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Abstract

InCl5-3H,0 was found to be a mild and effective catalyst for the efficient, one-pot, three component synthesis of 2,4,5-trisubstituted
imidazoles at room temperature. Moreover, the utility of this protocol was further explored conveniently for the one-pot, four
component synthesis of 1,2,4,5-tetrasubstituted imidazoles in high yields.
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Multicomponent reactions enjoy an outstanding status
in organic and medicinal chemistry for their high degree
of atom economy and application in the diversity-oriented
convergent synthesis of complex organic molecules from
simple and readily available substrates in a single vessel.'
Naturally occurring substituted imidazoles, as well as syn-
thetic derivatives thereof, exhibit wide ranges of biological
activities, making them attractive compounds for organic
chemists. They act as inhibitors of p38 MAP kinase,**
B-Raf kinase,® transforming growth factor 1 (TGF-Bl)
type 1 activin receptor-like kinase (ALKS5),* cyclooxygen-
ase-2 (COX-2)** and biosynthesis of interleukin-1 (IL-1).%
Appropriately substituted imidazoles are extensively used
as glucagon receptors®® and CB; cannabinoid receptor
antagonists,’® modulators of P-glycoprotein (P-gp)-medi-
ated multidrug resistance (MDR),*® antibacterial®® and
antitumor® agents and also as pesticides.’’ Recent
advances in green chemistry and organometallic catalysis
has extended the application of imidazoles as ionic liquids*
and N-heterocyclic carbenes.’
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This versatile applicability highlights the importance of
access to efficient synthetic routes to well designed highly
substituted imidazole derivatives. A number of methods
have been developed for the synthesis of 2,4,5-trisubsti-
tuted imidazoles and 1,2,4,5-tetrasubstituted imidazoles.
2,4,5-Trisubstituted imidazoles are generally synthesized
by three component cyclocondensation of a 1,2-diketone,
o-hydroxyketone or o-ketomonoxime with an aldehyde
and ammonium acetate, which comprise the use of micro-
waves,® ¢ jonic liquids,6e refluxing in acetic acid,’" " silica
sulfuric acid,® and NiCl,-6H,0/Al,05.% Moreover, they
have also been prepared by the reaction of aryl nitriles
and a,0-dilithioarylnitromethanes’® or by multistep synthe-
ses.”> On the other hand, the syntheses of 1,2,4,5-tetrasub-
stituted imidazoles are carried out by four-component
condensation of a 1,2-diketone, a-hydroxyketone or o-
ketomonoxime with an aldehyde, primary amine and
ammonium acetate using microwaves,* heteropolyacid,®®
silica gel/NaHSO,* or HClO4-Si0,.5¢ In addition, they
can also be accessed by the cycloaddition reaction of
mesoionic 1,3-oxazolium-5-olates with N-(arylmethylene)-
benzenesulfonamides,”  hetero-Cope  rearrangement,’®
condensation of a 1,2-diketone with an aryl nitrile and pri-
mary amine under microwave irradiation” and by N-alkyl-
ation of trisubstituted imidazoles.”
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Table 1
Condensation of benzil, benzaldehyde and ammonium acetate using different catalysts and solvents®
CHO
Ph:\ﬁo Catalyst P N
+ (j + NH,0Ac > I »_@
Ph 0 Solvent Ph N
H

Entry Catalyst Catalyst loading (mol %) Solvent Time (h) Yield® (%)

1 InCl5-3H,0 20 MeOH 12.0 73

2 InCl5-3H,0 10 MeOH 8.3 82

3 InCl;-3H,0 30 MeOH 12.0 69

4 InCl;-3H,O 5 MeOH 12.0 67

5 InCl3-3H,0 10 EtOH 12.0 77

6 InCl;-3H,0 10 iso-PrOH 13.0 62

7 InCl3-3H,0 10 t-BuOH 13.4 50

8 InCl5-3H,0 10 CHCl; 24.0 N.R.

9 InCl5-3H,0 10 CH,Cl, 24.0 Trace
10 InCl3-3H,0 10 Toluene 24.0 N.R.C
11 InCl3-3H,0 10 CH;CN 12.0 55
12 InCl5-3H,0 10 H,0 24.0 N.R.*
13 SnCl,-2H,0 10 MeOH 18.0 48
14 CoCl,-2H,0 10 MeOH 18.0 39
15 NiCl,-2H,0 10 MeOH 18.0 41
16 AICl;-6H,O 10 MeOH 18.0 38
17 H;BO; 10 MeOH 18.0 34
18 Mg(OAc),-2H,0 10 MeOH 18.0 51
19 CAN 10 MeOH 10.0 72
20 CAN 10 EtOH 10.0 70
21 CAN 5 MeOH 10.0 75
22 No catalyst — MeOH 24.0 10

# Benzil:benzaldehyde:NH4OAc (1 mmol:1 mmol:2 mmol).
® Isolated yield.
¢ No reaction.

Most of these synthetic methods suffer from one or more
serious drawbacks, such as laborious and complex work-up
and purification, significant amounts of waste materials,
strongly acidic conditions, occurrence of side reactions,
low yields and the use of expensive reagents. Additionally,
most require elevated temperatures created either by
microwave irradiation® 4334 at 180-200 °C or by reflux-
ing®e3:727¢809% 414 heating®3¢4? the reaction mixture at
high temperatures. Therefore, the development of a new
catalytic system to overcome these shortcomings and fulfill
the criteria of a mild, efficient and environmentally benign
protocol for the synthesis of highly substituted imidazoles
is an important task for organic chemists.

In recent years, indium chloride'® has invoked enormous
interest as a green and mild Lewis acid of high potential to
construct carbon—carbon or carbon-heteroatom bonds in
various organic transformations due to its low toxicity,
cost effectiveness, air and water compatibility, ease of han-
dling, good reactivity, experimental simplicity and excellent
solubility in water and organic solvents. Moreover, it has a
remarkable ability to suppress side reactions in acid sensi-
tive substrates.

In continuation of our effort to develop Lewis and
Bronsted acid!' catalyzed synthetic methodologies, we
report herein, for the first time, a simple, mild and expedi-
tious synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasub-
stituted imidazoles in high yields using InCl;-:3H,O as a

catalyst at ambient temperature. It may be mentioned that
InCl; was found to be completely ineffective for the synthe-
sis of highly substituted imidazolines as recently reported
by Singh et al.'?

Initially, we sought a mild and convenient method for
the synthesis of trisubstituted imidazoles at room tempera-
ture. Our investigation began with the evaluation of
InCl;3-3H,0 as a catalyst in the reaction of benzil (1 equiv),
benzaldehyde (1 equiv) and ammonium acetate (2 equiv) at
ambient temperature. The use of 20 mol % of InCl3-3H,0
in methanol afforded a 73% yield (Table 1, entry 1) of
the desired product. Optimization of the reaction condi-
tions was undertaken to increase the yield employing differ-
ent catalyst loadings in a wide variety of solvents. The
results are summarized in Table 1. The yield was increased
to 82% using 10 mol % of InCl3-3H,O (Table 1, entry 2).
However, the addition of 30 mol % of the catalyst was
found to have an inhibitory effect on the formation of
the 2.,4,5-trisubstituted imidazole (Table 1, entry 3),
whereas a reduction in yield was observed by decreasing
the catalyst loading to 5mol % (Table 1, entry 4). The
influence of other Lewis acids were also examined. It is
noteworthy that ceric ammonium nitrate (CAN) was found
to give quite high yields for this transformation (Table 1,
entries 19-21). In the absence of the catalyst, the reaction
proceeded sluggishly (Table 1, entry 22). The choice of
reaction solvent was crucial. Changing the solvent from
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Table 2
InCl3-3H,0 catalyzed synthesis of 2,4,5-trisubstituted imidazoles®
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Ri~__O R
+ RICHO 4 NH.OA 10 mol % InCl,.3H,0 Q_N
C >
R o ) MeOH, RT R! /N»—Rz
H
1
Entry R! R? Products Time (h) Yield® (%)
a CgH; CgHs 1la 8.3 82
b CoH; 4-MeOC4¢H, 1b 9.0 77
c CeH; 4-O,NC¢H, 1c 8.2 76
d CeH; 4-BrC¢H, 1d 9.0 76
e CgH; 4-CIC¢H, le 9.4 71
f CoH; 2-HOCGH, 1f 9.1 69
g CeH; 3-0,NCgH, 1g 8.5 73
h CoH; 2-CIC¢H,4 1h 9.1 68
i CgH; 4-HOC4H, 1i 8.4 71
j C6H5 3,4-(M60)2C6H3 lj 9.3 76
k 4-MeCgH, CeH,4 1k 8.4 78
1 4-MeCgH,4 4-MeOCg¢H, 11 9.0 73
m CeH; CH; 1m 8.4 64
n CoH; CH;CH,CH, 1n 9.0 61
(o] C6H5 (CH3)2CH 1o 9.4 54
p CgH;s CH;CH,CH,CH,CH, 1p 9.3 58
q CeH; C¢HsCH, 1q 8.4 61
r CeH; C¢H;CH(CHs) 1r 9.0 57

* Benzil:aldehyde:NH4OAc (1 mmol:1 mmol:2 mmol).
® Isolated yield.

methanol to ethanol was not beneficial as the yield was
reduced to 77% (Table 1, entry 5). The use of iso-propanol
and t-butanol as solvents furnished poor yields (Table 1,
entries 6 and 7). The results indicated that the yield gradu-
ally decreased as we moved from highly polar to less polar
alcoholic solvents. Other solvents, such as CH;CN, CHCl;

CH,Cl, and toluene were ineffective for this transforma-
tion. Hence, the conditions of entry 2, shown in Table 1,
were the optimized reaction conditions.

We next examined a wide variety of aldehydes (both
aromatic and aliphatic) and 1,2-diketones to establish the
scope of this catalytic transformation (Table 2)."* A broad

Table 3
InCl;-3H,0 catalyzed synthesis of 1,2,4,5-tetrasubstituted imidazoles®
Ph O Ph
I 10 mol % InCl, 3H,0 /Z_N
+ R2CHO + R3NH, + NH,OAc >
Ph” 0O MeOH, RT Ph /N»—Rz

I

R3

2
Entry R? R? Products Time (h) Yield® (%)
a C¢Hs C¢Hs 2a 6.4 83
b C¢Hs CH3; 2b 6.1 84
c Ce¢Hs CH;CH, 2¢ 6.0 84
d C¢Hs /\ 2d 7.2 77
e C¢Hs C¢HsCH, 2e 7.4 79
f 4-MCC6H4 C(,HS 2f 8.0 75
g 4-BrCgHy CHj; 2g 6.0 80
h 4—BrC(,H4 CH;CHZ 2h 6.0 81
i 4-CIC4Hy C¢HsCH, 2i 7.5 73
j H C¢HsCH, 2j 8.4 51
k CH3; C¢HsCH, 2k 9.0 49
1 CH; CH; 21 8.2 47

* Benzil:benzaldehyde:primary amine:NH4OAc (1 mmol:1 mmol:1 mmol:1 mmol).

® Isolated yield.
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range of aromatic aldehydes bearing electron donating and
electron withdrawing substituents underwent this one-pot,
three-component cyclocondensation to furnish 2.4,5-tri-
substituted imidazoles in high yields. Aliphatic aldehydes
afforded the corresponding imidazoles in moderate yields.
Various functional groups were found to be compatible
under the reaction conditions. In general, the reactions
were clean and no side products were detected. In all cases,
the reactions proceeded efficiently at room temperature.

The same reaction conditions were applied for the syn-
thesis of 1,2,4,5-tetrasubstituted imidazoles via the one-
pot, four component condensation of benzil, an aldehyde,
a primary amine and ammonium acetate.'* To our delight,
the 1,2,4,5-tetrasubstituted imidazoles were obtained in
high yields at room temperature. The substrate scope of
the reaction was then evaluated using a variety of structur-
ally diverse aldehydes and primary amines (Table 3). Both
aliphatic and aromatic aldehydes and primary amines
could be subjected successfully to this protocol. Aromatic
aldehydes produced high yields of 1,2,4,5-tetrasubstituted
imidazoles, whereas aliphatic aldehydes produced moder-
ate to lower yields of the corresponding imidazoles. In each
case, no side product formation, for example, 2,4,5-trisub-
stituted imidazoles was observed, as is normally the case in
such reactions under the influence of strong acids.

In accordance with the mechanism delineated by Srini-
vasan et al.® it may be proposed that the InCls-3H,0O
catalyst facilitates the formation of diamine intermediate
[A] by increasing the electrophilicity of the carbonyl group
of the aldehyde. Intermediate [A], in the presence of
InCl;-3H,0, condenses with benzil to form intermediate
[B], which in turn rearranges to the trisubstituted imidazole
by a [1,5] hydrogen shift (Scheme 1).

Similarly, the plausible mechanism for the synthesis of
the tetrasubstituted imidazole involves the formation of
intermediate [C] by the reaction of an aldehyde, primary
amine and ammonium acetate in the presence of InCls-
3H,0 catalyst. Intermediate [C] condenses with benzil to

Ph.__O
- 2H,0 I

_.AnCl;.3H,0

©)‘\ 2 NH,
-HO

J-O—— "%

[B]

Scheme 1. A plausible mechanism for the formation of trisubstituted
imidazoles.

.4AnCl;.3H,0
o

H o MeNH, + NH, —»@
Ph.__O

Ph o
Ph Ph H
N N
L) = w B
N - H,0 P
Ph” 2 DN
Me Me

[D]

Scheme 2. A plausible mechanism for the formation of tetrasubstituted
imidazoles.

form intermediate [D], which in turn liberates a water mol-
ecule to form the tetrasubstituted imidazole (Scheme 2).
In conclusion, a one-pot, multicomponent methodology
has been developed for the synthesis of 2,4,5-trisubstituted
and 1,2,4,5-tetrasubstituted imidazoles catalyzed by
10 mol % of InCl3-3H,0 in high yields. Compared to previ-
ously reported methods, most of which required elevated
temperatures, this protocol proceeded smoothly at room
temperature. Moreover, the mild reaction conditions, easy
work-up, clean reaction profiles, lower catalyst loading and
cost efficiency render this approach as an interesting alter-
native to the existing methods. Further studies on the
application of this method for the synthesis of highly func-
tionalized biologically active imidazoles are underway.
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General procedure for the synthesis of 2,4,5-trisubstituted imidazoles:
In a 50 ml round-bottom flask, 1,2-diketone (1 mmol), aldehyde
(1 mmol) and ammonium acetate (2 mmol) were stirred in the
presence of 10 mol % of InCl;-3H,0O in methanol (2 ml) at room
temperature for the stipulated time (Table 2). The progress of the
reaction was monitored by TLC. After the completion of the reaction,
the reaction mixture was diluted with water (3 ml) and extracted with
ethyl acetate (2 x 15 ml). The organic layer was dried over Na,SOy,
concentrated and recrystallized from ethanol to afford pure
product.

2-(3,4-Dimethoxyphenyl)-4,5-diphenyl-1H-imidazole (1j): Mp 215 °C;
"H NMR (DMSO-d, 300 MHz): 6 3.85 (s, 3H), 3.89 (s, 3H), 7.21-
7.81 (m, 13H), 12.52 (br s, 1H); FT-IR (KBr, cm™'): 1545, 1633, 3446;
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H, 5.66; N, 7.86. Found: C, 77.57; H, 5.62; N, 7.89.
2-(1-Phenylethyl)-4,5-diphenyl-1 H-imidazole (1r): Mp 185-187 °C; 'H
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J=7.2Hz, 1H), 7.14-7.79 (m, 15H), 12.44 (br s, 1H); FT-IR (KBr,
em™1): 1526, 1631, 3431; ESI-MS (m/z): 325 (M*+1). Anal. Calcd for
Cy3HyoN,: C, 85.15; H, 6.21; N, 8.63. Found: C, 85.19; H, 6.27; N,
8.69.

General procedure for the synthesis of 1,2,4,5-tetrasubstituted imid-
azoles:

In a 50 ml round-bottom flask, 1,2-diketone (1 mmol), aldehyde
(1 mmol), primary amine (1 mmol) and ammonium acetate (1 mmol)
were stirred in the presence of 10 mol % of InCl;-3H,0 in methanol
(2ml) at room temperature for the stipulated time (Table 3). The
reaction was monitored by TLC. After completion of the reaction, the
reaction mixture was diluted with water (5ml) and extracted with
ethyl acetate (2 x 25 ml). The organic layer was dried over Na,SOy,
and concentrated. The products were separated and purified by
column chromatography on silica gel (60-120 mesh) using ethyl
acetate/hexane mixture as an eluent to afford pure tetrasubstituted
imidazoles.

1-Methyl-2,4,5-triphenylimidazole (2b):%* Mp 144-145°C; 'H NMR
(CDCl;, 300 MHz): ¢ 3.51 (s, 3H), 7.16-7.76 (m, 15H); FT-IR
(CHCl;, cm™Y): 1602, 1581; ESI-MS (m/z): 311 (M"+1). Anal. Caled
for C»,H;gN»: C, 85.13; H, 5.85; N, 9.03. Found: C, 85.18; H, 5.89; N,
9.02.
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