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Abstract
A simple and efficient method of iodine-mediated aminohalogenation-oxidation of fluorinated N’-propargyl amidines to 
synthesize 2-fluoroalkyl imidazole-5-carbaldehydes was developed. This method showed good functional group compatibil-
ity and wide substrate scope, as variety of substituted substrates proceeded smoothly to give the corresponding products in 
moderate to excellent yields. And this method was also suitable to unfluorinated substrates. Fluorinated allyl amidines used 
as starting materials, aminohalogenated products were obtained as the final products. Studies on the mechanism indicated 
that the carbonylation proceeded via 5-iodomethyl imidazole intermediate, and the carbonyl oxygen atom was demonstrated 
that originated from dioxygen.

Keywords Iodine-mediated · Propargyl amidine · Aminohalogenation-oxidation · Imidazole-5-carbaldehyde · 5-iodomethyl 
imidazole

Introduction

Fluorine was featured by unique chemical properties for the 
smaller atomic radius and the strongest electronegativity. 
The selective introduction of a fluorine atom or fluorine-
containing group into organic molecules would dramatically 
modulate their lipophilicity, metabolic stability, bioavailabil-
ity, and other properties (Groult et al. 2017; Kirsch 2012; 
Gouverneur et al. 2012). Be provided with new characteris-
tics, fluorinated compounds are omnipresent in pharmaceu-
ticals, agrochemicals, energetic materials, and other high-
value chemical products (wang et al. 2014; Meanwell 2011; 
Purser et al. 2008). Despite great progress in constructing 
C-F and C-Rf over the past decade (Sather et al. 2016; Yang 

et al. 2015; Concepción et al. 2015; Liu et al. 2015), explor-
ing a simple and efficient strategy to synthesize compounds 
with a fluorine atom or fluoroalkyl group at a desirable posi-
tion in a highly controllable manner is still demanding.

Imidazoles which possess prominent chemical properties 
and physiological activity are common nitrogen heterocy-
clic compounds in bioactive molecules (Zhang et al. 2014; 
Jin et al. 2014). However, the numbers of pharmaceuticals, 
agrochemicals and other materials comprising fluorinated 
imidazoles remain limited for only few strategies that dedi-
cate for constructing imidazole with a fluoroalkyl group at 
C-2 position efficiently (Du et al. 2008). Although some 
methods of transition metal-catalyzed fluoroalkylation can 
be applied in synthesis of 2-fluoroalkyl imidazoles (Zhang 
et al. 2011a; Chu and Qing 2012), the necessities of high 
cost, harsh conditions, complex system, and big toxicity 
result them in lacking of practicability and universality. In 
which of that situation, the use of fluorinated building blocks 
is a good alternative choice (Deutsch et al. 2016; Nie et al. 
2011). Hashmi (Weyrauch et al. 2010), Wu (Li et al. 2013a; 
Li et al. 2012), Saito (Takahashi et al. 2020; Suzuki et al. 
2017; Asari et al. 2016; Saito et al. 2011; Saito et al. 2010), 
Wan (Hu et al. 2014), Liu (Yi et al. 2018) and Maldvogel 
(Herszman et al. 2019) have developed efficient means of 
synthesizing imidazole/oxazole derivatives by halogen-
induced electrophilic cyclization of propargyl amidines/
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amides, respectively. The resulting halides could be used as 
intermediate for synthesizing various compounds with imi-
dazole/oxazole motif, which allowed for quickly accessing 
a large number of diverse imidazole/oxazole derivatives for 
drug discovery and other industries (Scheme 1a). In 2020, 
a novel Bi(III)-catalyzed aminooxygenation was reported 
by us (Li et al. 2020). Under a dioxygen atmosphere, fluori-
nated propargyl amidines converted to 2-fluoroalkyl imida-
zole-5-carbaldehydes in one step. In spite of high atomic 
economy, this reaction was not environmentally friendly for 
using a large amount of toxic acetone and phenol, in which 
excess phenol would pollute the products because of the 
similar polarity. In view of the importance of this compound, 
we would report a practical method to synthesize 2-fluoro-
alkyl imidazole-5-carbaldehydes in moderate to excellent 
yields. Compared with previous works, this one pot-two step 
reaction had a more simple system, which could proceed 
smoothly in air. Most notably, the desired products were 
obtained with higher purity as byproducts and other impuri-
ties could be removed easily.

Experimental

Materials and instruments

All reagents used in this paper were purchased from commer-
cial sources and purified before used by standard procedures. 
Unless otherwise specified, all reactions were carried out in 
a Schlenk tube and magnetic stirred under an ambient cir-
cumstance. TLC analysis was performed on silica gel plates, 
column chromatography over silica gel (mesh 300–400) and 
petroleum ether/ethyl acetate combination was used as elu-
ent. Melting points were measured on a Melt-Temp appara-
tus and were uncorrected. 1H NMR spectra were recorded in 
 CDCl3 on a Bruker AM-300/400 (300 MHz/400 MHz) with 
TMS as internal standard. 19F NMR spectra were taken on a 
Bruker AM-300/400 (282 MHz) spectrometer with  CFCl3 as 
internal standard. 13C NMR spectra were taken on a Bruker 
AM-300/400 (101 MHz) spectrometer with TMS as internal 
standard. Mass spectra were recorded in Zhejiang Univer-
sity. Elemental analyses were recorded in Shanghai Institute 
of Organic Chemistry, Chinese Academy of Sciences.

Scheme 1  Works on synthesiz-
ing 2-fluoroalkyl imidazole 
derivatives

(A)

(B)

(C)
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General procedure for synthesis of 2‑fluoroalkyl 
imidazole‑5‑carbaldehyde

To a Schlenk tube was added  I2 (101.5 mg, 0.4 mmol, 0.4 
equiv),  CH3CN (5.0 mL). With stirring, Ceric ammonium 
nitrate (CAN) (548.2 mg, 1.0 mmol, 1.0 equiv) and  NaHCO3 
(126.0 mg, 1.5 mmol, 1.5 equiv) were added in batches. 
Some minutes later, a solution of N’-propargyl amidine 
(1.0 mmol, 1.0 equiv) in  CH3CN (1.0 mL) was added drop-
wise. Then the reaction was carried out in dark, and moni-
tored by TLC. To the end, the system was quenched by addi-
tion of saturated  Na2S2O3, and extracted with ethyl acetate. 
The combined organic phases were washed with brine, dried 
with anhydrous  MgSO4, and filtered. The filtrate was con-
centrated under vacuum, and the residue was further purified 
by column chromatography to give the desired product.

General procedure for synthesis of 5‑iodome‑
thyl‑2‑trifluoromethyl imidazole

Under Nitrogen, to a solution of  I2 (507.6 mg, 1.5 mmol, 
1.5 equiv) in  CH3CN (5.0 mL) was added CAN (1.1 g, 
1.5 mmol, 1.5 equiv) and  NaHCO3 (168.0 mg, 2.0 mmol, 2.0 
equiv). Some minutes later, a solution of N’-propargyl ami-
dine (1.0 mmol, 1.0 equiv) in  CH3CN (1.0 mL) was added 
dropwise. Then the reaction was carried out in dark, and 
monitored by TLC. To the end, the reaction was quenched 
by addition of saturated  Na2S2O3, and extracted with ethyl 
acetate. The combined organic phases were washed with 
brine, dried with anhydrous  MgSO4 and filtered. The filtrate 
was concentrated under vacuum, and the residue was further 
purified by column chromatography to give the 5-iodome-
thyl imidazole, kept at 0 ℃, in 64% yield.

General procedure for synthesis of 5‑(iodomethyl)‑2
‑(trifluoromethyl)‑4,5‑dihydro‑1H‑imidazole

To a schlenk tube was added  NaHCO3 (126.0 mg, 1.5 mmol, 
1.5 equiv), and a solution of allyl amidine (1.0 mmol) in 
 CH3CN (4 mL). And the system was placed in an ice-water 
bath. With stirring, a solution of ICl (178.6 mg, 1.1 mmol, 
1.1 equiv) in  CH3CN (1 mL) was added dropwise. Then 
the system was allowed to warm to room temperature, and 
monitored by TLC. To the end, the reaction was quenched 
by addition of saturated  Na2S2O3, and extracted with ethyl 
acetate. The combined organic phases were washed with 
brine, dried with anhydrous  MgSO4, and filtered. The filtrate 
was concentrated under vacuum, and the residue was fur-
ther purified by column chromatography to give the desired 
product.

Characterization for 2‑fluoroalkyl imidazole deriva‑
tives

1‑Phenyl‑2‑(trifluoromethyl)‑1H‑imidazole‑5‑carbaldehyde 
(2a)

White solid, m. p.: 60 ℃. 1H NMR (400 MHz,  CDCl3): δ 
9.63 (s, 1H), 7.93 (s, 1H), 7.56 (m, 3H), 7.37 (m, 2H). 19F 
NMR (282 MHz,  CDCl3): δ -60.14 (s). 13C NMR (101 MHz, 
 CDCl3): δ 178.7, 140.7 (q, J = 38.6 MHz), 137.7, 134.7, 
133.6, 130.6, 129.5, 127.2, 117.7 (q, J = 270.5 MHz). MS 
(EI), m/e (%): 240  (M+). Anal. Calcd. for  C11H7F3N2O: C, 
55.01; H, 2.94; N, 11.66; Found: C, 54.77; H, 11.84; N, 2.83.

1‑(4‑Methoxyphenyl)‑2‑(trifluoromethyl)‑1H‑imida‑
zole‑5‑carbaldehyde (2b)

White solid, m. p.: 116–117 ℃. 1H NMR (400 MHz,  CDCl3): 
δ 9.63 (s, 1H), 7.91 (s, 1H), 7.28 (d, J = 12.0 MHz, 2H), 7.02 
(d, J = 12.0 MHz, 2H), 3.89 (s, 3H). 19F NMR (282 MHz, 
 CDCl3): δ -60.99 (s). 13C NMR (101 MHz,  CDCl3): δ 179.0, 
161.0, 140.9 (q, J = 39.1 MHz), 137.4, 134.9, 128.3, 125.9, 
118.2 (q, J = 266.1 MHz), 114.6, 55.6. MS (EI), m/e (%): 
270  (M+). HRMS (EI), Calcd. for  C12H9N2O2F3: 270.0616; 
Found: 270.0613.

1‑(4‑Nitrophenyl)‑2‑(trifluoromethyl)‑1H‑imidazole‑5‑car‑
baldehyde (2c)

White solid, m. p.: 151–154 ℃. 1H NMR (400 MHz,  CDCl3) 
δ 9.72 (s, 1H), 8.33 (d, J = 8.0 MHz, 2H), 7.90 (s, 1H), 7.47 
(d, J = 8.0 MHz, 2H). 19F NMR (282 MHz,  CDCl3) δ -60.17 
(s). 13C NMR (101 MHz,  CDCl3) δ 178.4, 148.8, 141.0 (q, 
J = 39.4 MHz), 139.9, 139.3, 132.4, 128.4, 124.8, 117.9 (q, 
J = 292.9 MHz). MS (EI), m/e (%): 285.0  (M+). HRMS (EI), 
Calcd. for  C11H6F3N3O3: 285.0361; Found: 285.0362.

Ethyl 4‑(5‑formyl‑2‑(trifluoromethyl)‑1H‑imidazol‑1‑yl)
benzoate (2d)

White solid, m. p.: 93–95 ℃. 1H NMR (400 MHz,  CDCl3): 
δ 9.71 (s, 1H), 8.23 (d, J = 8.4 MHz, 2H), 7.95 (s, 1H), 7.43 
(d, J = 8.4 MHz, 2H), 4.44 (q, J = 7.2 MHz, 2H), 1.43 (t, 
J = 7.2 MHz, 3H). 19F NMR (282 MHz,  CDCl3): δ -59.97 
(s). 13C NMR (101 MHz,  CDCl3): δ 178.4, 165.1, 140.9 
(q, J = 39.3 MHz), 138.8, 137.5, 134.5, 132.7, 130.7, 127.2, 
117.5, 269.7 (q, J = 269.7 MHz), 61.6, 14.3. MS (EI), m/e 
(%): 312  (M+). Anal. Calcd. for  C14H11F3N2O3: C, 53.85; H, 
3.55; N, 8.97; Found: C, 54.04; H, 3.65; N, 8.88.
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1‑(4‑Chlorophenyl)‑2‑(trifluoromethyl)‑1H‑imidazole‑5‑car‑
baldehyde (2e)

White solid, m. p.: 84 ℃. 1H NMR (400 MHz,  CDCl3): δ 
9.70 (s, 1H), 7.93 (s, 1H), 7.53 (d, J = 8.7 MHz, 2H), 7.31 
(d, J = 8.7  MHz, 2H). 19F NMR (282  MHz,  CDCl3): δ 
-60.03 (s). 13C NMR (101 MHz,  CDCl3): δ 178.5, 141.0 
(q, J = 38.7 MHz), 138.7, 136.8, 134.5, 132.3, 129.8, 128.4, 
117.5 (q, J = 270.5 MHz). MS (EI), m/e (%): 274  (M+). 
Anal. Calcd. for  C11H6F3N2ClO: C, 48.11; H, 2.20; N. 10.20; 
Found: C, 48.00; H, 2.26; N, 10.08.

1‑m‑Tolyl‑2‑(trifluoromethyl)‑1H‑imidazole‑5‑carbaldehyde 
(2f)

White solid, m. p.: 29–33 ℃. 1H NMR (400 MHz,  CDCl3): 
δ 9.53 (s, 1H), 7.85 (s, 1H), 7.34 (m, 2H), 7.10 (s, 2H), 2.02 
(s, 3H). 19F NMR (282 MHz,  CDCl3): δ -60.20 (s). 13C NMR 
(101 MHz,  CDCl3): δ 178.9, 140.6 (q, J = 39.0 MHz), 139.9, 
137.2, 134.8, 133.4, 131.4, 129.3, 127.6, 124.2, 117.5 (q, 
J = 269.7 MHz), 21.2. MS (EI), m/e (%): 254  (M+). Anal. 
Calcd. for  C12H9F3N2O: C, 56.70; H, 3.57; N, 11.02; Found: 
C, 56.57; H, 5.54; N, 11.20.

1‑(3‑Chlorophenyl)‑2‑(trifluoromethyl)‑1H‑imidazole‑5‑car‑
baldehyde (2g)

White solid, m. p.: 51–54 ℃. 1H NMR (400 MHz,  CDCl3) 
δ 9.63 (s, 1H), 7.85 (s, 1H), 7.51 (m, 1H), 7.41 (m, 1H), 
7.30 (s, 1H), 7.19 (m, 1H). 19F NMR (282 MHz,  CDCl3) 
δ -60.36 (s). 13C NMR (101 MHz,  CDCl3) δ 178.5, 140.8 
(q, J = 39.4 MHz), 138.6, 135.2, 134.7, 134.5, 130.9, 130.4, 
127.4, 125.5, 117.8 (q, J = 272.7 MHz). MS (EI): m/e (%): 
274  (M+). HRMS (EI), Calcd. for  C11H6F3ClN2O: 274.0121; 
Found: 274.0122.

2‑(Trifluoromethyl)‑1‑(3‑(trifluoromethyl)phenyl)‑1H‑imi‑
dazole‑5‑carbaldehyde (2h)

White solid, m. p.: 74–77 ℃. 1H NMR (400 MHz,  CDCl3) 
δ 9.66 (s, 1H), 7.87 (s, 1H), 7.77 (m, 1H), 7.62 (m, 1H), 
7.54 (m, 1H), 7.48 (m, 1H). 19F NMR (282 MHz,  CDCl3) 
δ -60.34 (s), -62.86 (s). 13C NMR (101 MHz,  CDCl3) δ 
178.4, 141.1 (q, J = 39.4 MHz), 139.2, 134.5, 132.2 (q, 
J = 33.3 MHz), 130.5, 130.2, 127.4 (q, J = 3.0 MHz), 124.3 
(q, J = 4.0 MHz), 123.1 (q, J = 273.7 MHz), 122.1, 117.8 (q, 
J = 268.7 MHz). MS (EI), m/e (%): 308  (M+). HRMS (EI), 
Calcd. for  C12H6F6N2O: 308.0384; Found: 308.0385. Anal. 
Calcd. for  C12H6F6N2O: C,46.77; H, 1.96; N, 9.09; Found: 
C, 46.89; H, 2.01; N, 9.18.

1‑(2‑Methoxyphenyl)‑2‑(trifluoromethyl)‑1H‑imida‑
zole‑5‑carbaldehyde (2i)

White solid: m. p.: 104–106 ℃. 1H NMR (400  MHz, 
 CDCl3) δ 9.52 (s, 1H), 7.84 (s, 1H), 7.46 (m, 1H), 7.23 
(d, J = 8.0 MHz, 1H), 7.01 (m, 2H). 19F NMR (282 MHz, 
 CDCl3) δ -61.83 (s). 13C NMR (101  MHz,  CDCl3) δ 
179.0, 154.7, 140.6 (q, J = 39.4 MHz), 137.5, 134.5, 132.1, 
128.3, 122.5, 120.7, 118.0 (q, J = 272.7  MHz), 111.9, 
55.8. MS (EI), m/e (%): 270  (M+). HRMS (EI), Calcd. for 
 C12H9F3N2O2: 270.0616; Found: 270.0617.

1‑(2‑Iodophenyl)‑2‑(trifluoromethyl)‑1H‑imidazole‑5‑car‑
baldehyde (2j)

White solid, m. p.: 44–46 ℃. 1H NMR (300 MHz,  CDCl3) 
δ 9.70 (s, 1H), 7.98 (m, 2H), 7.54 (t, J = 7.7 MHz, 1H), 
7.41 (d, J = 7.8 MHz, 1H), 7.30 (t, J = 7.5 MHz, 1H). 19F 
NMR (282 MHz,  CDCl3) δ -60.92 (s). 13C NMR (101 MHz, 
 CDCl3) δ 178.4, 140.2 (q, J = 39.3 MHz), 139.9, 138.5, 
137.2, 133.8, 131.9, 129.3, 128.2, 117.4 (q, J = 270.5 MHz), 
97.1. MS (EI), m/e (%): 239  (M+). Anal. Calcd. For 
 C11H6F3N2IO: C, 36.09; H, 1.65; N, 7.65; Found: C, 36.11; 
H, 1.57; N, 7.86.

2‑(Chlorodifluoromethyl)‑1‑(4‑methoxyphenyl)‑1H‑imida‑
zole‑5‑carbaldehyde (2k)

White solid, m. p.: 138–140 ℃. 1H NMR (400  MHz, 
 CDCl3) δ 9.51, 7.82, 7.21 (d, J = 8.0 MHz, 2H), 6.94 (d, 
J = 8.0 MHz, 2H), 3.81 (s, 3H). 19F NMR (282 MHz,  CDCl3) 
δ -48.02 (s). 13C NMR (101 MHz,  CDCl3) δ 179.1, 160.8, 
144.3 (t, J = 31.8 MHz), 137.2, 135.0, 128.7, 126.1, 119.9 (t, 
J = 289.9 MHz), 114.5, 55.6. MS (EI), m/e (%): 286  (M+). 
HRMS (EI), Calcd. for  C12H9ClF2N2O2: 286.0321; Found: 
286.0320.

2‑(Chlorodifluoromethyl)‑1‑(4‑(trifluoromethyl)
phenyl)‑1H‑imidazole‑5‑carbaldehyde (2l)

White solid, m. p. 122–124 ℃. 1H NMR (400 MHz,  CDCl3) 
δ 9.64 (s, 1H), 7.87 (s, 1H), 7.74 (d, J = 8.0 MHz, 2H), 
7.43 (d, J = 8.0 MHz, 2H). 19F NMR (282 MHz,  CDCl3) δ 
-47.90 (s, 2F), -62.81 (s, 3F). 13C NMR (101 MHz,  CDCl3) 
δ 177.4, 143.5 (t, J = 32.8 MHz), 138.1, 136.3, 133.4, 131.6 
(q, J = 33.3 MHz), 127.1, 125.6, 122.3 (q, J = 273.7 MHz), 
118.7 (t, J = 289.9 MHz). MS (EI), m/e (%): 324  (M+). 
HRMS (EI), Calcd. for  C12H6ClF5N2O: 324.0089; Found: 
324.0091.
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2‑(Chlorodifluoromethyl)‑1‑(2‑ethylphenyl)‑1H‑imida‑
zole‑5‑carbaldehyde (2m)

White solid, m. p.: 77–78 ℃. 1H NMR (400 MHz,  CDCl3) 
δ 9.49 (s, 1H), 7.88 (s, 1H), 7.47 (m, 1H), 7.39 (m, 
1H), 7.28 (m, 1H), 7.19 (m, 1H), 2.19 (m, 2H), 1.06 (t, 
J = 8.0 MHz, 3H). 19F NMR (282 MHz,  CDCl3) δ -48.87 
(d, J = 16.9 MHz, 2F). 13C NMR (101 MHz,  CDCl3) δ 178.9, 
144.0 (t, J = 32.3 MHz), 141.1, 137.7, 134.5, 132.5, 130.9, 
127.6, 126.7, 119.9 (t, J = 299.0 MHz), 23.2, 13.5. MS (EI), 
m/e (%): 284  (M+). HRMS (EI), Calcd. for  C13H11ClF2N2O: 
284.0528; Found: 284.0524.

1‑(2‑Bromophenyl)‑2‑(chlorodifluoromethyl)‑1H‑imida‑
zole‑5‑carbaldehyde (2n)

Light yellow solid. m. p.: 63–64 ℃. 1H NMR (400 MHz, 
 CDCl3) δ 9.61 (s, 1H), 7.86 (s, 1H), 7.67 (m, 1H), 7.40 (m, 
3H). 19F NMR (282 MHz,  CDCl3) δ -49.18 (q). 13C NMR 
(101 MHz,  CDCl3) δ 178.5, 143.8 (t, J = 32.3 MHz), 138.5, 
133.9, 133.8, 133.5, 131.9, 129.2, 128.3, 122.3, 119.7 (t, 
J = 289.9 MHz). MS (EI), m/e (%): 334  (M+). HRMS (EI), 
Calcd. for  C11H6ClBrF2N2O: 298.9632 (M-Cl); Found: 
298.9628 (M-Cl).

2‑(Bromodifluoromethyl)‑1‑p‑tolyl‑1H‑imidazole‑5‑car‑
baldehyde (2o)

White solid (decompose in heating). 1H NMR (300 MHz, 
 CDCl3): δ 9.57 (s, 1H), 7.90 (s, 1H), 7.35 (d, J = 8.4 MHz, 
2H), 7.27 (d, J = 8.4 MHz, 2H), 2.47 (s, 3H). 19F NMR 
(282 MHz,  CDCl3): δ −44.97 (s). 13C NMR (101 MHz, 
 CDCl3): δ 188.0, 144.9 (t, J = 29.1 MHz), 140.8, 137.3, 
134.7, 131.2, 130.0, 127.2, 111.2 (t, J = 300.4  MHz), 
21.3. MS (EI), m/e (%): 314  (M+). HRMS (EI), Calcd. for 
 C12H9N2OF2Br: 313.9866; Found: 313.9861.

2‑(Bromodifluoromethyl)‑1‑(2‑(trifluoromethyl)
phenyl)‑1H‑imidazole‑5‑carbaldehyde (2p)

White solid, m. p.: 69–71 ℃. 1H NMR (300 MHz,  CDCl3): δ 
9.71 (s, 1H), 7.96 (s, 1H), 7.87 (m, 1H), 7.75 (m, 2H), 7.51 
(m, 1H). 19F NMR (282 MHz,  CDCl3): δ -45.53 (s, 2F), 
-60.70 (s, 3F). 13C NMR (101 MHz,  CDCl3): δ 178.3, 145.6 
(t, J = 29.2 MHz), 139.2, 134.7, 132.9, 132.4, 130.9, 129.3, 
127.6 (q, J = 5.1 MHz), 122.8 (q, J = 272.0 MHz), 110.7 (t, 
J = 301.1 MHz). MS (EI), m/e (%): 368  (M+). Anal. Calcd. 
for  C12H6BrF6N2O: C, 39.05; H, 1.66; N, 7.59; Found: C, 
39.20; H, 1.66; N, 7.46.

2‑(Difluoromethyl)‑1‑(4‑methoxyphenyl)‑1H‑imida‑
zole‑5‑carbaldehyde (2q)

White Solid, m. p.: 139–142 ℃. 1H NMR (400  MHz, 
 CDCl3) δ 9.57, 7.83, 7.22 (d, J = 12.0 MHz, 2H), 6.94 (d, 
J = 12.0 MHz, 2H), 6.51 (t, J = 52.0 MHz, 1H), 3.81 (s, 3H). 
19F NMR (282 MHz,  CDCl3) δ -113.86 (d, J = 52.64 MHz). 
13C NMR (101 MHz,  CDCl3) δ 179.0, 160.7, 144.9 (t, 
J = 21.0 MHz), 138.5, 134.3, 128.4, 126.0, 114.6, 108.4 (t, 
J = 238.0 MHz), 55.6. MS (EI), m/e (%): 252  (M+). HRMS 
(EI), Calcd. for  C12H10F2N2O2: 252.0710; Found: 252.0709.

2‑(Difluoromethyl)‑1‑(naphthalen‑1‑yl)‑1H‑imida‑
zole‑5‑carbaldehyde (2r)

White solid, m. p.: 185–188 ℃. 1H NMR (400  MHz, 
 CDCl3) δ 9.43 (s, 1H), 7.98 (m, 2H), 7.90 (m, 1H), 7.49 
(m, 4H), 7.03 (m, 1H), 6.41 (t, J = 12.0 MHz, 1H). 19F 
NMR (282 MHz,  CDCl3) δ -114.81 (qd, J1 = 39.5 MHz, 
J2 = 67.7 MHz). 13C NMR (101 MHz,  CDCl3) δ 177.6, 144.4 
(q, J = 27.3 MHz), 137.3, 133.8, 132.9, 130.0, 129.0, 127.5, 
127.3, 126.3, 124.8, 124.0, 120.1, 107.1 (t, J = 239.4 MHz). 
MS (EI), m/e (%): 272  (M+). HRMS (EI), Calcd. for 
 C15H10F2N2O: 272.0761; Found: 272.0759.

1‑(4‑Methoxyphenyl)‑2‑(perfluoroethyl)‑1H‑imida‑
zole‑5‑carbaldehyde (2s)

White solid, m. p.: 74–75 ℃. 1H NMR (400 MHz,  CDCl3) 
δ 9.52 (s, 1H), 7.87 (s, 1H), 7.20 (d, J = 12.0  MHz, 
2H), 6.94 (d, J = 8.0 MHz, 2H), 3.81 (s, 3H). 19F NMR 
(282 MHz,  CDCl3) δ -82.30 (t, J = 5.6 MHz, 3F), -108.29 
(s, 2F). 13C NMR (101  MHz,  CDCl3) δ 179.0, 160.9, 
139.6 (t, J = 54.5 MHz), 137.5, 135.2, 128.4, 126.1, 118.1 
(qt, J1 = 287.9  MHz, J2 = 70.7  MHz), 114.5, 109.1 (tq, 
J1 = 255.5 MHz, J2 = 39.4 MHz), 55.6. MS (EI), m/e (%): 
272  (M+). HRMS (EI), Calcd. for  C13H9F5N2O2: 320.0584; 
Found: 320.0586. Anal. Calcd. for  C13H9F5N2O2: C,48.76; 
H, 2.83; N, 8.75; Found: C, 48.89; H, 2.89; N, 8.87.

5‑Iodo‑1‑(4‑methoxyphenyl)‑6‑phe‑
nyl‑2‑(trifluoromethyl)‑1,4‑dihydropyrimidine (2t)

Light yellow solid (decompose at rt). 1H NMR (300 MHz, 
 CDCl3): δ 7.18 (m, 3H), 7.00 (m, 2H), 6.91 (d, J = 8.7 MHz, 
2H), 6.61 (d, J = 8.7 MHz), 4.85 (s, 2H), 3.69 (s, 3H). 19F 
NMR (282 MHz,  CDCl3): δ -65.53 (s). 13C NMR (101 MHz, 
 CDCl3): δ 159.2, 145.5 (q, J = 33.5 MHz), 143.3, 136.6, 
131.7, 131.1, 130.0, 128.6, 128.1, 117.7 (q, J = 277.1 MHz), 
113.7, 73.6, 57.6, 55.3. MS (ESI): 459.3 (M + H+). HRMS 
(ESI), Calcd. for  C18H15F3IN2O: 459.0181; Found: 
459.0187.
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Ethyl 5‑formyl‑1‑phenyl‑1H‑imidazole‑2‑carboxylate (2u)

White solid, m. p.: 102–104 ℃. 1H NMR (300  MHz, 
 CDCl3): δ 9.58 (s, 1H), 7.98 (s, 1H), 7.54 (m, 3H), 7.32 (m, 
2H), 4.29 (q, J = 7.2 MHz, 2H), 1.26 (t, J = 7.2 MHz, 3H). 
13C NMR (101 MHz,  CDCl3): δ 179.3, 157.7, 141.1, 138.1, 
135.5, 135.0, 129.9, 129.3, 127.0, 62.2, 13.9. MS (EI), m/e 
(%): 244  (M+). Anal. Calcd. for  C13H12N2O3: C, 63.93; H, 
4.95; N, 11.47; Found: C, 63.88; H, 5.19; N, 11.32.

Imidazo[1,2‑a]pyridine‑3‑carbaldehyde (2v)

White solid, m. p.: 113–115 ℃. 1H NMR (400 MHz,  CDCl3) 
δ 9.95 (s, 1H), 9.51 (d, J = 7.0 MHz, 1H), 8.33 (s, 1H), 7.82 
(d, J = 8.0 MHz, 1H), 7.57 (t, J = 7.0 MHz, 1H), 7.15 (t, 
J = 7.0 MHz, 1H). 13C NMR (101 MHz,  CDCl3) δ 177.8, 
149.2, 146.7, 130.1, 128.6, 117.7, 115.4. MS (EI), m/e (%): 

146  (M+). HRMS (EI), Calcd. for  C8H6N2O: 146.0680; 
Found: 146.0682.

2‑Phenyloxazole‑5‑carbaldehyde (2w)

White solid, m. p.: 70–72 ℃. 1H NMR (300 MHz,  CDCl3): 
δ 9.82 (s, 1H), 8.18 (d, J = 7.3 MHz, 2H), 7.96 (s, 1H), 7.52 
(m, 3H). 13C NMR (101 MHz,  CDCl3): δ 176.4, 165.6, 
149.7, 139.2, 132.4, 129.2, 127.8, 126.0. MS (EI), m/e (%): 
173  (M+). HRMS (EI): Calcd For  C10H7NO2: 173.0477; 
Found 173.0476.

5‑(Iodomethyl)‑1‑(4‑methoxyphenyl)‑2‑(trifluoromethyl)‑1
H‑imidazole (6b)

White solid (decompose at rt). 1H NMR (300  MHz, 
 CDCl3): δ 7.34 (d, J = 9.0 MHz, 2H), 7.29 (s, 1H), 7.04 
(d, J = 9.0 MHz, 2H), 4.17 (s, 2H), 3.91 (s, 3H). 19F NMR 
(282 MHz,  CDCl3): δ -65.57 (s). 13C NMR (101 MHz, 
 CDCl3): δ 161.2, 138.5, 137.3 (q, J = 38.6 MHz), 132.1, 
129.0, 124.9, 118.5 (q, J = 269.1  MHz), 114.8, 55.7. 
MS (ESI): 383.2 (M + H+). HRMS (ESI), Calcd. For 
 C12H11N2OF3I+: 382.98672; Found: 382.9868 ± 0.002.

5‑(Iodomethyl)‑1‑phenyl‑2‑(trifluoromethyl)‑4,5‑dihy‑
dro‑1H‑imidazole (4a)

White solid. 1H NMR (400 MHz,  CDCl3): δ 7.16 (m, 2H), 
6.77 (m, 1H), 6.63 (m, 2H), 3.70 (m, 1H), 3.42 (m, 2H), 
3.30 (m, 2H). 19F NMR (282 MHz,  CDCl3): δ -75.71 (s). 13C 
NMR (101 MHz,  CDCl3): δ 158.0 (q, J = 44.4 MHz), 145.3, 
129.7, 119.7, 115.5 (q, J = 292.9 MHz), 114.6. MS (EI), 
m/e (%): 354  (M+). HRMS (EI), Calcd. For  C11H10N2F3I: 
353.9841; Found: 353.9840.

1‑(4‑chlorophenyl)‑2‑(trifluoromethyl)‑1H‑imidazole (5e)

Light yellow semisolid. 1H NMR (400 MHz,  CDCl3) δ 7.49 
(d, J = 12.0 MHz, 2H), 7.32 (d, J = 12.0 MHz, 2H), 7.25 (s, 
1H), 7.15 (s, 1H). 19F NMR (565 MHz,  CDCl3) δ -59.56 (s). 
13C NMR (151 MHz,  CDCl3) δ 136.14 (q, J = 39.26 MHz), 
135.87, 134.69, 129.71, 129.01, 127.43, 125.01, 118.58 (q, 
J = 276.3 MHz). MS (EI), m/e (%): 246  (M+). HRMS (EI) 
Calcd for  C10H6ClF3N2: 246.0172, Found: 246.0170.

Results and discussion

In our initial studies, N-phenyl N’-propargyl 2-trifluorome-
thyl amidine 1a was chosen as the model reaction to explore 
the optimal conditions. Be treated with NIS in  CH3CN at 
room temperature under air atmosphere, 1a converted to 2a 
in a moderate yield of 56% (Table 1, entry 1). A lower yield 

Table 1  Optimization for iodine-mediated aminohalogenation-oxida-
tiona 

a Reaction conditions: 1a (1.0 mmol), solvent (6.0 mL), air, 6 h, rt
b Base: 1.5 equiv
c Isolated yield
d Number in parentheses represents the yield of 5-methyl imidazole
e 2a was obtained in 80% at 50 ℃
f 50 ℃

Entry Iodine 
(equiv)

Additive 
(equiv)

Solvent Baseb Yield (%)c

1 NIS (1.0) – CH3CN K2CO3 56
2 ICl (1.0) – CH3CN K2CO3 49
3 I2 (1.0) – CH3CN K2CO3 12
4 I2 (1.0) O2 CH3CN K2CO3 9
5 I2 (1.0) AgNO3 (1.0) CH3CN K2CO3 82(14)d,e

6 I2 (1.0) CAN (1.0) CH3CN K2CO3 87
7 I2 (0.5) CAN (1.0) CH3CN K2CO3 82
8 I2 (0.4) CAN (1.0) CH3CN K2CO3 77(8)
9 I2 (0.3) CAN (1.0) CH3CN K2CO3 45(33)
10 I2 (0.4) CAN (1.0) CH3CN NaHCO3 87
11 I2 (0.4) CAN (1.0) CH3CN NaOAc 78
12 I2 (0.4) CAN (1.0) acetone NaHCO3 /
13 I2 (0.4) CAN (1.0) THF NaHCO3 54
14 I2 (0.4) CAN (1.0) CH2Cl2 NaHCO3 0(24)
15 I2 (0.4) CAN (1.0) DMF NaHCO3 66(11)
16 I2 (0.4) CAN (1.0) CH3CN NaHCO3 27f
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of 49% was obtained when ICl was used (Table 1, entry 2). 
It was speculated that high oxidative activity of NIS and ICl 
resulted in the decomposition of 1a and low yield of 2a.  I2, 
a low activity iodinated regent, decreased the yield of 2a to 
12% (Table 1, entry 3). The addition of 1.0 equiv.  AgNO3 

into the reaction promoted the yield of 2a to 82% but with 
concurrent formation of 5-methyl imidazole in 14% yield 
(Table 1, entry 5) (Zhang et al. 2011b). Excitedly, the yield 
of 2a, the sole product, was highlighted to 87% by addition 
of 1.0 equiv. CAN (Table 1, entry 6) (Likhar et al. 2009). 

Table 2  Scope of iodine-
mediated aminohalogenation-
oxidation of  1a, b

a Reaction conditions: N’-propargyl amidines 1 (1.0  mmol), iodine (0.4 equiv), CAN (1.0 equiv), 
 NaHCO3 (1.5 eauiv.),  CH3CN (6.0 mL), air, 6.0 h, rt
b Isolated yield
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Further studies showed that an identical yield of 87% was 
obtained when the loading of  I2 was decreased to 0.4 equiv. 
in the presence of  NaHCO3, which were taken as the opti-
mal reaction conditions (Table 1, entry 10). Other solvents, 
such as acetone, THF,  CH2Cl2, and DMF, disfavored the 
formation of 2a (Table 1, entries 12–15). Higher tempera-
ture would short reaction time, but resulted in a lower yield 
(Table 1, entry 16).

Then, the generality of this transformation was investi-
gated under the optimal reaction conditions. As shown in 
Table 2, this reaction showed good functional group com-
patibility, as N’-propargyl amidines with broad spectrum of 
functional groups converted to the corresponding products 
smoothly in moderate to excellent yields. Generally, trifluo-
romethylated substrates containing electron-donating groups 
gave the desired products in good to excellent yields (2b, 2f, 
and 2i). Electron-withdrawing groups would lead to lower 
yields (2c, 2d, and 2h). Compared with electronic effect, 
steric hindrance had little influence on the proceeding of this 
transformation (2b and 2i, 2e and 2g). The effect of other 
fluoroalkyl groups was also examined. -CF2X group often 
resulted in low yields. Of which, -BrCF2 would drastically 
decrease the yield due to the substrates’ instability (2k–2p). 
While, the reactions of substrates containing a –CF2H group 
proceeded without any difficult to give the desired product 
in good yields (2q–2r). 2s was obtained in 81% for–CF2CF3 

with higher electron-withdrawing ability. 5-Iodo-1, 4-dihy-
dropyrimidine 2t, without further oxidation, was afforded 
in 22% yield when substrate with a phenyl on the terminal 
alkyne was used. 

To our delight, this method was suitable for unfluori-
nated substrates. 2-(Ethoxycarbonyl) propargyl aminde 
1u produced 2u in a good yield of 84% under the stand-
ard reaction conditions.  K2CO3 used as base, substrate 1v 
proceeded by a similar process to give 2v in 42% yield at 
55 ℃ with a longer time. Under the same conditions, 2w 
was obtained in 36% yield, in which oxygen atom acted 
as nucleophilic regent to attack the activated triple-bonds. 
Based on the reaction conditions, fluorinated substrates 
were more suitable to the reaction. It was considered that 
this result was caused by three factors: first, the solubil-
ity of substrates was increased by introduction a fluoro-
alkyl group, which could initiate the reaction by closing 
to the iodinated regent in a shorter time (Lipinski et al. 
2001); second, 2-fluoroalkyl imidazole ring, as a strong 
electron-withdrawing group, enhanced the polarity of C-I 
in iodinated intermediate and promoted its dissociation 
into free radical with high stability; third, the increased 
acidity of hydrogen atom on methylene by the fluoroalkyl 
group speeded up the rearrangement of peroxy-radical 
intermediate.

Scheme 2  Reactions of 
unfluorinated substrates
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We have applied this method to exam the reactions of 
allyl amidines. Under the standard reaction conditions, 3a 
converted to 5-iodomethyl 4, 5-dihydro imidazole 4a as the 
final product in a good yield of 89%. And an excellent yield 
of 96% was obtained when ICl was used as iodinated regent 
(Scheme 3–1). 4a, a stable intermediate in air, could add 
flexibility to further elaborate the 2-fluoroalkyl imidazole 
compounds (Li et al. 2013b; Chen et al. 2020). Allyl ami-
dines with other functional groups also worked very well to 
give the corresponding products in good to excellent yields 
(4b and 4c) (Scheme 2 and 3).

Studies were then carried out to propose a possible 
mechanism for this transformation. 5-methyl imidazole 
2b’, detected in the reaction system, would not convert 
to the carbonylated product under the standard reac-
tion conditions (Scheme 4–1).  I2 played a critical role 
in obtaining the desired product as none was obtained 
without  I2 (Scheme 4–2). When the reaction proceeded 
under an argon atmosphere, 5-iodomethyl imidazole 6b 
was obtained in 64% yield. Compared to 5-iodomethyl 
4,5-dihydro imidazole 4a, 6b was very unstable to air and 

would convert to imidazole-5-carbaldehyde in few min-
utes at room temperature. A reaction performed under 18O 
atmosphere resulted in 95% of 2bo with 18O incorporated, 
which demonstrated that the oxygen atom on carbonyl 
group derived from dioxygen (Scheme 4–3). More mecha-
nistic studies showed that the addition of TEMPO into the 
reaction would not decrease significantly the efficiency of 
the reaction, and no TEMPO-R adduct was detected by 
GC–MS and LC–MS analysis (Scheme 4–4) (Wang et al. 
2011; Mohan et al. 2013).

Based on above results, a plausible mechanism was pro-
posed in Scheme 5. Substrate 1 reacted with  I2 activated by 
CAN (Horicuchi et al. 2005) to give the key intermediate 
of 5-iodomethyl imidazole 6. The carbon-iodine bond in 
6 homolytic cleaved to radical intermediate A and iodine 
radical. In the presence of dioxygen, a radical transfer 
occurred on A to afford peroxy-intermediate B. B yielded 
the desired product 2 by releasing a hydroxyl radical (Peng 
et al. 2015). Iodine broke away from the reaction in the 
form of  I2 which could be detected by KI-starch test paper.

Scheme 3  Reactions of allyl amidines with ICl
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A decarbonylation occurred on N-(p-Cl)phenyl 2-trif-
luoroalkyl imidazole-5-carbaldehyde 2e in the presence of 
KOt-Bu to afford 5e. By Zn-catalyzed cyanation (Zhao et al. 
2020), 5e converted to 5m which is an important intermediate 

for imidazole derivative of potent 5-lipoxygense inhibitor 
ZD2138 (Mano et al. 2003). The synthetic utility of the reac-
tion described in this paper was demonstrated by synthesizing 

Scheme 4  Investigations on the reaction mechanism

Scheme 5  A plausible mecha-
nism



Chemical Papers 

1 3

5m in three steps on gram scale and more environmental 
friendliness (Scheme 6).

Conclusions

In summary, a simple and efficient method to synthesize 
2-fluoroalkyl imidazole derivatives was developed. In the pres-
ence of iodinated regent, fluorinated N’-propargyl amidines 
converted to 2-fluoroalkyl imidazole-5-carbaldehydes in mod-
erate to excellent yields by an aminohalogenation-oxidation 
process. When N’-allyl amidines used as substrates, 4,5-dihy-
dro-5-iodomethyl imidazoles were obtained as the final prod-
ucts. These transformations showed an extensive substrate 
scope and good functional group compatibility. Mechanistic 
investigations indicated that 5-iodomethyl imidazole, the key 
intermediate of imidazole-5-carbaldehyde, converted to the 
desired product by a radical pathway, and the oxygen atom on 
carbonyl group derived from dioxygen.
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