The Journal of Organic Chemistry

Subscriber access provided by University of Texas Libraries

Note

Highly Selective Synthesis of 2-tert-Butoxy-1-Arylethanones via Copper(I)-Catalyzed Oxidation/tert-Butoxylation of Aryl Olefins with TBHP

Jiantao Zhang, Duoduo Xiao, Hua Tan, and Weibing Liu

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b03156 • Publication Date (Web): 13 Feb 2020 Downloaded from pubs.acs.org on February 16, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Highly Selective Synthesis of 2-*tert*-Butoxy-1-Arylethanones *via* Copper(I)-Catalyzed Oxidation/*tert*-Butoxylation of Aryl Olefins with TBHP

Jiantao Zhang, Duoduo Xiao*, Hua Tan, Weibing Liu*

*College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, P. R. China; Email address: <u>lwb409@gdupt.edu.cn</u>; dd.xiao@gdupt.edu.cn

Ar
$$+$$
 ^tBuOOH $\xrightarrow{CuCl (10mol\%)}$ \xrightarrow{O}
2.0 (equiv.) $DCE (2.0 \text{ mL}), \text{RT}, 24 \text{ h}$ Ar $\xrightarrow{O'Bu}$

Abstract: A practical and environmentally friendly protocol for the selective oxidation of aryl olefins to arylethanone derivatives by using a Cu(I) catalyst and *tert*-butyl hydroperoxide (TBHP) has been developed. A series of 2-*tert*-butoxy-1-arylethanones were obtained in moderate to good yields under mild conditions with high selectivity. In this method, TBHP acts not only as an oxidant but also as the *tert*-butoxy and carbonyl oxygen sources. This enables one-step oxidation/*tert*-butoxylation. Various allyl peroxides were also synthesized from allyl substrates.

Alkenes are abundant organic molecules and represent a useful chemical feedstock. They are extensively used in organic synthesis because of their simplicity, low cost, ready availability, and unique reactivity profiles. Methods for their direct, selective functionalization are attractive as an important approach to assembling more complex molecular structures.¹ With the renaissance of radical chemistry, the radical three-component difunctionalization of alkenes is attracting increasing attention and has been intensively studied in recent years.²⁻³

Scheme 1. Difuctionlization of Alkenes with TBHP.

Previous work

Tert-butyl hydroperoxide (TBHP) is a commercially available, inexpensive, and versatile reagent, with roles such as an oxidant,⁴ radical initiator,⁵ and precursor of the *tert*-butoxy⁶ and *tert*-butyl peroxide⁷ radicals. For example, in 2012, Wang's group reported a novel and efficient TBHP/I₂-promoted oxidative coupling reaction of acetophenones with amines for the synthesis of α -ketoamides.^{4f} Recently, Bao et al. developed the Cu-catalyzed radical acyl-cyanation of alkenes with aldehydes, by using TBHP as an initiator, to access various unsymmetrical β -cyano ketones with various functional groups.^{5a} In 2019, Yang and co-workers reported a convenient Fe-catalyzed decarbonylative alkylation–peroxidation of alkenes with aliphatic aldehydes and TBHP to provide chain-elongated peroxides.^{7c} Syntheses of aldehydes,⁸ styrene epoxides,⁹ and acidic compounds¹⁰ through the selective oxidation of styrenes by peroxides in the presence of transition-metal catalysts have been well documented. However, to the best of our knowledge, relatively few studies have focused on the oxidation/*tert*-butoxylation of styrenes. Here, as a continuation of our work on

TBHP-mediated oxidative coupling reactions (Scheme 1a–c),¹¹ we report a highly efficient and general strategy for the preparation of various 2-*tert*-butoxy-1-arylethanones *via* Cu(I)-catalyzed oxidation/*tert*-butoxylation of alkenes with TBHP under mild conditions (Scheme 1d). Notably, the oxygen atom in the newly formed carbonyl moiety is derived from TBHP.

Table 1. Optimization Studies^a

	<u> </u>	Catalyst (10 mol%), TBHP	O O ^t Bu	
	1a		2a	
Entry	Catalyst	Solvent	Time /h	Yield ^b /%
1	CuCl	DMSO	12	26
2	CuCl	DMSO	24	45
3	CuI	DMSO	24	32
4	CuBr	DMSO	24	20
5	Cu ₂ O	DMSO	24	28
6	CuBr ₂	DMSO	24	trace
7	CuCl ₂	DMSO	24	trace
8	CuO	DMSO	24	trace
9	$Cu(OAc)_2$	DMSO	24	trace
10	CuCl	Hexane	24	25
11	CuCl	Dioxane	24	68
12	CuCl	DMF	24	trace
13	CuCl	DCE	24	77
14 ^c	CuCl	DCE	24	36
15^{d}	CuCl	DCE	24	77
16 ^e	CuCl	DCE	24	77
17	-	DCE	36	trace
18 ^f	CuCl	DCE	24	77
19 ^g	CuCl	DCE	24	77

^{*a*} Reaction conditions: **1a** (0.5 mmol), TBHP (2.0 equiv.), solvent (2.0 mL), catalyst (10 mol%). ^{*b*} GC yield. ^{*c*} TBHP: 1.0 equiv. ^{*d*} TBHP: 3.0 equiv. ^{*e*} CuCl: 50 mol%. ^{*f*} O₂ (balloon). ^{*g*} N₂ (balloon).

Initially, we selected styrene **1a** as a model substrate for optimization of the reaction conditions (Table 1). First, the reaction was performed in the presence of CuCl (10 mol%) in combination with TBHP (2.0 equiv) in DMSO at room temperature for 12 h. The desired product **2a** was obtained in 26% yield; most of the starting material was recovered (entry 1). Prolonging the reaction time to 24 h

increased the yield of **2a** to 45% (entry 2). We next explored the use of various Cu salts for this transformation (entries 3–9). The results indicate that the type of metal catalyst significantly affects the reaction yield and CuCl is a better choice than other Cu salts. In the next optimization step, we examined the effects of the solvent by screening various reaction media, namely hexane, dioxane, DMF, and DCE. The results show that the conversion is sensitive to the solvent; DCE is the best solvent because the other solvents gave smaller yields of the expected product **2a** (entries 10–13). A lower yield was obtained when the TBHP loading was decreased to 1.0 equiv (entry 14). However, increasing the amount of TBHP or CuCl had no obvious effect on the outcome (entries 15 and 16). It is worth noting that in the absence of the CuCl catalyst only a trace amount of 2*-tert*-1-butoxyphenylethanone (**2a**) was formed and the starting material remained almost intact (entry 17). The yields of the desired product **2a** were the same under an O₂ or N₂ atmosphere (entries 18 and 19).

With the optimum conditions in hand (Table 1, entry 13), we then systematically studied the generality and limitations of this oxidation/*tert*-butoxylation reaction; the results are summarized in Table 2. Groups with different electronic properties at the *para* position of the aromatic ring were examined. All the reactions proceeded smoothly to give the desired products in moderate to good yields (**2b–k**). The reactivities of phenyl rings with strongly electron-withdrawing substituents ($-CF_3$, $-NO_2$) were higher than those of phenyl rings with electron-donating substituents. This suggests that electron-withdrawing groups enhance the reaction efficiency (**2j** and **2k**). Substrates with substituents at the *ortho* or *meta* positions were also compatible with this mild Cu-catalyzed protocol. The corresponding products were obtained in 60%–73% yields (**21–p**).

^{*a*} Unless otherwise specified, all reactions were carried out on 1.0 mmol scale for 24 h. ^{*b*} Isolated yield.

^c A complex system was obtained, and no desired product was detected.

Notably, the position of the substituent did not affect the reaction productivities and yields (2h, 2l, and 2o). 2-Naphthyl-substituted 1q was also tolerated in the present system, and the oxidation/*tert*-butoxylation product 2q was obtained in reasonable yield. Disubstituted alkenes are not good candidates for this Cu-catalyzed reaction. 1r-1t cound not provided the desired products under the optimum conditions, and complex reaction systems were formed. The phenyl ring in 1a can be replaced by a heterocycle (thienyl, 1u) to yield 2u.

To further expand the substrate scope, we investigated the use of alkenes with a terminal alkyl group, *i.e.*, **3a–d**, as substrates for this oxidation/*tert*-butoxylation reaction under the standard conditions. These alkenes proved to be poor substrates for this transformation. When the reactions were performed at 70 °C, these substrates failed to provide the desired products, and the allyl peroxide products **5a–d** were obtained as the main products (Scheme 2b–e). Organic peroxides not only serve as key reactive intermediates in diverse organic synthetic reactions such as Kornblum–DeLaMare reactions¹² and epoxidations,¹³⁻¹⁴ but also have important roles in cell damage, food safety, and as therapeutic drugs in medicinal chemistry. We investigated the need to use CuCl and found that its presence was unnecessary (Scheme 2). The reactions of other internal or terminal alkenes, *i.e.*, *(E)*-non-4-ene (**3e**) and oct-1-ene (**3f**), were also examined under these conditions, but the reactions were sluggish and no major products were formed.

Scheme 3. Control Experiments.

Ph + 'BuOOH
$$\xrightarrow{\text{TEMPO (4.0 eq.)}}_{\text{CuCl, DCE, R. T.}}$$
 Ph $\xrightarrow{\text{O}}_{\text{Ph}}$ (a)
2a: n.d.
Ph + 'BuOOH $\xrightarrow{\text{CuCl}}_{\text{DCE, R. T.}}$ Ph $\xrightarrow{\text{O}}_{\text{Ph}}$ (b)
2a: n.d.

Several control experiments were conducted to clarify the reaction mechanism (Scheme 3). The reaction was completely inhibited by TEMPO (4.0 equiv), which suggests that a radical pathway is probably involved (Scheme 3a). When acetophenone was treated with TBHP under the standard conditions, **2a** was not detected (Scheme 3b).

Scheme 4. Possible Mechanism for Cu(I)-Catalyzed Oxidation/*tert*-Butoxylation Transformation. path A:

Based on the these results and literature reports,^{4-7,11} a possible mechanism for this Cu(I)-catalyzed oxidation/*tert*-butoxylation transformation, with **1a** as an example, is shown in Scheme 4. Initially, TBHP is reduced by low-valent Cu(I) to generate a *tert*-butoxy radical **A** and a Cu(II) complex.¹⁴⁻¹⁵ Radical addition to styrene then produces benzyl radical **B**, which undergoes direct oxidation to **C** by Cu(II),¹⁶ along with regeneration of Cu(I) for the next catalytic cycle. Next, species **C** is trapped by H_2O^{17} to form species **D**, which is further oxidized by TBHP to give the final product **2a** (path a).¹⁸ Another possible mechanism, namely path b, cannot be excluded. First, alkyloxy radical **A** and alkylperoxy radical **E** are generated *via* a series of steps. Benzyl radical **B** is then obtained *via* a radical addition process and is selectively trapped by the 'BuOO' radical to afford the *tert*-butyl peroxide

intermediate $\mathbf{F}^{.19}$ In the final step, \mathbf{F} undergoes a Kornblum–DeLaMare rearrangement¹² to give the desired product $2\mathbf{a}$.

In conclusion, we have developed an efficient and general method for the highly selective construction of 2-*tert*-1-butoxyarylethanone frameworks *via* a Cu(I)-catalyzed oxidation/*tert*-butoxylation reaction. This synthetic method has many advantages such as simple starting materials, green reaction conditions, and high selectivity, and is expected to provide a valuable alternative protocol in appropriate areas. In this method, TBHP acts not only as the oxidant but also as the *tert*-butoxy and carbonyl oxygen sources for this oxidation/*tert*-butoxylation transformation. Various allyl peroxides were also synthesized from allyl substrates. Further investigations into the difunctionalization of alkenes with TBHP are currently underway in our laboratory.

EXPERIMENTAL SECTION

General Information. All the reactions were carried out at room temperature for 24 h in a round-bottom flask equipped with a magnetic stir bar. Unless otherwise stated, all reagents and solvents were purchased from commercial suppliers and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz spectrometer in solutions of CDCl₃ using tetramethylsilane as the internal standard; δ values are given in ppm, and coupling constants (*J*) in Hz. Mass spectra were obtained from high resolution *ESI* mass spectrometer. HR-MS were obtained on a Q-TOF micro spectrometer.

Typical procedure for the synthesis of 2a: 2-*tert*-butoxy-1-phenylethanone (**2a**). A mixture of styrene (**1a**) (104 mg, 1.0 mmol), CuCl (9.8 mg, 0.1 mmol), TBHP (258 mg, 2.0 mmol, 70% in water), and 1,2-dichloroethane (DCE) (2.0 mL) was added successively in a round-bottom flask,

and the resulting solution was stirred for 24 h at room temperature. The mixture was purified by column chromatography on silica gel to afford product 2a with PE/EA = 30:1 as the eluent.

2-tert-butoxy-1-phenylethanone (2a)²⁰

Yield: 72% (138 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.97 (d, J = 8.4 Hz, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.2 Hz, 2H), 4.66 (s, 2H), 1.29 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 197.2, 135.4, 133.1, 128.5, 128.1, 74.6, 66.3, 27.4.

2-tert-butoxy-1-(4-tert-butoxyphenyl)ethanone (2b)

Yield: 62% (163 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.93 (d, J = 7.6 Hz, 2H), 7.03 (d, J = 7.6 Hz, 2H), 4.61 (s, 2H), 1.42 (s, 9H), 1.28 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.4, 160.4, 129.9, 129.7, 122.2, 74.5, 66.2, 28.9, 27.4; HRMS (ESI): calcd for C₁₆H₂₄NaO₃: [M+Na⁺] 287.1612, found 287.1619.

4-(2-tert-butoxyacetyl)phenyl acetate (2c)

Yield: 63% (157 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 8.03 (d, *J* = 7.6 Hz, 2H), 7.20 (d, *J* = 7.6 Hz, 2H), 4.62 (s, 2H), 2.33 (s, 9H), 1.28 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.0, 168.8, 154.8, 133.0, 129.9, 121.7, 74.7, 66.4, 27.4, 21.1; HRMS (ESI): calcd for C₁₄H₁₈NaO₄: [M+Na⁺] 273.1097, found 273.1099.

2-tert-butoxy-1-p-tolylethanone (2d)

Yield: 69% (142 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.88 (d, J = 8.4 Hz,

2H), 7.26 (d, J = 8.0 Hz, 2H), 4.66 (s, 2H), 2.42 (s, 3H), 1.29 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.8, 144.0, 132.9, 129.2, 128.2, 74.5, 66.2, 27.4; HRMS (ESI): calcd for C₁₃H₁₈NaO₂: [M+Na⁺] 229.1199, found 229.1195.

2-tert-butoxy-1-(4-tert-butylphenyl)ethanone (2e)

Yield: 67% (166 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.92 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.8 Hz, 2H), 4.65 (s, 2H), 1.35 (s, 9H), 1.29 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.7, 156.9, 132.8, 128.0, 125.4, 74.5, 66.2, 35.1, 31.0, 27.4; HRMS (ESI): calcd for C₁₆H₂₄NaO₂: [M+Na⁺] 271.1668, found 271.1677.

2-tert-butoxy-1-(4-phenylphenyl)ethanone (2f)

Yield: 64% (171 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 8.06 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.40 (t, *J* = 8.4 Hz, 1H), 4.68 (s, 2H), 1.31 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.5, 154.1, 139.6, 134.3, 128.9, 128.8, 128.2, 127.2, 127.1, 74.9, 65.6, 27.5; HRMS (ESI): calcd for C₁₈H₂₀NaO₂: [M+Na⁺] 291.1355, found 291.1368.

2-tert-butoxy-1-(4-(chloromethyl)phenyl)ethanone (2g)

Yield: 65% (156 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.98 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 4.63 (s, 2H), 4.62 (s, 2H), 1.29 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.8, 144.0, 132.9, 129.2, 128.2, 74.5, 66.2, 27.4; HRMS (ESI): calcd for C₁₃H₁₇ClNaO₂: [M+Na⁺] 263.0809, found 263.0814.

2-tert-butoxy-1-(4-fluorophenyl)ethanone (2h)

Yield: 73% (153 mg); a yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 8.04 (m, 2H), 7.13 (t, J = 8.4 Hz, 2H), 4.60 (s, 2H), 1.28 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 195.9, 165.8 (d, ¹ $J_{C-F} =$ 246.4 Hz), 131.8 (d, ⁴ $J_{C-F} =$ 3.1 Hz), 131.0 (d, ³ $J_{C-F} =$ 9.2 Hz), 115.6 (d, ² $J_{C-F} =$ 21.7 Hz), 74.7, 66.5, 27.4; HRMS (ESI): calcd for C₁₂H₁₅FNaO₂: [M+Na⁺] 233.0948, found 233.0952.

2-tert-butoxy-1-(4-chlorophenyl)ethanone (2i) ²¹

Yield: 72% (162 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.94 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 8.8 Hz, 2H), 4.59 (s, 2H), 1.28 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.3, 139.3, 133.3, 129.8, 128.8, 74.7, 66.5, 27.4.

2-tert-butoxy-1-(4-(trifluoromethyl)phenyl)ethanone (2j)

Yield: 85% (221 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 8.10 (d, J = 7.6 Hz, 2H), 7.73 (d, J = 7.6 Hz, 2H), 4.63 (s, 2H), 1.28 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.7, 138.1, 128.7, 125.7, 125.5 (q, ¹ J_{C-F} = 269.5 Hz), 124.8, 74.9, 66.7, 27.4; HRMS (ESI): calcd for C₁₃H₁₅F₃NaO₂: [M+Na⁺] 283.0916, found 283.0924.

2-tert-butoxy-1-(4-nitrophenyl)ethanone (2k)

Yield: 82% (194 mg); an orange oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 8.31 (d, *J* = 7.6 Hz, 2H), 8.16 (d, *J* = 7.6 Hz, 2H), 4.62 (s, 2H), 1.28 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.3, 150.2, 140.0, 129.6, 123.6, 75.2, 67.0, 27.4; HRMS (ESI): calcd for C₁₂H₁₅NNaO₄: [M+Na⁺] 260.0893, found 260.0888.

2-tert-butoxy-1-(2-fluorophenyl)ethanone (2l)

Yield: 70% (147 mg); a yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.94 (m, 1H), 7.52 (m, 1H), 7.26 (m, 1H), 7.14 (m, 1H), 4.62 (s, 2H), 1.28 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 195.7, 162.8 (d, ¹*J*_{C-F} = 256.0 Hz), 134.5 (d, ³*J*_{C-F} = 8.8 Hz), 130.7 (d, ⁴*J*_{C-F} = 3.5 Hz), 124.5 (d, ³*J*_{C-F} = 3.1 Hz), 123.8 (d, ²*J*_{C-F} = 21.8 Hz), 116.3 (d, ²*J*_{C-F} = 23.6 Hz), 74.3, 69.2, 27.4; HRMS (ESI): calcd for C₁₂H₁₅FNaO₂: [M+Na⁺] 233.0948, found 233.0955.

2-tert-butoxy-1-(3-methoxyphenyl)ethanone(2m)

Yield: 60% (133 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.54 (m, 2H), 7.37 (d, J = 7.6 Hz, 1H), 7.54 (m, 1H), 4.65 (s, 2H), 3.86 (s, 3H), 1.29 (s, 9H), 1.28 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 197.0, 159.6, 136.6, 129.5, 120.5, 119.6, 112.5, 74.6, 66.3, 55.4, 27.4; HRMS (ESI): calcd for C₁₃H₁₈NaO₃: [M+Na⁺] 245.1148, found 245.1155.

2-tert-butoxy-1-m-tolylethanone (2n)

Yield: 70% (144 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.79 (s, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.37 (m, 2H), 4.67 (s, 2H), 2.43 (s, 3H), 1.31 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.8, 138.3, 134.9, 133.9, 128.5, 128.4, 125.2, 74.5, 66.2, 27.4, 21.3; HRMS (ESI): calcd for C₁₃H₁₈NaO₂: [M+Na⁺] 229.1199, found 229.1208.

2-tert-butoxy-1-(3-fluorophenyl)ethanone (20)

Yield: 73% (153 mg); a yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.77 (t, *J* = 8.0 Hz, 1H), 7.69 (m, 1H), 7.44 (m, 1H), 7.26 (m, 1H), 4.61 (s, 2H), 1.29 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.1, 162.6 (d, ^{*1*}*J*_{*C-F*} = 256.0 Hz), 137.3 (d, ³*J*_{*C-F*} = 8.1 Hz), 130.1 (d, ³*J*_{*C-F*} = 8.2 Hz), 123.9 (d,

 ${}^{4}J_{C-F}$ = 3.0 Hz), 120.1 (d, ${}^{2}J_{C-F}$ = 21.4 Hz), 115.1 (d, ${}^{2}J_{C-F}$ = 22.3 Hz), 74.7, 66.5, 27.4; HRMS (ESI): calcd for C₁₂H₁₅FNaO₂: [M+Na⁺] 233.0948, found 233.0944.

2-*tert*-butoxy-1-(3-chlorophenyl)ethanone (2p)

Yield: 69% (155 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.96 (s, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.41 (t, J = 8.4 Hz, 1H), 4.61 (s, 2H), 1.29 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 196.2, 136.9, 133.1, 129.8, 129.6, 128.4, 126.4, 74.5, 66.5, 27.4; HRMS (ESI): calcd for C₁₂H₁₅ClNaO₂: [M+Na⁺] 249.0653, found 249.0655.

2-tert-butoxy-1-(naphthalen-3-yl)ethanone (2q)

Yield: 63% (152 mg); an orange oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 8.53 (s, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.89 (t, J = 8.4 Hz, 2H), 7.58 (m, 2H), 4.78 (s, 2H), 1.33 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 197.1, 135.6, 132.7, 132.4, 129.8, 129.5, 128.4, 128.3, 127.8, 126.7, 123.9, 74.7, 66.5, 27.5; HRMS (ESI): calcd for C₁₆H₁₈NaO₂: [M+Na⁺] 265.1199, found 265.1191.

2-tert-butoxy-1-(thiophen-2-yl)ethanone (2u)

Yield: 89% (176 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.31 (dd, J = 1.2 Hz, J = 4.0 Hz, 1H), 7.65 (dd, J = 1.2 Hz, J = 4.0 Hz, 1H), 7.14 (dd, J = 4.0 Hz, J = 5.2 Hz, 1H), 4.45 (s, 2H), 1.30 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 191.1, 141.1, 133.9, 133.2, 127.7, 74.9, 67.4, 27.3; HRMS (ESI): calcd for C₁₀H₁₄NaO₂S: [M+Na⁺] 221.0606, found 221.0612.

1-((E)-3-(*tert*-butylperoxy)prop-1-enyl)benzene (5a)

Yield: 77% (158 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.31 (m, 5H), 6.07 (m,

57

58 59

60

1H), 5.29 (m, 3H), 1.26 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 139.3, 136.8, 128.3, 127.9, 127.4, 86.8, 80.4, 26.5; HRMS (ESI): calcd for C₁₃H₁₈NaO₂: [M+Na⁺] 229.1199, found 229.1192.
1-((E)-3-(*tert*-butylperoxy)prop-1-enyl)-4-fluorobenzene (5b)

Yield: 84% (188 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.37 (m, 2H), 6.99 (m, 2H), 6.58 (d, *J* = 16 Hz, 1H), 6.23 (m, 1H), 4.57 (dd, *J* = 6.8 Hz, *J* = 1.2 Hz, 1H), 1.28 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 141.6 (d, ¹*J*_{*C*-*F*} = 247.0 Hz), 133.1, 132.7 (d, ⁴*J*_{*C*-*F*} = 3.2 Hz), 128.1(d, ³*J*_{*C*-*F*} = 8.1 Hz), 123.6, 115.5 (d, ²*J*_{*C*-*F*} = 21.5 Hz), 80.4, 75.7, 26.3; HRMS (ESI): calcd for C₁₃H₁₇FNaO₂: [M+Na⁺] 247.1105, found 247.1117.

1-((E)-3-(*tert*-butylperoxy)prop-1-enyl)-4-(trifluoromethyl)benzene (5c)

Yield: 69% (189 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.57 (d,*J* = 8.0 Hz, 2H), 7.49 (d,*J* = 8.0 Hz, 2H), 6.66 (d,*J* = 16 Hz, 1H), 6.44 (m, 1H), 4.61 (dd,*J* = 1.2 Hz, *J* = 6.4 Hz, 2H), 1.28 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 140.0, 132.4, 126.9, 126.7 (q, ^{*1*}*J*_{*C*-*F*} = 245.8 Hz), 125.5, 125.4, 125.3, 80.5, 75.3, 26.3; HRMS (ESI): calcd for C₁₄H₁₇F₃NaO₂: [M+Na⁺] 297.1073, found 297.1061.

1-((E)-3-(*tert*-butylperoxy)prop-1-enyl)-2-methoxybenzene (5d)

Yield: 73% (172 mg); a pale yellow oil liquids; ¹H NMR (CDCl₃, 400 Hz) δ 7.47 (dd, J = 2.4 Hz, J = 7.6 Hz, 1H), 7.25 (m,1H), 6.94 (m,3H), 6.34 (m, 1H), 4.61 (dd, J = 1.2 Hz, J = 6.4 Hz, 2H), 3.81 (s, 3H), 1.29 (s, 9H); ¹³C NMR {1H} (CDCl₃, 100 Hz) δ 156.8, 129.4, 128.9, 127.1, 125.4, 124.2, 120.6, 110.8, 80.3, 76.3, 55.4, 26.4; HRMS (ESI): calcd for C₁₄H₂₀NaO₃: [M+Na⁺] 259.1305, found 259.1310.

Supporting Information Available: Copies of ¹H and ¹³C NMR {1H} of all the new compounds. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

Corresponding Authors

*E-mail: <u>lwb409@gdupt.edu.cn</u>; dd.xiao@gdupt.edu.cn

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21602035), the Foundation of Department of Science and Technology of Guangdong Provincial (No. 2016A020221038) and Guangdong Natural Science Foundation (No. 2017A030307006). Besides, we thank Peng Zhou, Cui Chen, Yupeng Pan and Linhai Duan for their contributions to this work.

References

- (a) Lan, X. W.; Wang, N. X.; Xing, Y. Recent advances in radical difunctionalization of simple alkenes. *Eur. J. Org. Chem.* 2017, 2017, 5821; (b) Terent'ev, A. O.; Yu. Sharipov, M.; Krylov, I. B.; Gaidarenko, D. V.; Nikishin, G. I. Manganese triacetate as an efficient catalyst for bisperoxidation of styrenes. *Org. Biomol. Chem.* 2015, *13*, 1439.
- (a) Chen, Y.; Ma, Y.; Li, L.; Jiang, H.; Li, Z. Nitration-peroxidation of alkenes: A selective approach to β-peroxyl nitroalkanes. *Org. Lett.* 2019, *21*, 1480; (b) Zhu, X. T.; Lu, Q. L.; Wang, X.; Zhang, T. S.; Hao, W. J.; Tu, S. J. Jiang, B. Substrate-controlled generation of 3-sulfonylated 1-indenones and 3-arylated (*Z*)-indenes *via* Cu-catalyzed radical cyclization cascades of *o*-alkynylbenzonitriles. *J. Org. Chem.* 2018, *83*, 9890; (c) Cheng, J. K.; Shen, L.; Wu, L. H.; Hu, X. H.; Loh, T. P. Iron-catalyzed peroxidation-carbamoylation of alkenes with hydroperoxides and formamides via formyl C(sp²)-H functionalization. *Chem. Commun.* 2017, *53*, 12830; (d) Yang, Z.; Hao, W. J.; Wang, S. L.; Zhang, J. P.; Jiang, B.; Li, G.; Tu, S. J. Synthesis of allenyl sulfones *via* a TBHP/TBAI-mediated reaction of propargyl alcohols with sulfonyl hydrazides. *J. Org. Chem.* 2015, *80*, 9224.

3.

(a) Mandal, S.; Bera, T.; Dubey, G.; Saha, J.; Laha, J. K. Uses of K₂S₂O₈ in metal-catalyzed and metal-free oxidative transformations. *ACS Catal.* 2018, *8*, 5085; (b) Wang, X.; Studer, A. Iodine(III) reagents in radical chemistry. *Acc. Chem. Res.*, 2017, *50*, 1712; (c) Xia, X.-F.; Zhu, S.-L.; Gu, Z.; Wang, H.; Li, W.; Liu, X.; and Liang, Y.-M. Catalyst-controlled dioxygenation of olefins: An approach to peroxides, alcohols, and ketones. *J. Org. Chem.* 2015, *80*, 5572; (d) Sebren, L. J.; Devery, J. J. Stephenson, C. R. J. Catalytic radical domino reactions in organic synthesis. *ACS Catal.* 2014, *4*, 703.

- (a) Huang, W.; Chen, S.; Chen, Z.; Yue, M.; Li, M.; Gu, Y. Synthesis of multisubstituted pyrroles from enolizable aldehydes and primary amines promoted by iodine. *J. Org. Chem.* 2019, *84*, 5655;
 (b) Gao, X.; Yang, H.; Cheng, C.; Jia, Q.; Gao, F.; Chen, H.; Cai, Q.; Wang, C. Iodide reagent controlled reaction pathway of iodoperoxidation of alkenes: a high regioselectivity synthesis of *a*-and *β*-iodoperoxidates under solvent-free conditions. *Green Chem.* 2018, *20*, 2225; (c) Liu, Y.; Sun, H.; Huang, Z.; Ma, C.; Lin, A.; Yao, H.; Xu, J.; Xu, S. Metal-free synthesis of *N*-(pyridine-2-yl)amides from ketones *via* selective oxidative cleavage of C(O)-C(alkyl) bond in water. *J. Org. Chem.* 2018, *83*, 14307; (d) Vanjari, R.; Sing, K. N. Utilization of methylarenes as versatile building blocks in organic synthesis. *Chem. Soc. Rev.* 2015, *44*, 8062; (e) Zhao, J.; Fang, H.; Han, J.; Pan, Y. Cu-catalyzed C(sp³)-H bond activation reaction for direct preparation of cycloallyl esters from cycloalkanes and aromatic aldehydes. *Org. Lett.* 2014, *16*, 2530; (f) Zhang, X.; Wang, L. TBHP/I₂-promoted oxidative coupling of acetophenones with amines at room temperature under metal-free and solvent-free conditions for the synthesis of *a*-ketoamides. *Green Chem.* 2012, *14*, 2141.
- 5. (a) Jiao, Y.; Chiou, M. F.; Li, Y.; Bao, H. Copper-catalyzed radical acyl-cyanation of alkenes with

mechanistic studies on the *tert*-butoxy radical. *ACS Catal.* **2019**, *9*, 5191; (b) Yuan, J.; Fu, J.; Yin, J.; Dong, Z.; Xiao, Y.; Mao, P.; Qu, L. Transition-metal-free direct C-3 alkylation of quinoxalin-2(1H)-ones with ethers. *Org. Chem. Front.* **2018**, *5*, 2820; (c) Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Leowanawat, P.; Saithong, S.; Kuhakarn, C. TBAI/TBHP-mediated cascade cyclization toward sulfonylated indeno[1,2-c]quinolines. *Org. Lett.* **2017**, *19*, 6546; (d) Hu, W.; Sun, S. and Cheng, J. Formal [3+2] reaction of α , α -diaryl allylic alcohols with sec-alcohols: Proceeding with sequential radical addition/migration toward 2,3-dihydrofurans bearing quaternary carbon centers. *J. Org. Chem.* **2016**, *81*, 4399; (e) Zhou, M. B.; Song, R. J.; Ouyang, X. H.; Liu, Y.; Wei, W. T.; Deng, G. B.; Li, J. Metal-free oxidative tandem coupling of activated alkenes with carbonyl C(sp²)-H bonds and aryl C(sp²)-H bonds using TBHP. *Chem. Sci.* **2013**, *4*, 2690.

- 6. (a) Ge, L.; Li, Y.; Bao, H. Iron-catalyzed radical acyl-azidation of alkenes with aldehydes: synthesis of unsymmetrical β-azido ketones. *Org. Lett.* 2019, *21*, 256; (b) Zhang, G.; Fu, L.; Chen, P.; Zou, J.; Liu, G. Proton-coupled electron transfer enables tandem radical relay for asymmetric copper-catalyzed phosphinoylcyanation of styrenes. *Org. Lett.* 2019, *21*, 5015; (c) Lan, Y.; Yang, C.; Xu, Y. H.; Loh, T. P. Direct coupling of sp³ carbon of alkanes with α,β-unsaturated carbonyl compounds using a copper/hydroperoxide system. *Org. Chem. Front.* 2017, *4*, 1411.
- 7. (a) Liu, B.; Cheng, J.; Li, Y.; Li, J. H. Oxidative tandem annulation of 1-(2-ethynylaryl)prop-2-en-1-ones catalyzed by cooperative iodine and TBHP. *Chem. Commun.*2019, 55, 667; (b) Tucker, J. K.; Shair, M. D. Catalytic allylic oxidation to generate vinylogous acyl sulfonates from vinyl sulfonates. *Org. Lett.* 2019, 21, 2473; (c) Wu, C. S.; Li, R.; Wang, Q. Q.; Yang, L. Fe-Catalyzed decarbonylative alkylation-peroxidation of alkenes with aliphatic

The Journal of Organic Chemistry

aldehydes and hydroperoxide under mild conditions. *Green Chem.* **2019**, *21*, 269; (d) Shi, E.; Liu, J.; Liu, C.; Shao, Y.; Wang, H.; Lv, Y.; Ji, M.; Bao, X.; Wan, X. Difunctionalization of styrenes with perfluoroalkyl and *tert*-butylperoxy radicals: Room temperature synthesis of (1-(*tert*-butylperoxy)-2-perfluoroalkyl)-ethylbenzene. *J. Org. Chem.* **2016**, *81*, 5878; (e) Jiang, J.; Liu, J.; Yang, L.; Shao, Y.; Cheng, J.; Bao, X.; Wan, X. Cu-based carbene involved in a radical process: a new crossover reaction to construct *γ*-peroxy esters and 1,4-dicarbonyl compounds. *Chem. Commun.* **2015**, *51*, 14728.

- (a) Chen, J.; Chen, M.; Zhang, B.; Nie, R.; Huang, A.; Goh, T. W.; Volkov, A.; Zhang, Z.; Ren, Q.; Huang, W. Allylic oxidation of olefins with a manganese-based metal-organic framework. *Green Chem.* 2019, *21*, 3629; (b) Guo, C.; Zhang, Y.; Zhang, L.; Guo, Y.; Akram, N.; Wang, J.
 2-Methylimidazole-assisted synthesis of nanosized Cu₃(BTC)₂ for controlling the selectivity of the catalytic oxidation of styrene. *ACS Appl. Nano Mater.* 2018, *1*, 5289; (c) Hajnal, I.; Faber, K.; Schwab, H.; Hall, M.; Steiner, K. Oxidative alkene cleavage catalysed by manganese-dependent cupin TM1459 from thermotoga maritima. *Adv. Synth. Catal.* 2015, *357*, 3309; (d) Hossain, Md. M.; Huang, W. K.; chen, H. J.; Wang, P. H.; Shyu, S. G. Efficient and selective copper-catalyzed organic solvent-free and biphasic oxidation of aromatic gem-disubstituted alkenes to carbonyl compounds by *tert*-butyl hydroperoxide at room temperature. *Green Chem.* 2014, *16*, 3013.
- 9. (a) Du, J.; Miao, C.; Xia, C.; Lee, Y. M.; Nam, W.; Sun, W. Mechanistic insights into the enantioselective epoxidation of olefins by bioinspired manganese complexes: Role of carboxylic acid and nature of active oxidant. *ACS Catal.* 2018, *8*, 4528; (b) Zhang, H. Y.; Ge, C.; Zhao, J.; Zhang, Y. Cobalt-catalyzed trifluoromethylation-peroxidation of unactivated alkenes with sodium trifluoromethanesulfinate and hydroperoxide. *Org. Lett.* 2017, *19*, 5260.

- Moorthy, J. N.; Parida, K. N. Oxidative cleavage of olefins by *in situ*-generated catalytic
 3,4,5,6-tetramethyl-2-iodoxybenzoic acid/oxone. J. Org. Chem. 2014, 79, 11431.
- (a) Chen, C.; Li, Y.; Pan, Y.; Duan, L.; Liu, W. Oxidative radical addition-chlorination of alkenes to access 1,1-dichloroalkanes from simple reagents. *Org. Chem. Front.* 2019, *6*, 2032; (b) Chen, C.; Tan, H.; Liu, B.; Yue, C. Liu, W. ATRA-like alkylation-peroxidation of alkenes with trichloromethyl derivatives by the combination of tBuOOH and NEt₃. *Org. Chem. Front.* 2018, *5*, 3143; (c) Liu, W.; Chen, C.; Zhou, P.; Tan, H. Preparation of 1,2-oxazetidines from styrenes and arylamines *via* a peroxide-mediated [2+1+1] cycloaddition reaction. *Org. Lett.* 2017, *19*, 5830.
- Komblum-DeLaMare rearrangement: (a) Wu, C. S.; Liu, R. X.; Ma, D. Y.; Luo, C. P.; Yang, L. Four-component radical dual difunctionalization (RDD) of two different alkenes with aldehydes and *tert*-butyl hydroperoxide (TBHP): An easy access to β,δ-functionalized ketones. *Org. Lett.* 2019, *21*, 6117; (b) Chowdhury, S. R.; Ul Hoque, I.; Maity, S. TBAI/TBHP-promoted generation of malonyl radicals: Oxidative coupling with styrenes leads to γ-keto diesters. *Chem. Asian. J.* 2018, *13*, 2824; (c) Ling, J.; Zhang, J.; Zhao, Y.; Xu, Y.; Wang, H.; Lv, Y.; Ji, M.; Ma, L.; Ma, M.; Wan, X. A Cu-catalyzed four-component cascade reaction to construct β-ester-γ-amino ketones. *Org. Biomol. Chem.* 2016, *14*, 5310; (d) Zhang, J.; Jiang, J.; Xu, D.; Luo, Q.; Wang, H.; Chen, J.; Li, H.; Wang, Y.; Wan, X. Interception of cobalt-based carbene radicals with *α*-aminoalkyl radicals: A tandem reaction for the construction of β-ester-γ-amino ketones. *Angew. Chem. Int. Ed.* 2015, *54*, 1231; (e) Zhang, F.; Du, P.; Chen, J.; Wang, H.; Luo, Q.; Wan, X. Co-catalyzed synthesis of 1,4-dicarbonyl compounds using TBHP oxidant. *Org. Lett.* 2014, *16*, 1932.
- 13. (a) Wei, W. T.; Yang, X. H.; Li, H. B.; Li, J. H. Oxidative coupling of alkenes with aldehydes and

hydroperoxides: One-pot synthesis of 2,3-epoxy ketones. *Adv. Synth. Catal.* **2015**, *357*, 59; (b) Li, J.; Wang, D. Z. Visible-light-promoted photoredox syntheses of α,β-epoxy ketones from styrenes and benzaldehydes under alkaline conditions. *Org. Lett.* **2015**, *17*, 5260; (c) Liu, K.; Li, Y.; Liu, W.; Zheng, X.; Zong, Z.; Li, Z. Efficient and selective synthesis of α,β-epoxy-γ-butyrolactones from 2-peroxy-1,4-dicarbonyl compounds. *Chem. Asian J.* **2013**, *8*, 359.

- 14. Chen, Y.; Chen, Y.; Lu S. and Li, Z. Copper-catalyzed three-component phosphorylation-peroxidation of alkenes. *Org. Chem. Front.* **2018**, *5*, 972.
- (a) Iwata, S.; Hata, T.; and Urabe, H. Synthesis of *tert*-butyl peroxyacetals from benzyl, allyl, or propargyl ethers via iron-promoted C-H bond functionalization. *Adv. Synth. Catal.* 2012, *354*, 3480; (b) Liu, W.; Li, Y.; Liu, K.; and Li, Z. Iron-catalyzed carbonylation-peroxidation of alkenes with aldehydes and hydroperoxides. *J. Am. Chem. Soc.* 2011, *133*, 10756.
- (a) Zhang, B.; Studer, A. Copper-catalyzed intermolecular aminoazidation of alkenes. Org. Lett.
 2014, 16, 1790; (b) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Copper-catalyzed aerobic oxidative C-H functionalizations: Trends and mechanistic insights. Angew. Chem. Int. Ed. 2011, 50, 11062.
- 17. Ha, T. M.; Chatalova-Sazepin, C.; Wang, Q.; Zhu, J. Copper-catalyzed formal [2+2+1] heteroannulation of alkenes, alkylnitriles, and water: Method development and application to a total synthesis of (±)-sacidumlignan D. *Angew. Chem. Int. Ed.* **2016**, *55*, 9249.
- (a) Hazra, S.; Kushawaha, A. K.; Yadav, D.; Dolui, P.; Deb, M.; Elias, A. J. Table salt as a catalyst for the oxidation of aromatic alcohols and amines to acids and imines in aqueous medium: effectively carrying out oxidation reactions in sea water. *Green Chem.* 2019, *21*, 1929; (b) Yan, H.; Lu, L.; Rong, G.; Liu, D.; Zheng, Y.; Chen, J.; Mao, J. Functionalization of amides *via*

copper-catalyzed oxyalkylation of vinylarenes and decarboxylative alkenylation of sp³ C-H. J. Org. Chem. 2014, 79, 7103.

- Cheng, J. K.; Loh, T. P. Copper- and cobalt-catalyzed direct coupling of sp³ α-carbon of alcohols with alkenes and hydroperoxides. *J. Am. Chem. Soc.* 2015, *137*, 42.
- 20. Sosa, J. R.; Tudjarian, A. A.; Minehan, T. G. Synthesis of alkynyl ethers and low-temperature sigmatropic rearrangement of allyl and benzyl alkynyl ethers. *Org. Lett.* **2008**, *10*, 5091.
- 21. Rilatt, I.; Mirabel, E.; Grand, B. L.; Perez, M. Discovery and SAR of small molecule PAR1 antagonists. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 903.