Synthesis of N-Methylpyrrole and N-Methylimidazole Amino Acids Suitable for Solid-Phase Synthesis

David Jaramillo,[†] Qi Liu,[‡] Janice Aldrich-Wright,[†] and Yitzhak Tor*,[‡]

College of Science, Technology & Environment, University of Western Sydney, Penrith South DC NSW 2560, Australia, and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358

ytor@ucsd.edu

Received July 29, 2004

Abstract: New and higher yielding synthetic routes to *N*-protected *N*-methylpyrrole and *N*-methylimidazole amino acids are introduced to circumvent difficulties associated with established schemes. Key steps in each synthesis include copper-mediated cross-coupling reaction to directly install a carbamate-protected 4-amine in the *N*-methylpyrrole derivative and effective nitration followed by a one-pot reduction/Boc protection of the amine in the synthesis of the *N*-Me-imidazole amino acid.

Polyamides based on *N*-methylpyrrole and *N*-methylimidazole have emerged as a unique family of sequencespecific DNA binders.^{1,2} These synthetic low MW ligands form dimeric complexes within the DNA minor groove with unprecedented affinity and selectivity. The recognition rules, established over the past decade by Dervan and co-workers, allow one to control the sequence specificity of these "designer" molecules according to the linear sequence of the individual building blocks.³ The strength of this DNA recognition motif and its demonstrated utility⁴ have therefore led to the development of efficient solid-phase synthesis of such oligomeric polyamides.⁵

Key to the successful synthesis and application of these DNA binders is the availability of the protected building blocks, 4-[(*tert*-butoxycarbonyl)amino]-1-methylpyrrole-2-carboxylic acid **5** and 4-[(*tert*-butoxycarbonyl)amino]-1-methylimidazole-2-carboxylic acid **10** (Schemes 1 and 2, respectively). Unlike common amino acids, the preparation of these *N*-protected precursors requires rather elaborate synthetic schemes typically starting from the parent heterocycles.⁵ While the introduction of the 2-car-

- (1) Dervan, P. B.; Edelson, B. S. Curr. Opin. Struct. Biol. 2003, 13, 284–299.
- (2) Schmitz, K.; Schepers, U. Angew. Chem., Int. Ed. 2004, 43, 2472–2475.
- (3) Marques, M. A.; Doss, R. M.; Urbach, A. R.; Dervan, P. B. *Helv. Chim. Acta* **2002**, *85*, 4485–4517.

10.1021/jo048686r CCC: $27.50 \odot 2004$ American Chemical Society Published on Web 10/15/2004

SCHEME 1^a

 a Reagents and conditions: (a) CCl₃COCl, CH₂Cl₂, 24 h; (b) NBS, CHCl₃, -10 °C, 16 h; (c) NaOMe, MeOH, 1 h; (d) 10% CuI, K₃PO₄, 20% N,N'-dimethylethylenediamine, *tert*-butyl carbamate, dioxane, 110 °C, 48 h; (e) LiOH, H₂O, THF/MeOH, 60 °C, 9 h.

SCHEME 2^a

 a Reagents and conditions: (a) CCl₃COCl, CH₂Cl₂, 9 h; (b) fuming HNO₃, H₂SO₄, Ac₂O, 0 °C to rt, 24 h; (c) NaOMe, MeOH, 3 h; (d) Boc₂O, 10% Pd/C, H₂, MeOH, 28 h; (e) *t*-BuOK, H₂O, THF, rt, 1 h.

boxyl moiety is rather straightforward, the implementation of a nitrogen-containing moiety at the 4 position is more challenging. Traditionally, nitration of the parent heterocycles or their corresponding carboxylic acid derivatives has been followed by hydrogenation and protection of the amine to afford the desired building blocks.⁵ This arduous sequence has been recognized as the Achilles' heel of these syntheses resulting in relatively low overall yields (16% for 5^{5a} and 18% for 10^{5b}). We have sought to explore alternative schemes to functionalize the 4 position, in particular, routes that rely on metalmediated amination/amidation reactions. In this paper, we disclose our optimized protocols that afford these useful building blocks in improved yields.

Scheme 1 shows the optimized scheme for the synthesis of the pyrrole building block **5**. The copper-catalyzed amidation of methyl 4-bromomethylpyrrole-2-carboxylate **3** began with the synthesis of the trichloroacetyl heterocycle **1** as previously reported.⁶ Bromination of **1** with equimolar amounts of *N*-bromosuccinimide (NBS) at low temperature gave **2** in 79-81% yield. Substitution of the trichloroacetyl for the more stable carbomethoxy group

[†] University of Western Sydney.

[‡] University of California.

⁽⁴⁾ For selected examples, see: Mapp, A. M.; Ansari, A. Z.; Ptashne,
M.; Dervan, P. B. *Proc. Natl. Acad. Sci. U.S.A.* 2000, *97*, 3930–3935.
Gottesfeld, J. M.; Belitsky, J. M.; Melander, C.; Dervan, P. B.; Luger,
K. *J. Mol. Biol.* 2002, *321*, 249–263. Arndt, H.-D.; Hauschild, K. E.;
Sullivan, D. P.; Lake, K.; Dervan, P. B.; Ansari, A. Z. *J. Am. Chem. Soc.* 2003, *125*, 13322–13323. Nguyen-Hackley, D. H.; Ramm, E.;
Taylor, C. M.; Joung, J. K.; Dervan, P. B.; Pabo, C. O. *Biochemistry* 2004, *43*, 3880–3890.

^{(5) (}a) Baird, E. E.; Dervan, P. B. J. Am. Chem. Soc. **1996**, 118, 6141–6146. (b) Wurtz, N. R.; Turner, J. M.; Baird, E. E.; Dervan, P. B. Org. Lett. **2001**, 3, 1201–1203.

⁽⁶⁾ Nishiwaki, E.; Tanaka, S.; Lee, H.; Shibuya, M. *Heterocycles* **1988**, *27*, 1945–1952.

with sodium methoxide followed, giving the ester **3** in excellent yield. Reaction of **3** with *tert*-butyl carbamate employing Buchwald's catalyst system, comprised of CuI, N,N'-dimethylethylenediamine, and K_3PO_4 ,⁷ produced the Boc-protected precursor **4** in 99% yield. Final ester hydrolysis using LiOH⁸ afforded the *N*-methylpyrrole acid building block **5** in five steps, from *N*-methylpyrrole, with an improved overall yield of 62-64%.

It is important to note that the synthetic scheme outlined above represents the culmination of numerous attempts to explore and optimize alternative reaction conditions. The major difficulties we have encountered with alternate schemes include (a) loss of selectivity in reactions of **2** with NBS at room temperature, with both the 5-bromo and 4,5-dibromo as the major products, (b) unsatisfactory bromination of related *N*-methylpyrrole esters resulting in low yields (20–30%), and (c) unsuccessful palladium and copper catalyzed cross-coupling reactions^{7,9} of **2** with other substrates, including benzophenone imine, 4-methoxybenzylamine, and acetamide. Additionally, the trichloroacetyl group was found to be unstable under the various conditions employed.

Similar efforts for the synthesis of the imidazole amino acid 10 utilizing the same and related cross-coupling reactions failed. A possible reason may be the coordination of imidazole to the catalysts employed. Attempts to displace 4-halogen-substituted N-methylimidazoles with nitrogen-containing nucleophiles (such as N_3^{-}) were not successful. This has led us to explore other modifications of the existing method.⁵ Here, the versatility of the trichloroacetyl group was again employed with the synthesis of the nitro derivative 7 through initial trichloroacetylation⁶ of N-methylimidazole and subsequent nitration using HNO₃/H₂SO₄. The nitro ester 8 was then obtained through base hydrolysis of 7, and a one-pot catalytic reduction and Boc-protection gave the desired compound 9 in 91% yield for the two steps. Final hydrolysis with *t*-BuOK in THF/ H_2O^{10} produced the imidazole acid building block 10 in five steps, with an improved overall yield of 28%.

In summary, we have reported on alternative synthetic schemes to two useful heterocyclic amino acids extensively employed in the synthesis of highly selective DNA minor groove binders.

Experimental Section

2-Trichloroacetyl-1-methylpyrrole (1).⁶ *N*-Methylpyrrole (10 g, 0.12 mol) in CH₂Cl₂ (40 mL) was added dropwise to trichloroacetyl chloride (22 g, 0.12 mol) in CH₂Cl₂ (40 mL) over a period of 3 h and then stirred overnight. The solvent was removed and the residue purified by flash chromatography (silica gel, 3:7 CH₂Cl₂/hexane, R_f 0.73) yielding 1 (25.3 g, 91%) as a light yellow solid: mp 66–67 °C (lit.⁶ 65–66 °C); IR (KBr) 3131, 1647, 1525, 1404, 1335 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, 1H, J_1 = 3.2 Hz, J_2 = 4.4 Hz), 6.95 (d, 1H, J = 1.6 Hz), 6.21 (dd, 1H, J_1 = 2.4 Hz, J_2 = 4.4 Hz), 3.95 (s, 3H); ¹³C NMR (100.6

MHz, CDCl₃) δ 172.8, 133.6, 124.0, 121.7, 108.8, 96.3, 38.5; APCI-MS *m/z* calcd for C₇H₈Cl₂NO [M + H - Cl]⁺ 191.99, found 191.98; C₇H₉ClNO [M + H - Cl₂]⁺ 158.03, found 158.01.

4-Bromo-2-trichloroacetyl-1-methylpyrrole (2). To compound **1** (5.0 g, 22 mmol) in CHCl₃ (65 mL) at -10 °C was added NBS (4.13 g, 23 mmol) and the reaction stirred for 2 h. The solution was warmed to room temperature and stirred for a further 16 h. The solution was concentrated and the residue purified by flash chromatography (silica gel, 1:9 CH₂Cl₂/hexane, R_f 0.23) yielding **2** (5.32 g, 79%) as a white solid:¹¹ mp 105–107 °C; IR (KBr) 3131, 1677, 1464, 1358, 1191 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, 1H, J = 1.6 Hz), 6.92 (d, 1H, J = 1.6 Hz), 3.89 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃) δ 172.3, 132.8, 124.5, 122.1, 108.8, 96.1, 38.7; APCI-MS m/z calcd for C₇H₉BrNO [M + H - Cl₃]⁺ 201.98, found 201.98.

Methyl 4-Bromomethylpyrrole-2-carboxylate (3). To compound **2** (2.0 g, 6.6 mmol) in dry MeOH (75 mL) was added sodium methoxide (0.43 g, 7.9 mmol) and the mixture stirred for 1 h. The reaction was cooled and quenched with HCl (1 M, 1.3 mL). The solvent was evaporated, H₂O added, and the mixture extracted with CH₂Cl₂. The organics were dried (Na₂-SO₄), solvent removed, and the residue purified by flash chromatography (silica gel, 1:1 hexane/CH₂Cl₂, R_f 0.35), yielding **3** (1.34 g, 93%) as a white solid: mp 65–66 °C; IR (KBr) 3123, 1693, 1442, 1388, 1244 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.89 (d, 1H, J = 2.0 Hz), 6.74 (d, 1H, J = 2.0 Hz), 3.87 (s, 3H), 3.78 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃) δ 160.8, 128.7, 122.8, 119.2, 95.0, 51.2, 36.9; GC–MS *m/z* calcd for C₇H₉BrNO₂ [M + H]⁺ 217.97, found 218.2.

Methyl 4-[(*tert*-Butoxycarbonyl)amino]-1-methylpyrrole-2-carboxylate (4). CuI (0.020 g, 0.1 mmol, 10 mol %), K₃PO₄ (0.43 g, 2 mmol), and *N*,*N*^{*}-dimethylethylenediamine (0.022 mL, 0.2 mmol, 20 mol %) in dry dioxane (5 mL) were stirred under argon for 5 min. Compound **3** (0.22 g, 1 mmol) and *tert*-butyl carbamate (0.47 g, 4 mmol) were added, and the mixture was heated at 110 °C for 48 h. The solvent was removed and the residue purified by flash chromatography (silica gel, gradient 1:19 MeOH/CH₂Cl₂, R_f 0.56) to yield 4 (0.26 g 99%) as a light brown solid: mp 115–116 °C (lit.¹² 109 °C); IR (KBr) 3344, 2963, 1716, 1685, 1594 cm⁻¹; ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.11 (s, 1H), 7.09 (s, 1H), 6.61 (s, 1H), 3.77 (s, 3H), 3.69 (s, 3H) 1.43 (s, 9H); ¹³C NMR [100.6 MHz, (CD₃)₂SO] δ 160.7,152.7, 123.1, 119.2, 118.6, 107.3, 78.5, 50.8, 36.0, 28.1; ESI-MS *m*/*z* calcd for C₁₂H₁₈N₂O₄ [M + Na]⁺ 277.13, found 276.96.

4-[(*tert*-Butoxycarbonyl)amino]-1-methylpyrrole-2-carboxylic Acid (5). To compound 4 (0.05 g, 0.20 mmol) in THF/ MeOH (3:1, 4 mL) was added LiOH (1 M, 0.79 mL, 0.79 mmol) and the mixture stirred at 60 °C for 9 h. H₂O and EtOAc were added, and the aqueous layer was acidified with HCl (1 M, 0.79 mL). The aqueous layer was extracted with EtOAc, dried (Na₂-SO₄), and concentrated, yielding **5** (0.044 g, 94%) as a white solid (1:9 MeOH/CH₂Cl₂, R_f 0.22): mp 160–161 °C (lit.¹³ 151–151.5 °C); IR (KBr) 3395, 3131, 2930, 1693, 1590, 1450, 1393, 1250, 1163 cm⁻¹; ¹H NMR [400 MHz, (CD₃)₂SO] δ 12.10 (s, 1H), 9.05 (s, 1H), 7.04 (s, 1H), 6.56 (s, 1H), 3.76 (s, 3H), 1.42 (s, 9H); ¹³C NMR [100.6 MHz, (CD₃)₂SO] δ 161.9; 152.7; 122.8, 119.6, 118.8, 107.4, 78.4, 36.1, 28.2; ESI-MS *m/z* calcd for C₁₁H₁₆N₂O₄ [M + Na]⁺ 263.11, found 262.94.

2-Trichloroacety-1-methylimidazole (6). *N*-Methylimidazole (10 g, 0.12 mol) in CH₂Cl₂ (80 mL) was added dropwise to trichloroacetyl chloride (22 g, 0.12 mol) in CH₂Cl₂ (80 mL) over a period of 2.5 h. The mixture was then stirred for 6 h and cooled to 0 °C, and Et₃N (17 mL, 0.12 mol) was added dropwise over 1 h. The solvent was evaporated and the residue purified by flash chromatography (silica gel, 1:4 hexane/CH₂Cl₂, R_f 0.17) to yield **6** (21.8 g, 79%) as a light yellow solid: mp 83–84 °C (lit.⁶ 79– 80 °C); IR (KBr) 3123, 1647, 1518, 1404, 1305 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (s, 1H), 7.13 (s, 1H), 4.01 (s, 3H); ¹³C

⁽⁷⁾ Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. **2002**, 124, 7421–7428.

⁽⁸⁾ Boger, D. L.; Fink, B. E.; Hedrick, M. P. J. Am. Chem. Soc. 2000, 122, 6382–6394.

⁽⁹⁾ Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. **2001**, 123, 7727–7729. Kwong, F. Y.; Buchwald, S. L. Org. Lett. **2003**, 5, 793–796.

⁽¹⁰⁾ Gassman, P. G.; Schenk, W. N. J. Org. Chem. **1977**, 42, 918–920.

⁽¹¹⁾ Slightly higher yield (81%) is obtained when the reaction is executed on a smaller (ca. 0.5 g) scale.

⁽¹²⁾ Bailly, C.; Pommery, N.; Houssin, R.; Henichart, J. P. J. Pharm. Sci. **1989**, 78, 910–917.

⁽¹³⁾ Grehn, L.; Ragnarsson, U. J. Org. Chem. 1981, 46, 3492-3497.

NMR (100.6 MHz, CDCl₃) δ 172.0, 135.9, 130.4, 128.5, 94.7, 37.1; ESI-MS *m*/*z* calcd for C₆H₆Cl₃N₂O [M + H]⁺ 226.95, found 226.96.

4-Nitro-2-trichloroacety-1-methylimidazole (7). To acetic anhydride (38 mL) at 0 °C was added dropwise fuming HNO₃ (3 mL, 0.07 mol), followed by H₂SO₄ (0.14 mL). Compound **6** (5 g, 0.02 mol) was added slowly, and the solution was warmed to room temperature and stirred overnight. CHCl₃ was added and the solution washed with NaHCO_{3(aq)} and brine. The organics were dried (Na₂SO₄) and concentrated, and the residue was purified by flash chromatography (silica gel, 1:1 EtOAc/ hexane, R_f 0.43) yielding **7** (3.89 g, 65%) as a light yellow solid: mp 139–140 °C (lit.⁶ mp 140–141 °C); IR (KBr) 3146, 2355, 1708, 1541, 1343 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 4.15 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃) δ 172.8, 133.6, 125.9, 94.4, 93.5, 38.3; ESI-MS m/z calcd for C₆H₅Cl₃N₃O₃ [M + H]⁺ 271.93, found 271.92.

Methyl 1-Methyl-4-nitroimidazole-2-carboxylate (8). To compound 7 (3.47 g, 0.01 mol) in dry MeOH (130 mL) was added sodium methoxide (0.83 g, 0.02 mol) and the solution stirred for 3 h. The reaction was cooled and quenched by the addition of HCl (1 M, 13 mL). The solvent was evaporated, H₂O added, and the mixture extracted with CH₂Cl₂. The organics were dried (Na₂SO₄), and the residue was purified by flash chromatography (silica gel, 3:7 hexane/EtOAc, R_f 0.48) to yield 8 (1.65 g, 70%) as a white solid: mp 157–158 °C; IR (KBr) 3435, 3138, 2956, 1731, 1556, 1487, 1305, 1114 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 4.09 (s, 3H), 3.93 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃) δ 158.5, 146.0, 134.6, 124.4, 52.9, 37.0; APCI-MS m/z calcd for C₆H₈N₃O₄ [M + H]⁺ 186.04, found 185.96.

Methyl 4-[(*tert*-Butoxycarbonyl)amino]-1-methylimidazole-2-carboxylate (9). To compound 8 (1.24 g, 0.01 mol) in dry MeOH (120 mL) was added *tert*-butyl dicarbonate (5.86 g, 0.03 mol) followed by 10% Pd/C (0.12 g), and the mixture was stirred under a hydrogen atmosphere for 3 h. $H_{2(g)}$ was removed and the mixture stirred for 28 h. The catalyst was filtered (Celite) and the solvent evaporated. The residue was washed with NaHCO_{3(aq)} and extracted with CH₂Cl₂. The organics were dried (Na₂SO₄), and the residue was purified by flash chromatography (silica gel, 1:19 MeOH/CH₂Cl₂, R_f 0.45), yielding **9** (1.56 g, 91%) as a white solid: mp 130–132 °C; IR (KBr) 3291, 2979, 1716, 1579 cm⁻¹; ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.68 (s, 1H), 7.31 (s, 1H), 3.87 (s, 3H), 3.77 (s, 3H), 1.43 (s, 9H); ¹³C NMR [100.6 MHz, (CD₃)₂SO] δ 158.8, 152.7, 138.1, 130.7, 113.8, 79.0, 51.6, 35.3, 28.0; APCI-MS m/z calcd for C₁₁H₁₈N₃O₄ [M + H]⁺ 256.12, found 255.80.

4-[(tert-Butoxycarbonyl)amino]-1-methylimidazole-2carboxylic Acid (10). To potassium tert-butoxide (0.35 g, 3.13 mmol) in dry THF (6 mL) at 0 °C was added H₂O (14 mL, 0.78 mmol) and the solution stirred for 5 min. Compound 9 (0.1 g, 0.39 mmol) was added and the mixture stirred at room temperature for 1 h. It was then diluted with cold H₂O and EtOAc, the layers were separated, and the aqueous layer was acidified by addition of HCl (1 M, 3.1 mL). The aqueous layer was extracted with EtOAc, dried (Na₂SO₄), and concentrated, yielding 10 (0.08 g, 87%) as a white solid (1:9 MeOH/CH₂Cl₂, R_f 0.25): mp 200-201 °C (lit.14 mp 201-202 °C); IR (KBr) 3389, 3230, 2979, 1716, 1624, 1571, 1358, 1160 cm⁻¹; ¹H NMR [400 MHz, (CD₃)₂SO] δ 9.63 (s, 1H), 7.25 (s, 1H), 3.86 (s, 3H), 1.42 (s, 9H); ¹³C NMR $[100.6 \text{ MHz}, (\text{CD}_3)_2 \text{SO}] \delta 160.0, 152.8, 137.7, 131.7, 113.5, 78.9,$ 35.4, 28.1; ESI-MS m/z calcd for C₁₀H₁₅N₃O₄ [M + Na]⁺ 264.11, found 263.93.

Acknowledgment. We thank the Australian Research Council (Grant No. DP0343480 to J.A.W.) and the National Institutes of Health (Grant No. GM69773 to Y.T.) for their generous support.

Supporting Information Available: ¹H and ¹³C NMR spectra for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO048686R

⁽¹⁴⁾ Grehn, L.; Ding, L.; Ragnarsson, U. Acta Chem. Scand. 1990, 44, 67–74.