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ABSTRACT: One of the most commonly used strategies to reduce hERG (human ether-a-go-go) activity in 
the drug candidates is incorporating a carboxylic acid group. During the optimization of PPAR modulators 
some of the compounds containing a carboxylic acid were found to inhibit the hERG channel in a patch 
clamp assay. By modifying the basicity of the imidazole core, potent and selective PPAR modulators that do 
not inhibit the hERG channel were identified. Some of the modulators have excellent pharmacokinetic 
profiles in mice.

We have recently disclosed a series (“benzamide series”) of PPAR modulators such as 1a-b  that show good 
selectivity for PPAR over PPAR and PPAR (Figure 1).1,2 By replacing the cis amide conformer found in the 
x-ray structure of benzamides in the ligand binding domain of PPAR receptor, a second series (“imidazole 
series”) of PPAR modulators was designed (Figure 1).3 The compounds in the imidazole series such as 2a were 
found to be more potent and selective modulators of PPAR receptor. Modifications to the hexanoic acid moiety 
in both series significantly improves plasma exposures after oral dosing as compared to their unsubstituted 
counterparts.1,3 We have shown that MA-0204 (2c), a derivative in the imidazole series, may be an effective 
therapeutic for Duchene Muscular Dystrophy (DMD).3
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Figure 1.  

Medicinal chemists routinely screen lead compounds for hERG channel binding in order to assess their 
potential to cause QT prolongation, which could lead to Torsades de pointes arrythmias.4 Several drugs have been 
withdrawn from market or given “black box” labels due to risks related to hERG channel-related QT 
prolongation.5 Such measures are necessary if the concentration of drug required for its therapeutic activity nears 
the concentration where the hERG channel is inhibited.6

In order to address this potential safety concern, medicinal chemists optimize lead compounds for 
minimal hERG inhibition (typically IC50 >10 M), while maintaining or improving activity for the molecular 
target (typically IC50 or EC50<100 nM). Although not an absolute requirement, a vast majority of the hERG active 
molecules possess basic amines in their structures. In order to understand the interaction of molecules with the 
channel, structural information regarding the hERG K-channel is used.7-8 It is known that hERG channel binding 
pocket interactions occur via the hydrophobic central cavity and two amino acid residues Y652 and F656.9 The 
interactions of the hERG inhibitors with the phenylalanine moiety are more hydrophobic in nature whereas the 
interactions with the tyrosine moiety are hypothesized to be -cationic in nature.9,10 Therefore, modulating 
lipophilicity of compounds (TPSA, LogD or LogP) or the basicity (pKa) of nitrogens in the molecules is a 
commonly used tactic to reduce hERG activity4, 11-13 A carboxyl group in the structure of a molecule can help 
lower the lipophilicity and minimize hydrophobic interactions. There are several examples in the literature where 
a carboxylic acid moiety was introduced into a compound structure to reduce the hERG activity.14-15 In certain 
cases, adding a carboxylic acid moiety can result in a zwitterionic compound.16 Zwitterionic molecules typically 
have low permeability, which reduces the probability of hERG binding.11

When lead compounds in the benzamide series,1a and 1b, were screened for hERG activity in an 
automated patch clamp assay, little or no activity (<15% inhibition at 10 M) was observed.17 Such results were 
consistent with our expectations as 1a and 1b lack basic nitrogen atoms and possess a carboxylic acid. Therefore, 
when imidazole 2a, was found to inhibit hERG channel activity (IC50 = 5 M), the result was unexpected 
because:  (1) the compound contains a carboxylic acid and (2) even if the imidazole nitrogen is basic, the 
compound still would exist in a zwitterionic form. 

In order to further understand whether the change in the shape of the molecule resulting from replacing 
an amide group in 1a and 1b with an imidazole(2a) led to the hERG acivity, two thiazoles (3 and 4) and one 
pyrazole (5) were synthesized and screened for hERG activity (Figure 2). All three compounds lack hERG 
inhibitory activity (<15% inhibition at 10 M).
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Figure 2.  

Based on these results, it is unlikely that the hERG activity observed for imidazole 2a results from the 
three dimensional shape of the molecule. We assessed whether lipophilicity (as characterized by cLogP or TPSA 
(topological polar surface area) impacts the hERG inhibition.11-12 Calculated logP for 2a (cLogP = 5.1)18 is lower 
than those for 3, 4 and 5 (cLogP = 6.1-7.5). TPSA for all four compounds are between 71A⁰ and 78A⁰. Therefore, 
lipophilicity parameters do not seem to correlate with the differences in the hERG activity of these compounds. 
We then examined if the basicity of the nitrogen atoms in the heterocyclic rings could explain the difference in 
the hERG inhibitory properties of these compounds. In order to test this hypothesis, imidazoles 2b-2l with either 
electron withdrawing or electron donating groups on the imidazole ring or on the phenyl ring that is directly 
attached to the imidazole ring (Table 1) were synthesized and tested. The imidazole compounds bearing a methyl 
group on the imidazole ring, were synthesized using Scheme 1.1,3 For the synthesis of compounds 2e and 2i-j, the 
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central imidazole rings bearing a trifluoromethyl group were constructed via 2-(4-substituted-phenyl)-4-(2,2,2-
trifluoroacetyl)oxazol-5(4H)-one as shown in Scheme 2.19 Compounds with a trifluoromethyl (2f), a chloro (2h) 
or a cyano (2g) substituent on the imidazole ring were synthesized via a common intermediate 23 as shown in 
Scheme 3.19 

Scheme 1. Synthesis of Compounds 2a-d
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Scheme 2. Synthesis of Compounds 2e, 2i-j
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Reagents and conditions: a) Methyl glycinate hydrochloride, EDCI.HCl, HOBt, Et3N, DMF, 12h, RT; b) 
LiOH.H2O, THF, EtOH, H2O, RT, 12h; c) 2,2,2-Trifluoroacetic anhydride, acetone, 0⁰C-RT, 12h; d) 1,4-
Dioxane, H2O, 100⁰C, 3h; e) 2-Methoxyl benzyl amine, AcOH, toluene, 120⁰C, 12h; f) BBr3, DCM, -78⁰C-RT; 
g) Ethyl 6-bromohexanoate, K2CO3, DMF, RT, 12h; h) In the case where R1 = I, furan-2-boronic acid, Pd(PPh3)4, 
Na2CO3, DME, EtOH, H2O, 90⁰C, 12h; i) LiOH.H2O, THF, EtOH, H2O, RT, 12h.

Scheme 3. Synthesis of 2f, 2g and 2h
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Reagents and conditions: a) Ethane-1,2-diamine, I2, K2CO3, t-BuOH, 85⁰C, 5h, 85% yield; b) 
(Diacetoxyiodo)benzene, K2CO3, DMSO, RT, 12h, 55% yield; c) 2-Methoxybenzyl bromide, NaH (60% 
dispersion), DMF 0⁰C-RT, 4h, 83% yield; d) NIS, DMF, 80⁰C, 12h, 36% yield; e) TMSCF3, Ag2CO3, 1,10-
phenanthroline, KF, CuI, DMF, 100⁰C, 12h, 59% yield; f) CuCN, Pd(PPh3)4, DMF, microwave, 150⁰C, 2h, 45% 
yield; g) NCS, CH3CN, 70⁰C, 12h, 40% yield.

All the compounds in Table 1 show excellent PPAR activity (EC50 = 0.4 - 30 nM). The comparison of 
hERG activity and cLogP or TPSA for a set of compounds (Table 1) revealed no correlation between the hERG 
activity and physicochemical properties. However, a clear relationship was observed between nitrogen basicity in 
the heteroaromatic ring and the hERG activity with an infliction point around pKa = 6.0 (Figure 3).20 Decreasing 
electron-donation to the phenyl ring that is attached to the imidazole (2c) lowered hERG activity. Adding a 
stronger electron withdrawing (cyano) group at the same position (2d), reduced hERG inhibition below 50% at 10 
M. When electron withdrawing groups were placed directly on the imidazole ring (2e - 2l), hERG activity was 
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diminished substantially, for example, when comparing 2a (hERG IC50 = 5.5 M) to 2k and 2l (<10% inhibition 
of hERG @ 10M)or 2c to 2e.

Table 1. pKa, cLogP, TPSA and PPAR activity for compounds 2a-2l and 3-5.

O
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Calculated parametersc

Cpd R1 R2 PPAR
EC50 nMa

hERG (EC50)b,
%inh@10M pKa cLogP TPSA

3 --- --- 29.7±3.4 14 2.8 6.7 72.6

4 --- --- 2.0±0.1 4 1.8 6.1 64.4

5 --- --- 11.2±3.9 4 2.8 7.5 72.6

2a --- --- 0.6±0.3 5.5 M 6.3 5.1 77.5

2b --- --- 3.9±1.3 51 6.3 5.1 77.5

2c OCF3 Me 0.4±0.1 10 M 6.3 5.8 73.6

2d CN Me 4.6 15 6.3 4.2 88.1

2e OCF3 CF3 2.6 ± 1.1 2.0 4.7 5.9 73.6

2f CF3 CF3 2.9 ±0.2 5.7 4.7 5.6 64.4

2g CF3 CN 2.7 2.5 3.4 4.5 88.1

2h CF3 Cl 1.5±0.8 3 4.7 5.7 64.4

2i CN CF3 8.2 ± 2.6 4 4.7 4.3 88.1

2j Cl CF3 8.0±0.4 5.0 4.7 5.4 64.4

2k 2-Furyl CF3 0.7±0.2 2.3 4.7 5.2 77.5

2l --- --- 1.2±0.9 7.0 ND ND ND
aTransactivation assay24  EC50 values are an average of at least two experiments (SEM shown unless single determination).  
% Activation of compound at each concentration was calculated considering activity of GW501516 at 10 uM as 
100%. The Emax was between 81-103% except for compound 3 (Emax = 61%). Please see reference 3 or 
WO2016057660 for the details of the assay system; bSee reference 17; cFor the calculation of cLogP, TPSA and pKa, 
commercially available ACD software was used.18, 21; ND = Not Determined; 
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The observed differences in the hERG activity of imidazole 2a versus other heteroaromatic ring 
containing compounds (3-5) tracks the differences in the basicity of nitrogens (pKa = 6.3 versus 1.8-2.8). 
Compound 2b where the basicity of nitrogen is similar to the nitrogen in 2a, also has hERG activity (50% 
inhibition at 10 M). With the increased basicity of nitrogen in the heteroaromatic ring, it’s more likely that 
molecule exists in zwitterionic form, which could increase hERG activity. This may contradict some reports 
where zwitterionic character was introduced in the molecules as a strategy to decrease hERG activity including 
the well-known example of transforming terfenadine into zwitterionic fexofenadine with reduce hERG activity.21 
However, there are a few publications where zwitterionic compounds that inhibit the hERG channel were 
reported.22
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Figure 3: Correlation between pKa and hERG activity for compounds in Table 1. The graph was generated in 
MS Excel. The dotted line represented trendline generated by the software based on the data. 

While reviewing the hERG activity of compounds, it’s important to consider many points, for example, 
differences in assays. The data shown here was generated using an automated patch clamp assay. For an accurate 
measurement of hERG activity, especially for compounds with low aqueous solubility, a manual patch clamp 
assay should be performed.23 It is important to point out that most of the the imidazole compounds described in 
Table 1 exhibit low aqueous solubility (thermodynamic solubility <25 mM). Compounds such as 2c could be a 
viable clinical candidate because of the large window between the PPAR potency (EC50 = 0.4 nM) and the 
observed hERG activity (IC50 = 10 M, in the automated patch clamp assay).3 Typically cardiac safety is then 
measured in telemetrized animals before a compound enters clinical trials in human. Therefore, it was important 
to assess oral bioavailability of these new compounds in addition to their profile for activating PPAR isoforms. 
Potency, selectivity and the pharmacokinetic (PK) profiles for 2f, 2h and 2i are shown in Table 2. 

All the compounds are potent PPAR modulators (EC50 <10 nM) and selective over PPAR and PPAR 
receptors (EC50 >100,000 nM)) in transactivation assays.24 Compounds 2f, 2h and 2i show good oral 
bioavailability (F = 70 - 100%) in mice, have low to moderate clearance (5-16 mL/min/kg) and reasonable 
elimination half-lives (3.5-4.1 h). The observed PK profile in mice is better than that observed for 2c and some 
previously reported imidazole compounds.3 

Table 2. PPAR isoform selectivity and mouse PK data for compounds 2f, 2h and 2i.

Compound 2f 2h 2i

EC50 PPAR nMa 2.9 ±0.2 1.5±0.8 8.2 ± 2.6

EC50 PPAR nMa >100,000 >100,000 >100,000

EC50 PPAR nMa >100,000 >100,000 >100,000

AUC(0-inf) (ng*h/mL)b 6962 3881 14735
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CL (mL/min/kg)b 5.0 16 2.5

t1/2 (h)b 5.8 3.5 4.1

%Fb 70 100 73

aTransactivation assay24  EC50 values are an average of at least two experiments (SEM shown unless single 
determination); bExposure data for compounds dosed i.v. at 1 mg/kg and orally at 3 mg/kg in CD-1 mice25 

In summary, we have demonstrated that the hERG activity of the imidazole PPAR modulators can be 
attenuated by tuning the basicity of the nitrogen in the imidazole ring. We effectively decreased the hERG 
activity while maintaining favorable PPAR potency, selectivity and oral bioavailability. This study serves as 
another reminder for the medicinal chemists not to be overconfident that hERG activity can be ameliorated by 
adding a carboxylic acid moiety to a structure. 

AUTHOR INFORMATION
Corresponding Author

* Tel. 1(617)401-9122. E-mail: Bharat.lagu@astellas.com

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the 
final version of the manuscript. 

ACKNOWLEDGMENT 
Authors thank Drs. Takashi Ogiyama and Taisuke Takahashi for the calculation of pKa and logP. Authors also 
thank Dr. Mahaboobi Jaleel for the PPAR data, Dr. Nirbhay K. Tiwari for the pharmacokinetic data, Mr. M. S. 
Sudheer for the hERG data. We thank Mr. G. Styanarayana and Mr. Jeswin Jose for technical support.

ABBREVIATIONS
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