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Abstract: Two mononuclear Pd(II) complexes [PdCl2(pfptp)] (1) and [PdCl2(pfhtp)] (2), with ligands
2-(3-perfluoropropyl-1-methyl-1,2,4-triazole-5yl)-pyridine (pfptp) and 2-(3-perfluoroheptyl-1-methyl-
1,2,4-triazole-5yl)-pyridine (pfhtp), were synthesized and structurally characterized. The two complexes
showed a bidentate coordination of the ligand occurring through N atom of pyridine ring and
N4 atom of 1,2,4-triazole. Both complexes showed antimicrobial activity when tested against both
Gram-negative and Gram-positive bacterial strains.

Keywords: mononuclear palladium complexes; perfluoroalkyl heterocyclic ligands; triazoles;
antimicrobial activity; narcosis

1. Introduction

In the last decade, the emergence of multi-drug resistant (MDR) bacterial strains has been
considered a concern worldwide [1]. Bacterial infections in clinical and veterinary environments
can frequently be due to different MDR bacterial strains, such as Staphylococcus aureus (S. aureus)
and Escherichia coli (E. coli), etc. [2,3]. In the frame of our study, we have previously synthesized,
characterized and investigated the biological activity of Pt(II) complexes with 2-(5-perfluoropropyl)-
1,2,4-oxadiazole-3yl)-pyridine (pfpop), 2-(5-perfluoroheptyl-1,2,4-oxadiazole-3yl)-pyridine (pfhop),
2-(3-perfluoropropyl-1-methyl- 1,2,4-triazole-5yl)-pyridine (pfptp), and 2-(3-perfluoroheptyl-1-
methyl-1,2,4-triazole-5yl)-pyridine (pfhtp) ligands, finding interesting data concerning both antitumor
and antimicrobial activity [4,5]. Because of the severe side effects of complexes, such as cisplatin [6],
in the treatment of several carcinomas, and of the cancer resistance mechanisms against the clinically
utilized drug doses, in recent years, the research has been moving toward the tentative toxicity reduction
of Pt(II). In order to overcome the limitations of cisplatin and its analogues [6], the application of drug
delivery systems depressing toxicity and negative side effects [7], or the synthesis of new complexes
with different metal ions, such as Ni(II), Pd(II), Cu(II), Ru(II), Co(II), Zn(II), and Sn(IV) [8–12], are some
of the proposed solutions. An interesting review of the mechanistic insight on different mononuclear
Pt(II) and Pt(IV) complexes and dinuclear Pt(II) complexes through spectroscopic, kinetic, and DFT
measurements described the chemistry of antitumor platinum complexes, highlighting their interaction
with biomolecules containing nitrogen and sulfur as donor atoms. This study could provide the basis
for the development of other metal complexes with different metal ions [13].
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In this context, Pd(II) complexes display structural and electronic characteristics similar to Pt(II)
complexes (d8-electron configuration) but the high kinetic lability of Pd(II) complexes makes them
inactive or highly toxic [14–19]. The choice of the ligand in the coordination chemistry of Pd(II) ion is
fundamental to reduce the high cytotoxicity and to increase the solubility of palladium complexes [15].
Fluoro-substituted heterocycles are important compounds which play a role in different areas as well as
agrochemicals, surfactants, medical, and pharmaceutical products [20]. The perfluoroalkyl-1,2,4-triazoles
were synthesized for the first time by Brown in 1962 [21]. Later, these compounds were utilized
for their potential bioactive properties [22]. Among the explored heterocyclic ligands, the triazoles,
with a five membered ring and two isomer forms, 1,2,3- and 1,2,4-triazole, are worth taking into
account. They are very stable to acid and basic hydrolysis in oxidizing and reducing conditions, due
to their aromatic stability. Moreover, triazoles represent a very interesting class of compounds for their
application in materials chemistry [23], but in particular, both 1,2,3- and 1,2,4-triazoles are widely applied
in medicinal chemistry, as antitumor, anti-inflammatory, analgesic, antifungal, antibacterial, antiviral,
etc. [24]. For these reasons, we have explored the antimicrobial activity of new Pd(II) complexes
with 3-perfluoroalkyl-1-methyl-1,2,4-triazolyl-pyridine ligands. Both complexes were found to be
active towards a Gram-negative strain, Escherichia coli, and a Gram-positive strain, Kocuria rhizophila.
In addition, both complexes displayed antibacterial activity against two pathogenic Staphylococcus
aureus Gram-positive strains.

2. Results and Discussion

The IR and NMR spectra gave important information regarding the coordination modes of the
ligands in the complexes (Scheme 1). In fact, the IR spectra of complexes 1 and 2 showed a slight
shift of the bands due to v(CH=N) and v(C-F) vibrations of pyridine rings and perfluoroalkyl chains,
after complexation of the ligands. Furthermore, the coordination of the ligand was confirmed by the
stretching vibrations of Pd-N bond of 1 and 2, at 278 and 286 cm−1 respectively. The symmetrical and
asymmetrical stretching vibrations of Pt-Cl bonds are present at 328 and 333 cm−1 for complex 1 and at
344 and 328 cm−1 for complex 2, respectively, indicating a square-planar arrangement of Pd(II) ion
(Figure 1A, Supplementary Figure S1). The proposed structures of complexes 1 and 2 were reported
in Scheme 1. The coordination mode of the complexes in solution was determined by the using of
1H-NMR and all assignments of resonances were based on literature data [25–27] and are in good
agreement with the proposed structures. The numbering of protons used for 1H-NMR is shown in
Scheme 1. For complexes 1 and 2, the four signals of protons H6’, H5’, H3’, H4’ of pyridine rings
were slightly shifted after coordination of free ligands pfptp and pfhtp (Figure 1B, Supplementary
Figure S2). The bidentate coordination of the ligand occurs through the nitrogen atom of pyridine ring
and N4 atom of triazole (Scheme 1).
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Figure 1. (A) IR spectrum and (B) 1H-NMR spectrum of complex 1.

The antibacterial activity of the synthesized compounds was evaluated against Escherichia coli
ATCC25922 as an example for Gram-negative bacteria and Kocuria rhizophila ATCC 93411 as an example
for Gram-positive bacteria by using the paper disc plate method (Figure 2). Both complexes were
active against both Gram-positive and -negative bacterial strains with complex 2 featuring a better
inhibition of E. coli growth. It is noteworthy to highlight that Gram-negative bacteria are protected
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by a thin protective cell wall and an additional layer of lipoproteins and lipopolysaccharides (LPS),
while Gram-positive bacteria are characterized by a thick layer of cell wall and are lacking of the
additional LPS membrane. An LPS layer makes the Gram-negative strains much more resistant
towards both natural and synthetic molecules [5,28–31], whose entrance into the cells is hampered by
the hydrophobic nature of this additional layer. Actually, the infections due to Gram-negative bacteria
are more difficult to eradicate [3,32]. Thus, we assume that the perfluoroalkyl chains could allow the
penetration of both compounds into Gram-negative bacteria and lead to the accumulation of these
complexes into the phospholipid bilayers of the cytoplasmic membrane with the consequent alteration
of the membrane properties through a process known as narcosis [31,33,34] and with the resultant
cell death. This assumption is supported by the report of Wójcik et al., 2018 [35] that demonstrated
the incorporation of perfluorinated compounds into model membranes resembling those typical to
Gram-negative bacteria. Antibacterial activity was also tested against S. aureus ATCC 25923 and
S. aureus ATCC 33862, two pathogenic, toxigenic and biofilm producer strains, frequently associated
with both human and animal infections [2] and we found that both complexes were active in inhibiting
the growth of both the strains with complex 1 more performing than complex 2.
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Figure 2. Diameter of the inhibition halo as proof of the antibacterial activity of the two complexes
against E. coli ATCC25922, K. rhizophila ATCC9341, S. aureus ATCC 25923, S. aureus ATCC 33862.
Vancomycin and ampicillin were used for comparison of the antibacterial activity.

In addition, we evaluated whether complexes 1 and 2 could explicate their mode of action by
binding to DNA molecules, as cisDDP and its derivatives are reported to do [5,15]. Mobility shift assay
of a model DNA molecule (plasmid pUC19) demonstrated that both complexes did not bind to DNA
(Figure 3), differently from the complex 3, previously prepared and characterized [5] containing the
short perfluorinated chain that strongly binds to plasmid DNA. The structure of the complex 3 was
reported in Scheme 2.
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Figure 3. Gel electrophoresis of pUC19 plasmid DNA incubated in presence of 10 mM of complexs 1
and 2. Plasmid DNA mobility was compared to complex 3 (Rubino et al., [5]) and cisDDP. Control
indicates the plasmid DNA alone. The plasmid DNA band indicated by the arrow disappeared if DNA
was bound by the compound.
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3. Materials and Methods

3.1. Instrumentation

Reagents and solvents were used as received. Ligands were synthesized as described in
literature [4]. Synthesis of complexes was executed with the exclusion of direct light. Elemental analysis
for C, H, N was performed at the Laboratorio di Microanalisi (University of Padova, Italy). IR spectra
(Nujol) were registered with a Shimadzu FTIR-8300 instrument (Shimadzu Scientific Instruments
Inc., Maryland, USA). 1H spectra were recorded on a Bruker 300 Advance spectrometer (Bruker,
Massachusetts, USA), operating at 300 MHz. All complexes were dissolved in DMSO-d6. The chemical
shifts were expressed as δ (ppm) with tetramethylsilane (TMS) as an internal standard for 1H-NMR.
Chlorine was determined by potentiometric titration with standard silver nitrate after combustion in
pure oxygen according to Schöniger [36]. The percentage of palladium was measured by absorption
spectroscopy using a Perkin-Elmer 372 atomic absorption spectrometer (Perkin-Elmer, Milano, Italy)
according to the appropriate standards. The molar conductivities were determined in DMSO at
10−3 M at 25 ◦C with a Crison GLP 31 Model Conductometer (Mettler Toledo, Ohio, USA). Mass
spectrometry (MS) spectra of the complexes were determined with Q-Exactive High Resolution mass
spectrometer (Thermo Fischer Scientific, Munchen, Germany equipped with the HESI electrospray
source. Melting points were detected on a Kofler plate with Reichart-Thermovar hotstage apparatus
(Reichart Thermovar) Both complexes presented a low solubility even in DMSO-d6, thus preventing
the acquisition of useful 13C-NMR spectra.

3.2. Biological Sample and Reagents

The paper disc plate method was used to determine the antimicrobial activity of the complexes 1 and
2 as previously described [37]. The antimicrobial activity was investigated against the Gram-negative
Escherichia coli ATCC 25922 and the Gram-positive Kocuria rhizophila ATCC93411, Staphylococcus aureus
ATCC 25923, and S. aureus ATCC 33862. Bacterial suspensions of each microorganism were prepared
in LB medium with a total bacterial count of approximately 108 cells/mL. A 100 µL aliquot of bacterial
suspension was spread onto LB-agar plates. Since compounds were dissolved in DMSO, a pure solution
of DMSO and sterile distilled water were used to soak paper disks that were used as negative controls.
The same amount (5 µM) of the complexes were directly spotted on sterile Whatman filter paper discs
that were put on the overlay of each bacterial suspension on different LB-agar plates. After overnight
incubation at 37 ◦C, growth inhibition halos were observed and compared to those obtained using 5 µM
of vancomycin and ampicillin. The antimicrobial activity was calculated at least as a mean of three
replicates. DNA binding activity of 10 mM of the complexes was evaluated by using electrophoretic
mobility shift assays (EMSA) of 100 ng of pUC19 DNA plasmid as described elsewhere [38]. At the
end of the electrophoresis, the gel was ethidium bromide stained and photographed.
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3.3. Synthesis of Complex 1

Complex 1 was synthesized from an aqueous solution of K2PdCl4 (0.149 g, 4.6 × 10−4 mol) (10 mL)
that was added dropwise to an ethanolic solution (30 mL) of pfptp (0.151 g, 4.6 × 10−4 mol), with
stirring at 50 ◦C for 1 h and at room temperature for 24 h. Methods of synthesis of the ligands were
reported in the literature [4,39–42]. The solid was filtered, washed with water, ethanol and dried in
vacuo over P4O10. K2PdCl4 was prepared dissolving PdCl2 (0.177 g) in an aqueous solution of KCl
(0.149 g). The solution was stirred for half an hour at room temperature. Yield 70%. Anal. Calc. for
(C11H7N4F7PdCl2): C, 26.14; H, 1.40; N, 11.08; Cl, 14.03; Pd, 21.05%. Found: C, 26.00; H, 1.30; N,
11.05; Cl, 13.70; Pd, 21.45%. Melting point: >250 ◦C (decomp.). ΛM =11 µS (indicative of neutral
complex) [39]. IR (cm−1) for free ligand: 2853 v(C-H), 1590 v(CH=N), 1241-1147 v(C-F), and for the
complex: 2853 v (C-H), 1611 v(CH=N), 1238-1196 v(C-F), 333 and 328 v(Pd-Cl), 278 v(Pd-N) Figure 1A).
1H-NMR of the ligands (DMSO-d6, 300 MHz) δ ppm were reported in literature [4,20,21]. For the
complex (DMSO-d6, 300 MHz) δ ppm: 8.81 (d, 1H, C6’H), 8.16 (d, 1H, C3’H), 8.04 (t, 1H, C5’H), 7.63 (t,
1H, C4’H), 4.39 (s, 3H, -CH3). 3JC3HC4H = 8 Hz; 3JC6HC5H = 3 Hz (Figure 1B). ESI(+)-MS: [M − Cl]+

[C11H7F7N4ClPd] calculated: 468.92768, found: 468.92405 m/z, Supplementary Figure S3.

3.4. Synthesis of Complex 2

Complex 2 was prepared following the same procedure for complex 1 by an aqueous solution of
K2PdCl4 (0.149 g, 4.6 × 10−4 mol) (10 mL) that was added dropwise to an ethanolic solution (30 mL) of
pfhtp (0.243 g, 4.6 × 10−4 mol). Yield 68%. Anal. Calc. for (C15H7N4F15PdCl2): C, 25.54; H, 1.00; N, 7.94;
Cl, 10.05; Pd, 15.08%. Found: C, 25.14; H, 1.00; N, 7.65; Cl, 9.96; Pd, 14.70%. Melting point: >250 ◦C
(decomp.). ΛM = 8 µS (indicative of neutral complex) [42]. IR (cm−1) for free ligand: 2853 v (C-H), 1590
v (CH=N), 1247-1147 v(C-F), and for the complex 2853 v (C-H), 1598 v(CH=N), 1274-1147 v(C-F), 344
and 328 v(Pd-Cl) and 286, 277 v(Pd-N), Supplementary Figure S1. 1H-NMR for the complex (DMSO,
300 MHz) δ ppm: 8.80 (d, 1H, C6’H), 8.16 (d, 1H, C3’H), 8.06 (t, 1H, C5’H), 7.63 (t, 1H, C4’H), 4.38
(s, 3H, -CH3); 3JC3HC4H = 8 Hz; 3JC6HC5H = 6.0 Hz Fig. S2. ESI(+)-MS: [M − Cl]+ [C15H7N4ClF15Pd]
calculated: 668.91491, found: 668.91565 m/z, Supplementary Figure S4.

4. Conclusions

The experience of Pt(II) complexes with perfluoroalkyl heterocyclic ligands, their synthesis,
and biological studies (anti-proliferative and antimicrobial activity) led us to investigate the
synthesis and the antibacterial activity of new complexes constituted by 2-(3-perfluoropropyl-
1-methyl-1,2,4-triazole-5yl)-pyridine (pfptp) or 2-(3-perfluoroheptyl-1-methyl-1,2,4-triazole-5yl)-
pyridine (pfhtp) as ligands and Pd(II), as metal ion, in replacement of Pt(II) ion. As already observed
for Pt(II) complexes, in Pd(II) complexes, the coordination occurs through the nitrogen atom of pyridine
rig and N4 atom of triazole, the geometry of metal is square-planar. Complexes 1 and 2 showed
activity against the Gram-negative E. coli ATCC 25922 and the Gram-positive K. rhizophila ATCC
93411, S. aureus ATCC 25923, and S. aureus ATCC 33862 strains. We assume that the activity of both
complexes might be dependent upon the perfluoroalkyl chains that could allow their penetration into
the bacterial membrane.

Supplementary Materials: The following are available online, Figure S1: FTIR spectra of complex (2), Figure S2:
1H-NMR of complex (2) in DMSO-d6 solvent, Figure S3: ESI(+)-(MS) [M − Cl]+ spectra of complex (1), Figure S4:
ESI(+)-(MS) [M − Cl]+ spectra of complex (2).
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