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Bifunctional Copper-Based Photocatalyst for Reductive Pinacol-
Type Couplings.
Antoine Caron, Émilie Morin and Shawn K. Collins*

Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station 
Downtown, Montréal, Québec H3C 3J7,Canada

ABSTRACT: A bifunctional copper-based photocatalyst has been prepared that employs a pyrazole-pyridine ligand 
incorporating a sulfonamide moiety that functions as an intramolecular hydrogen-bond donor for a photochemical PCET 
process. In typical reductive PCET processes, the photocatalyst and H-bond donor must have an appropriate redox potential 
and pKa respectively to promote the PCET. When working in concert in a bifunctional catalyst such as 
Cu(pypzs)(BINAP)BF4, the pKa of the H-bond donor can have an acidity that is orders of magnitude less and still efficiently 
promote the PCET process. A reductive pinacol-type coupling can be performed using a base-metal derived photocatalyst 
to afford valuable diols (24 examples, 46-99 % yield), from readily available aldehydes and ketones.  

Photocatalysis can impact sustainable chemistry through promoting 
unique reactivity and achieving novel transformations, under 
relatively mild conditions.1 Consequently, much interest has been 
placed on synthesis employing visible-light and inexpensive 
photocatalysts at low catalyst loadings. In the last half-dozen years, 
copper-based photocatalysis has attracted considerable attention. Cu-
based complexes are generally easily prepared, can promote 
photochemistry through outer- and inner-sphere mechanisms, can 
exhibit long excited state lifetimes and are excellent excited-state 
reductants.2 As such, they are attractive photocatalysts for a variety of 
transformations,3 including proton-coupled electron transfers 
(PCETs). PCETs are non-classical redox processes in which a proton 
and electron are exchanged in a concerted manner,4,5 and can proceed 
via both oxidative and reductive manifolds. In the reductive homolytic 
activation of ketones,6 some photocatalysts (PCs) may not possess an 
excited state capable of promoting the PCET process. As such, the PC 
in its excited state abstracts an electron from an electron donor 
(reductive quenching), such as a tertiary amine, and it is the ground 
state radical anion that participates in the PCET process (Figure 1, top 
left). In some instances, it has been proposed that the radical cation 
of the tertiary amine can act to promote the single-electron transfer 
(SET) from the PC radical anion via hydrogen bonding, or 2-
electron/3-center bonding.7 If the excited state of a photocatalyst has 
a sufficiently high excited state potential, it will donate an electron 
directly via the excited state to a carbonyl (oxidative quenching) that 
is simultaneously activated via hydrogen-bonding, typically achieved 
with an added acid in the reaction mixture (Figure 1, top right). The 
PCET process generates a ketyl radical for further chemistry, and the 
PC is regenerated via SET with an electron-doner, again typically a 
tertiary amine. Considering the aforementioned mechanisms, it was 
proposed that connecting both the PC and the acid activator within 
the same catalyst structure could improve PCET processes. Through 
proximity, the rate of PCET could be increased, improving yields.8 
Association of the ketone (or aldehyde) with the bifunctional catalyst 
could result in the steric environment influencing the stereoselectivity 
of the resulting chemistry of the ketyl radical. Preferably, designing a 
bifunctional catalyst would take place from PCs that have already 
demonstrated ease of synthesis, tunability, and application in PCET 
processes. Consequently, heteroleptic copper-based complexes were 
selected as ideal candidates; our group has previously evaluated 
libraries of heteroleptic copper-based complexes having one diamine 
and one bisphosphine ligand for photocatalysis, and reported their 
activity in a PCET process involving the homolytic activation of 

ketones, generating neutral ketyl radicals.9 Herein we report on the 
synthesis and evaluation of a bifunctional copper-based photocatalyst 
in reductive pinacol-type PCET processes. 
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To investigate the possibility of using a bifunctional catalyst for 
photocatalytic PCET reactions, the pinacol-type reductive coupling of 
ketones was selected for study.10 The photochemical pinacol-type 
coupling has been previously reported by Rueping and co-workers 
using an Ir-based catalyst system,7 while some organic dyes have also 
been show to effective photocatalysts.11a The pinacol process provides 
access to valuable diol products and alternative synthetic routes call 
for excess amounts of reducing metals and trialkylsilane-based 
protection strategies to prevent inhibition with the metal-based 
reagents.11

Table 1. Pinacol-Type Coupling Employing 
Bifunctional Cu-Based Photocatalysts.

Ph Me

O PhHO

Ph OH
MeMe

catalyst (2 mol %)
additive (5 mol %)

HEH (2 equiv)

THF [50 mM]
Blue LEDs, 18 h 1
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P
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Ph2
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P

Ph2

Ph2
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p-FC6H4

BF4

N
N Cu P

P
Ph2

Ph2

BF4

CuN
NH

N

H2N

P
P

Ph2

Ph2

Cu(dq)(BINAP)BF4 2 Cu(pypz)(BINAP)BF4 3

Cu(pypzs)(BINAP)BF4 5Cu(pypza)(BINAP)BF4 4

Catalyst Additive Yield 1 
(%)a

1 Cu(dq)(BINAP)BF4 dppa 90

2 Cu(dq)(BINAP)BF4 - 0

3 Cu(pypz)(BINAP)BF4 dppa 78

4 Cu(pypz)(BINAP)BF4 - 25

5 Cu(pypza)(BINAP)BF4 dppa 95

6 Cu(pypza)(BINAP)BF4 - 14

7 Cu(pypzs)(BINAP)BF4 dppa 86 

8 Cu(pypzs)(BINAP)BF4 - 76

9b Cu(pypzs)(BINAP)BF4 - 0

10 Cu(dq)(BINAP)BF4 ppyzs 0

11c Cu(pypzs)(BINAP)BF4 - 0

12d Cu(pypzs)(BINAP)BF4 - 76

13e - - 0
a Isolated yields. 1:1 ratio of diastereomers observed in all cases. b 

Using Et3SiH instead of HEH. c No light. d Using purple LEDs (394 
nm). e Using purple LEDs (394 nm) with no catalyst. BINAP: (rac)-
2,2′-bis(diphenylphosphino)-1,1′-binaphthalene. pypz: 3-(2-
pyridyl)-pyrazole. pypza 5-amino-3-(2-pyridyl)-pyrazole. pypzs: 5-
(4-fluorosulfonyl)amino-3-(2-pyridyl)-pyrazole.

The catalyst Cu(dq)(BINAP)BF4 2 had been identified as a promising 
candidate for PCET processes.9 Indeed, in the reaction of 
acetophenone with Cu(dq)(BINAP)BF4 using diphenyl phosphoric 

acid (dppa) as an external acid and Hantzsch ester (HEH) as a 
hydrogen-atom donor, the catalyst 2 afforded the corresponding diol 
1 in 90 % yield (Table 1). However, when the reaction was repeated in 
the absence of dppa, no trace of the desired diol was observed. As 
such, it was proposed to exchange the dq ligand for diamines 
containing hydrogen bond donors. The ligands pypz and pypza were 
identified as they had been previously utilized in asymmetric 
photocatalysis.12 In addition to being readily available in two 
synthetic steps, the pypza ligand was especially attractive, as 
diversification of the NH2 group could be envisioned for further fine-
tuning. As such, the catalysts Cu(pypz)(BINAP)BF4(3) and 
Cu(pypza)(BINAP)BF4 (4) were prepared in hopes that the new 
ligands would participate in hydrogen bonding. Each catalyst was 
capable of promoting the PCET reaction of acetophenone in the 
presence of dppa (78 and 95 % of 1 with catalysts 3 and 4 respectively). 
However, only low yields (14-25 %) of the desired diol 1 were observed 
in the absence of dppa. As such, the pypza ligand was further modified 
through sulfonylation with p-fluorosulfonyl chloride to afford the 
pypzs ligand, in hopes that the sulfonamide moiety would help 
augment H-bonding. Gratifyingly, Cu(pypzs)(BINAP)BF4(5) 
promoted the reductive pinacol coupling of acetophenone both with 
dppa (86 % 1) and without dppa (76 % 1). No PCET-type reactivity was 
observed for Cu(pypzs)(BINAP)BF4  in the absence of light. Attempts 
at replacing HEH with an alternative H-atom dodnor like Et3SiH 
provided no trace of diol 1. Also, the PCET pinacol-type processes 
employed blue LEDs for irradiation. The reductive pinacol coupling of 
acetophenone was also attempted with  Cu(pypzs)(BINAP)BF4 under 
purple LEDs, but identical yields of 1 (76 %) were obtained. No 
background pinacol coupling of acetophenone was observed under 
purple LEDs in the absence of catalyst. Interestingly, attempting to 
promote the PCET process to form 1 using Cu(dq)(BINAP)BF4 with 
added pypzs to replace dppa did not afford any product. In comparing 
the relative acidities, the pKa of dppa (~3.72, DMSO)13 is orders of 
magnitude lower than either a pyrazole N-H (~14.2)14 or a 
sulfonamide (PhSO2NH2 ~16.1, DMSO)15 moiety present in the pypzs 
ligand. As such, the success of the bifunctional catalyst 
Cu(pypzs)(BINAP)BF4 is likely a result of the proximity of the 
hydrogen-bond donor and the photoactive complex. 
Next, the scope of the pinacol-type couplings were explored using 
both ketones and aldehydes (Table 2). Both phenylmethylketone and 
(4-phenyl)phenylmethylketone underwent coupling to afford the 
corresponding diols 1 and 6 in 76 and 99 % yields. A variety of 
halogen-substituted methylketones all were homocoupled in good to 
excellent yields. Substrates substituted with 3-bromo-, 4-bromo-, 3-
bromo-4-fluoro- and 2-chloro- all afforded the corresponding diols in 
good to excellent yields (7010, 74096 %). A variety of other 
functional groups were compatible. Pinacol-type coupling with a 
phenylmethylketone having a 3-pyridyl substituent afforded the 
corresponding diol 11 in 58 % yield. Diol 12 was isolated in 46 % having 
pendant methyl esters substituents. Other substituted aryl ketones 
that were not compatible under previously reported conditions using 
Ir-based catalysts (Ir(dfCF3ppy)2(bpy)PF6 (1 mol %), NBu3 (3 equiv), 
DMF, Blue LEDs, 18 h), were viable coupling partners when using 
bifunctional catalyst 5. The diol 13 formed via pinacol coupling of 4-
SMe substituted methylketone was isolated in 80% yield, was only 
isolated in 15 % yield under Ir-catalysis. In addition, diol 14, adorned 
with pinacolborate esters that could be used as handles for further 
functionalization of the diols, was formed in 75 % yield using Cu-
catalyst 5, but was isolated in less than 10% yield when using the Ir-
based conditions. Diarylketones also underwent pinacol-type 
coupling in good yields, the p-tolyl substituted diol 15 was obtained in 
58 % yield, while the diol 16 adorned with thiophene and p-tolyl 
groups was formed in 62 % yield. 
A number of aldehydes also underwent pinacol-type coupling with 
the bifunctional copper-based catalyst 5 (Table 2). Diols formed from 
the homocoupling of benzaldehyde (17, 99 %), 2-chlorobenzaldehyde 
(18, 93 %), 4-bromobenzaldehyde (19, 99 %), 3-bromobenzaldehyde 
(20, 99 %), 4-methoxybenzaldehyde (21, 66 %), 2-
hydroxybenzaldehyde (22, 74 %) and 4-ethylbenzaldehyde (23, 85 %) 
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could all be isolated. Polycyclic derivatives were also compatible as 1-
naphthyl aldehyde afforded the corresponding diol 24 in 57% yield. 

Table 2. Scope of the Reductive Pinacol-Type Coupling Employing a Bifunctional Cu-Based Catalysta
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Ph

MeO2C
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11, 58 %b

HO
Me

OH
Me

N

N

Me

Me

Ir(dfCF3ppy)2(bpy)PF6 (1 mol %), NBu3 (3 equiv), DMF,
Blue LEDs , 18 h, 15 % of 13, < 10 % of 14

aYields following chromatography. The cis:trans ratios are 1:1 unless indicated otherwise. b Isolated as a single isomer. c Using 4 mol % of 
catalyst .

Heterocyclic derivatives also functioned well under the reaction 
conditions: diols derived from pyridine (25), quinolone (26), 
thiophene (27) and benzothiophene (28) were isolated in 54-82 % 
yield. 

When considering a possible mechanism for the pinacol-type 
coupling employing the copper-based bifunctional catalyst, the failure 
of using an alternative H-atom donor such as Et3SiH was suprising. 
When investigating lifetime emission quenching studies, it was shown 
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that it was not acetophenone, but HEH that quenched the excited 
state of the catalyst. As such, upon excitation of copper-based catalyst 
5, electron transfer with HEH is proposed (Figure 2a). Evano and co-
workers have similarly proposed such SET transfers to Cu-based 
catalysts in the presence of suitable electron donors.16  Note that 
HEH can be easily oxidized (E1/2(HEH/HEH

+.
)= 0.404 V) and if there are 

traces of oxygen present, HEH is also rapidly converted to HEHO.17 
In addition, all of the new catalysts (PC+) possess excited state 
potentials (E1/2(PC+*/PC)) capable of accepting an electron from HEH;  (3 
(pypz) 2.12 V; 4 (pypza) 1.87 V; 5 (pypzs) 1.86 V). Note that although 
all the new catalysts can theoretically accept an electron from HEH in 
the excited state, their potentials in the resulting ground state (E1/2(PC/ 

PC+)) will not be sufficient to promote electron transfer to acetphenone 
(E½= -2.48 V vs. Fc).18 Indeed, a sufficiently strong proton-donor is 
required to undergo activation through hydrogen bonding. Note that 
none of the photocatalysts possess a potential (E1/2(PC+/PC)) high 

enough to accept an electron from HEH in the ground state (3 (pypz) 
-0.18 V; 4 (pypza) -0.43 V; 5 (pypzs) -0.18 V). If a suitable electron 
donor is necessary in the PCET process, then it should be possible to 
use Et3SiH as an H-atom donor if another electron donor, such as a 
tertiary amine, is added. Indeed, when the pinacol-type coupling was 
performed using acetophenone, catalyst 5 and both Et3SiH and 
iPr2NEt, the PCET process was once again productive (37 % of diol 1, 
Figure 2b). In the proposed mechanism, intermediate A could then 
engage in hydrogen bonding with the sulfonamide proton, pyrazole 
hydrogen or combination thereof resulting in activation of the ketone 
or aldehyde for proton-coupled electron transfer. A 1H NMR study 
(Figure 2c) of the catalyst Cu(pypzs)(BINAP)BF4 in the presence of 
acetophenone in THF-d8 indicated that both the pyrazole N-H and 
sulfonamide N-H signals (Figure 2c, Ha and Hb respectively)19 
underwent desheilding ( Ha = 0.073-0.193 ppm,  Hb = 0.086-
0.201 ppm), suggesting hydrogen bonding is occurring. 
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Figure 2. a. Proposed reaction mechanism. b. Effects of electron and hydrogen atom donors. c. Selected 1H NMR data (THF-d4) of 
catalyst 5 (in red) in the presence of increasing numbers of equivalents of acetophenone (indicated in paratheses). d. Comparison 
of photophysical properties of four copper-based photocatalysts.
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5

Furthermore, the PCET pinacol process afforded much lower yields in 
protic or polar solvents which could interfere with hydrogen-bonding 
(acetophenone→1, in EtOH 11 %; in DMF 30 %).20 Following the 
PCET event, the resulting ketyl radical can react with another 
equivalent of the ketone or aldehyde to afford the pinacol-type 
intermediate C.  The desired diols are formed via H-atom transfer 
(HAT) from HEH+ (or HEH). The radical cation of HEH also serves to 
regenerate the copper-based catalyst via proton transfer.  The nature 
of the pypzs ligand present in the bifunctional catalyst 5 impacts the 
photophysical properties, and results in differences with regards to 
other copper-based catalysts such as Cu(dq)(BINAP)BF4, used in a 
previous PCET process (Figure 2d). For example the extended -
surface of the dq ligands results in excellent absorbance for 
Cu(dq)(BINAP)BF4 at 472 nm. In contrast, Cu(pypzs)(BINAP)BF4, as 
well as the two other bifunctional catalysts Cu(pypz)(BINAP)BF4 and 
Cu(pypza)(BINAP)BF4 exhibit maximum absorbances in a narrow 
range at 373-381 nm, and only weakly absorb within the blue range. In 
fact, it is surprising that Cu(pypzs)(BINAP)BF4 is so efficient when 
irradiated with blue LEDs given its low absorption. All copper 
catalysts have similar emission spectra with max between 520-540 nm, 
with the exception of Cu(pypzs)(BINAP)BF4 which has a weak 
emission at 620 nm. Interestingly, all catalysts having a N-H bond 
donor have excited-state lifetimes longer than Cu(dq)(BINAP)BF4 ( 
= 4.00 ns), with the pypzs ligand augmenting the excited-state 
lifetime of its respective catalyst the furthest ( = 8.95 ns) in 
comparison to the other catalysts evaluated (Cu(pypz)(BINAP)BF4 = 
7.42 ns; Cu(pypza)(BINAP)BF4 = 7.46 ns).  The data supports that 
bifunctional catalyst 5 acts as a photocatalyst for reductive PCET 
reactions through its sufficiently strong hydrogen-bond donor.
In summary, a bifunctional copper-based photocatalyst has been 
prepared that employs a designed pyrazole-pyridine based ligand 
adorned with sulfonamide moiety that functions as an intramolecular 
hydrogen-bond donor for a photochemical PCET process. The 
catalysis is the first application of base-metal photocatalysts toward 
pinacol-type couplings. The diols prepared herein are formed from a 
variety of aldehydes and ketones, and in several cases the bifunctional 
catalyst was capable of promoting pinacol-coupling of substrates that 
were low yielding when using previously Ir-based catalyst systems. In 
reductive PCET processes, the PC and H-bond donor must have an 
appropriate redox potential and pKa respectively to promote the 
PCET. Importantly, when working in concert in a bifunctional catalyst 
such as Cu(pypzs)(BINAP)BF4, the pKa of the H-bond donor can have 

an acidity that is orders of magnitude less and still efficiently promote 
the PCET process. The modularity and ease of synthesis of the copper 
catalysts is noteworthy, and further modification of the steric 
environment of the diamine, alteration of the hydrogen-bond donors 
and substitution of the bisphosphine could all lead to new catalysts 
capable of further influencing the stereoselectivities of PCET 
processes. Given that H-bonding ligands are being used increasingly 
in asymmetric transition metal catalysis, there could be used for 
future tuning and development of asymmetric processes. 
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(19) The pyrazole N-H signal is observed further downfield in the 1H NMR spectra for both catalyst 4 ( = 11.2 ppm, (CD3)2CO) and catalyst 
5 ( = 12.1 ppm, (CD3)2CO). 
(20) For additional detail, see Supporting Information.
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