (163 mg); a pale yellow oil liquids;  1H NMR (CDCl3, 400 Hz) δ 7.93 (d, J = 7.6 Hz, 

2H), 7.03 (d, J = 7.6 Hz, 2H), 4.61 (s, 2H), 1.42 (s, 9H), 1.28 (s, 9H); 13C NMR {1H} (CDCl3, 100 

Hz) δ 196.4, 160.4, 129.9, 129.7, 122.2, 74.5, 66.2, 28.9, 27.4; HRMS (ESI): calcd for 

C16H24NaO3: [M+Na+] 287.1612, found 287.1619.

4-(2-tert-butoxyacetyl)phenyl acetate (2c)

O
OtBu

AcO

Yield: 63% (157 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 8.03 (d, J = 7.6 Hz, 

2H), 7.20 (d, J = 7.6 Hz, 2H), 4.62 (s, 2H), 2.33 (s, 9H), 1.28 (s, 9H); 13C NMR {1H} (CDCl3, 100 

Hz) δ 196.0, 168.8, 154.8, 133.0, 129.9, 121.7, 74.7, 66.4, 27.4, 21.1; HRMS (ESI): calcd for 

C14H18NaO4: [M+Na+] 273.1097, found 273.1099.

2-tert-butoxy-1-p-tolylethanone (2d)

O
OtBu

Yield: 69% (142 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.88 (d, J = 8.4 Hz, 
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2H), 7.26 (d, J = 8.0 Hz, 2H), 4.66 (s, 2H), 2.42 (s, 3H), 1.29 (s, 9H); 13C NMR {1H} (CDCl3, 100 

Hz) δ 196.8, 144.0, 132.9, 129.2, 128.2, 74.5, 66.2, 27.4; HRMS (ESI): calcd for C13H18NaO2: 

[M+Na+] 229.1199, found 229.1195.

2-tert-butoxy-1-(4-tert-butylphenyl)ethanone (2e)

O
OtBu

tBu

Yield: 67% (166 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.92 (d, J = 8.8 Hz, 

2H), 7.47 (d, J = 8.8 Hz, 2H), 4.65 (s, 2H), 1.35 (s, 9H), 1.29 (s, 9H); 13C NMR {1H} (CDCl3, 100 

Hz) δ 196.7, 156.9, 132.8, 128.0, 125.4, 74.5, 66.2, 35.1, 31.0, 27.4; HRMS (ESI): calcd for 

C16H24NaO2: [M+Na+] 271.1668, found 271.1677.

2-tert-butoxy-1-(4-phenylphenyl)ethanone (2f)

O
OtBu

Yield: 64% (171 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 8.06 (d, J = 8.4 Hz, 

2H), 7.69 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.40 (t, J = 8.4 Hz, 

1H), 4.68 (s, 2H), 1.31 (s, 9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 196.5, 154.1, 139.6, 134.3, 

128.9, 128.8, 128.2, 127.2, 127.1, 74.9, 65.6, 27.5; HRMS (ESI): calcd for C18H20NaO2: [M+Na+] 

291.1355, found 291.1368.

2-tert-butoxy-1-(4-(chloromethyl)phenyl)ethanone (2g)

O
OtBu

Cl

Yield: 65% (156 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.98 (d, J = 8.4 Hz, 

2H), 7.49 (d, J = 8.0 Hz, 2H), 4.63 (s, 2H), 4.62 (s, 2H), 1.29 (s, 9H); 13C NMR {1H} (CDCl3, 100 

Hz) δ 196.8, 144.0, 132.9, 129.2, 128.2, 74.5, 66.2, 27.4; HRMS (ESI): calcd for C13H17ClNaO2: 

[M+Na+] 263.0809, found 263.0814.

2-tert-butoxy-1-(4-fluorophenyl)ethanone (2h)
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O
OtBu

F

Yield: 73% (153 mg); a yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 8.04 (m, 2H), 7.13 (t, J = 

8.4 Hz, 2H), 4.60 (s, 2H), 1.28 (s, 9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 195.9, 165.8 (d, 1JC-F = 

246.4 Hz), 131.8 (d, 4JC-F = 3.1 Hz), 131.0 (d, 3JC-F = 9.2 Hz), 115.6 (d, 2JC-F = 21.7 Hz), 74.7, 66.5, 

27.4; HRMS (ESI): calcd for C12H15FNaO2: [M+Na+] 233.0948, found 233.0952.

2-tert-butoxy-1-(4-chlorophenyl)ethanone (2i) 21

O
OtBu

Cl

Yield: 72% (162 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.94 (d, J = 8.8 Hz, 

2H), 7.44 (d, J = 8.8 Hz, 2H), 4.59 (s, 2H), 1.28 (s, 9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 196.3, 

139.3, 133.3, 129.8, 128.8, 74.7, 66.5, 27.4.

2-tert-butoxy-1-(4-(trifluoromethyl)phenyl)ethanone (2j)

 F3C

OtBu
O

Yield: 85% (221 mg); a pale yellow oil liquids;  1H NMR (CDCl3, 400 Hz) δ 8.10 (d, J = 7.6 Hz, 

2H), 7.73 (d, J = 7.6 Hz, 2H), 4.63 (s, 2H), 1.28 (s, 9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 196.7, 

138.1, 128.7, 125.7, 125.5 (q, 1JC-F = 269.5 Hz), 124.8, 74.9, 66.7, 27.4; HRMS (ESI): calcd for 

C13H15F3NaO2: [M+Na+] 283.0916, found 283.0924.

2-tert-butoxy-1-(4-nitrophenyl)ethanone (2k)

OtBu
O

O2N

Yield: 82% (194 mg); an orange oil liquids; 1H NMR (CDCl3, 400 Hz) δ 8.31 (d, J = 7.6 Hz, 2H), 

8.16 (d, J = 7.6 Hz, 2H), 4.62 (s, 2H), 1.28 (s, 9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 196.3, 

150.2, 140.0, 129.6, 123.6, 75.2, 67.0, 27.4; HRMS (ESI): calcd for C12H15NNaO4: [M+Na+] 

260.0893, found 260.0888.

2-tert-butoxy-1-(2-fluorophenyl)ethanone (2l)
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F O
OtBu

Yield: 70% (147 mg); a yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.94 (m, 1H), 7.52 (m, 

1H), 7.26 (m, 1H), 7.14 (m, 1H), 4.62 (s, 2H), 1.28 (s, 9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 

195.7, 162.8 (d, 1JC-F = 256.0 Hz), 134.5 (d, 3JC-F = 8.8 Hz), 130.7 (d, 4JC-F = 3.5 Hz), 124.5 (d, 3JC-F = 

3.1 Hz), 123.8 (d, 2JC-F = 21.8 Hz), 116.3 (d, 2JC-F = 23.6 Hz), 74.3, 69.2, 27.4; HRMS (ESI): calcd for 

C12H15FNaO2: [M+Na+] 233.0948, found 233.0955.

2-tert-butoxy-1-(3-methoxyphenyl)ethanone(2m)

O
OtBuH3CO

Yield: 60% (133 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.54 (m, 2H), 7.37 (d, 

J = 7.6 Hz, 1H), 7.54 (m, 1H), 4.65 (s, 2H), 3.86 (s, 3H), 1.29 (s, 9H), 1.28 (s, 9H); 13C NMR {1H} 

(CDCl3, 100 Hz) δ 197.0, 159.6, 136.6, 129.5, 120.5, 119.6, 112.5, 74.6, 66.3, 55.4, 27.4; HRMS 

(ESI): calcd for C13H18NaO3: [M+Na+] 245.1148, found 245.1155.

2-tert-butoxy-1-m-tolylethanone (2n)

O
OtBu

Yield: 70% (144 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.79 (s, 1H), 7.77 (d, 

J = 8.4 Hz, 1H), 7.37 (m, 2H), 4.67 (s, 2H), 2.43 (s, 3H), 1.31 (s, 9H); 13C NMR {1H} (CDCl3, 

100 Hz) δ 196.8, 138.3, 134.9, 133.9, 128.5, 128.4, 125.2, 74.5, 66.2, 27.4, 21.3; HRMS (ESI): 

calcd for C13H18NaO2: [M+Na+] 229.1199, found 229.1208.

2-tert-butoxy-1-(3-fluorophenyl)ethanone (2o)

O
OtBuF

Yield: 73% (153 mg); a yellow oil liquids;  1H NMR (CDCl3, 400 Hz) δ 7.77 (t, J = 8.0 Hz, 1H), 

7.69 (m, 1H), 7.44 (m, 1H), 7.26 (m, 1H), 4.61 (s, 2H), 1.29 (s, 9H); 13C NMR {1H} (CDCl3, 100 

Hz) δ 196.1, 162.6 (d, 1JC-F = 256.0 Hz), 137.3 (d, 3JC-F = 8.1 Hz), 130.1 (d, 3JC-F = 8.2 Hz), 123.9 (d, 

Page 13 of 22

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4JC-F = 3.0 Hz), 120.1 (d, 2JC-F = 21.4 Hz), 115.1 (d, 2JC-F = 22.3 Hz), 74.7, 66.5, 27.4; HRMS (ESI): 

calcd for C12H15FNaO2: [M+Na+] 233.0948, found 233.0944.

2-tert-butoxy-1-(3-chlorophenyl)ethanone (2p)

O
OtBuCl

Yield: 69% (155 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.96 (s, 1H), 7.87 (d, 

J = 8.4 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.41 (t, J = 8.4 Hz, 1H), 4.61 (s, 2H), 1.29 (s, 9H); 13C 

NMR {1H} (CDCl3, 100 Hz) δ 196.2, 136.9, 133.1, 129.8, 129.6, 128.4, 126.4, 74.5, 66.5, 27.4; 

HRMS (ESI): calcd for C12H15ClNaO2: [M+Na+] 249.0653, found 249.0655.

2-tert-butoxy-1-(naphthalen-3-yl)ethanone (2q)

O
OtBu

Yield: 63% (152 mg); an orange oil liquids; 1H NMR (CDCl3, 400 Hz) δ 8.53 (s, 1H), 8.02 (d, J = 

8.4 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.89 (t, J = 8.4 Hz, 2H), 7.58 (m, 2H), 4.78 (s, 2H), 1.33 (s, 

9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 197.1, 135.6, 132.7, 132.4, 129.8, 129.5, 128.4, 128.3, 

127.8, 126.7, 123.9, 74.7, 66.5, 27.5; HRMS (ESI): calcd for C16H18NaO2: [M+Na+] 265.1199, 

found 265.1191.

2-tert-butoxy-1-(thiophen-2-yl)ethanone (2u)

OtBu
O

S

Yield: 89% (176 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.31 (dd, J = 1.2 Hz, 

J = 4.0 Hz, 1H), 7.65 (dd, J = 1.2 Hz, J = 4.0 Hz, 1H), 7.14 (dd, J = 4.0 Hz, J = 5.2 Hz, 1H), 4.45 

(s, 2H), 1.30 (s, 9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 191.1, 141.1, 133.9, 133.2, 127.7, 74.9, 

67.4, 27.3; HRMS (ESI): calcd for C10H14NaO2S: [M+Na+] 221.0606, found 221.0612.

1-((E)-3-(tert-butylperoxy)prop-1-enyl)benzene (5a)

O2
tBu

Yield: 77% (158 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.31 (m, 5H), 6.07 (m, 
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1H), 5.29 (m, 3H), 1.26 (s, 9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 139.3, 136.8, 128.3, 127.9, 

127.4, 86.8, 80.4, 26.5; HRMS (ESI): calcd for C13H18NaO2: [M+Na+] 229.1199, found 229.1192.

1-((E)-3-(tert-butylperoxy)prop-1-enyl)-4-fluorobenzene (5b)

O2
tBu

F

Yield: 84% (188 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.37 (m, 2H), 6.99 (m, 

2H), 6.58 (d,J = 16 Hz,1H), 6.23 (m, 1H), 4.57 (dd, J = 6.8 Hz, J = 1.2 Hz, 1H), 1.28 (s, 9H); 13C 

NMR {1H} (CDCl3, 100 Hz) δ 141.6 (d, 1JC-F = 247.0 Hz), 133.1, 132.7 (d, 4JC-F = 3.2 Hz), 

128.1(d, 3JC-F = 8.1 Hz), 123.6, 115.5 (d, 2JC-F = 21.5 Hz), 80.4, 75.7, 26.3; HRMS (ESI): calcd 

for C13H17FNaO2: [M+Na+] 247.1105, found 247.1117.

1-((E)-3-(tert-butylperoxy)prop-1-enyl)-4-(trifluoromethyl)benzene (5c)

 

O2
tBu

F3C

Yield: 69% (189 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.57 (d,J = 8.0 Hz, 

2H), 7.49 (d,J = 8.0 Hz, 2H),6.66 (d,J = 16 Hz, 1H), 6.44 (m, 1H), 4.61 (dd,J = 1.2 Hz, J = 6.4 Hz, 

2H), 1.28 (s, 9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 140.0, 132.4, 126.9, 126.7 (q, 1JC-F = 245.8 

Hz), 125.5, 125.4, 125.3, 80.5, 75.3, 26.3; HRMS (ESI): calcd for C14H17F3NaO2: [M+Na+] 

297.1073, found 297.1061.

1-((E)-3-(tert-butylperoxy)prop-1-enyl)-2-methoxybenzene (5d)

O2
tBu

O

Yield: 73% (172 mg); a pale yellow oil liquids; 1H NMR (CDCl3, 400 Hz) δ 7.47 (dd,J = 2.4 Hz, J 

= 7.6 Hz, 1H), 7.25 (m,1H), 6.94 (m,3H), 6.34 (m, 1H), 4.61 (dd,J = 1.2 Hz, J = 6.4 Hz, 2H), 3.81 

( s, 3H), 1.29 (s, 9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 156.8, 129.4, 128.9, 127.1, 125.4, 124.2, 

120.6, 110.8, 80.3, 76.3, 55.4, 26.4; HRMS (ESI): calcd for C14H20NaO3: [M+Na+] 259.1305, 

found 259.1310.

Supporting Information Available: Copies of 1H and 13C NMR {1H} of all the new compounds. This 

material is available free of charge via the Internet at http://pubs.acs.org.
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