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A stereocontrolled strategy toward the synthesis of nagelamide K has been developed. The dimeric imidazole acrylate, diimidazolidenesuccinate,
was constructed as a synthetic precursor by a Ni-catalyzed coupling reaction; the microwave-promoted intramolecular aza-Michael addition
afforded the imidazo[1,5-a]pyridine core structure of nagelamide K in high stereoselectivity. A detaurine—dediamino analogue of nagelamide K

has been prepared.

Bromopyrrole—imidazole alkaloids are common sec-
ondary metabolites from marine sponge families' and have
attracted great attention from the synthetic community.*>
The pyrrole portions could be introduced by acylation
with 2-(trichloroacetyl)pyrroles in a chloroform reaction*
or the Mitsunobu reaction® with pyrrolecarboxamides.
Various strategies had been developed to introduce the
2-aminoimidazole portion, for example, an elaboration
on the imidazole moiety by 2-lithiation and installation
of an azide (—Nj3) or methylthiol (MeS—) group,’ or via
imidazolone,” hydantoin,® or 2-thiohydantoin® precursors
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or the condensation of a halomethyl ketone with guanidine'
used in Baran’s work.'" Although significant progress has
been made in the development of strategies for the synthesis
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of such compounds, there remains a need for alternative
approaches.

For this family of pyrrole—imidazole alkaloids, it is not
hard to conceive that all these closely related structures
could arise, in a biosynthetic pathway, from one common
precursor, oroidin, which was first identified in 1971. 2 The
hypotheses of biosynthesis have not only helped in eluci-
dation and chemical rationalization of their structures but
also facilitated the design and execution of total synthesis
endeavors.'® Recently, Kobayashi et al. reported the iso-
lation of four dimeric bromopyrrole alkaloids, nagela-
mides K, L, Q, and R from Okinawan marine sponges.'*
Interestingly, nagelamides K/Q are new dimeric bromo-
pyrrole alkaloids possessing a rare piperidine/pyrolindine
central ring and two aminoimidazole moieties with one
being tethered with a taurine unit. A plausible biogenetic
path to nagelamides K (1) and Q (2) has been proposed in
intramolecular cyclizations from a common intermediate
A (Figure 1)."%°

’hﬁ( V\/E >~NH,

oroidin

nagelamide K (1)

nagelamide Q (2)

Figure 1. Presumed biogenetic synthesis of nagelamide K, Q.

Since the presumed intermediate A with a variable
2-aminoimidazole fragment was highly dependent on po-
larity of solvents and pH conditions,'®> we proposed an
alternative strategy as shown in Scheme 1, with a dimeric
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imidazole acrylate intermediate B for intramolecular aza-
Michael additions to both nagelamide K (route a) and Q
(route b); in addition, the skeleton of ageliferin might also
be accessible (route ¢).

Scheme 1. Proposed Synthetic Strategy for Nagelamides K and
Q and Ageliferin
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As shown in Figure 2, we chose 3, a detaurine—
dediamino analogue of nagelamide K, as a simplified target
for nagelamide K (1). In a retrosynthetic analysis, the
pyrrolecarboxamides could be introduced via Mitsunobu
reactions using pyrrolecarboxamide 5. The diol 4 was
postulated to diester 6, which servers as the key intemediate,
and may arise in an intramolecular aza-Michael addition as
designed in Scheme 1 from diimidazolidenesuccinate (7),
and 7 could be synthesized via dimerization of bromoacry-
late 8. Herein, we report our synthetic work on the basis of
this analysis.
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Figure 2. Retrosynthetic analysis.

(13) For hypotheses for the biosynthesis of the family members, see:
(a) Al Mourabit, A.; Potier, P. Eur. J. Org. Chem. 2001, 237-243. (b)
Andrade, P.; Willoughby, R.; Pomponi, S. A.; Kerr, R. G. Tetrahedron
Lett. 1999, 40, 4775. (c) Baran, P. S.; O’Malley, D. P.; Zografos, A. L.
Angew. Chem., Int. Ed. 2004, 43, 2674-2677. (d) Kock, M.; Grube, A.;
Seiple, I. B.; Baran, P. S. Angew. Chem., Int. Ed. 2007, 46, 6586—6594.

(14) (a) Araki, A.; Kubota, T.; Tsuda, M.; Mikami, Y.; Fromont, J.;
Kobayashi, J. Org. Lett. 2008, 10,2099-2102. (b) Araki, A.; Kubota, T.;
Aoyama, K.; Mikami, Y.; Fromont, J.; Kobayashi, J. Org. Lett. 2009,
11,1785-1788.

(15) Al Mourabit, A.; Potier, P. Eur. J. Org. Chem. 2001, 237.

2071



First, the bromination of methyl urocanote to 8 (R = H)
with Br,/Et;N was attempted, but poor selectivities and
low yields were obtained.'® Then, as shown in Scheme 2, the
4-DMAS-protected imidazole carbaldehyde 10, prepared
from 9 in four steps,17 was reacted with PhsP=CHCO,Me
and bromodimethylsulfonium bromide (BDMS) by a
method developed in our group'® to afford the (2)-
1-(dimethylsulfamoyl-1H-imidazol-4-yl)bromoacrylate 11
in high yield and selectivity. The zerovalent nickel complexes
Ni(cod),-mediated dimeric coupling of 11 produced the
product 12 in high yield (97%)."

Scheme 2. Synthesis of Diimidazolidenesuccinate 12
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Having the dimeric 12 in hand, we turned to the study of
intramolecular aza-Michael additions, and the results are
summarized in Table 1. To our delight, the cyclization to
compound 13 took place upon simply heating a toluene
solution of 12 in the presence of 2 equiv of water at 140 °C,
95% vyield and 8/1 selectivity were obtained after 96 h
(entry 1), and the trans-substituted isomer was determined
to predominate. Apparently, the deprotection of one
DMAS group occurred during the aza-Michael addition
in this transformation. Switching to more polar solvent
DMSO, much better trans/cis selectivity (>95/1) was
achieved with 53—71% yield after heating at 130 °C for
12—18 h (entries 2 and 3). Using microwave heating, 43%
yield was obtained after 15-min irradiation in DMSO at
130 °C, and a remarkable yield of 96% was achived when
irradiated at 150 °C without decreasing the stereoselectiv-
ity (entries 4 and 5), while microwave heating in toluene did
not improve the reaction outcome (entry 6).

As shown in Scheme 3, reduction of 13 with LiAIH,
afforded 14 in 92% yield, and catalytic hydrogenation on
Pd/C provided 15 in excellent yield and stereoselectivity.
The diol 15 was subjected to a double Mitsunobu reac-
tion” with dibromopyrrolehydantoin (16, DBPH) and
gave intermediate 17.%° Exposure of 17 to aqueous NaOH
resulted in the hydrolysis of the ureas and liberated the
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Table 1. Optimization of the Cyclization of 12 to 13

DMASE | S - COMe
X, CO,Me iti \_N .,
N 2% conditions  \— ‘CO,Me
N
¢ ) CO,Me NN
DMASN \\—NDMAS
12 13

yield* trans/

entry solvent condition temp/°C time (%) cis®

1  toluene normal heating 140 96h 95 8/1

2 DMSO normal heating 130 18h 71 >95/1
3 DMSO normal heating 150 12h 53 >95/1
4 DMSO microwave 130 15 min 43 >95/1
5 DMSO microwave 150 15min 96 >95/1
6  toluene microwave 140 30 min 30 9/1

“Yield of isolated product.  Determined by '"H NMR.

Scheme 3. Synthesis of Detaurine—Dediaminonagelamide K (3)
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Figure 3. Molecular structrue of the pyrrolecarboxamide 18.

pyrrolecarboxamide 18 in 73% yield over two steps, and the
structure has been confirmed by X-ray analysis (Figure 3).*!
Removal of the DMAS protecting group with methanolic

(21) For X-ray crystal structures of compounds 11—15 and 18, see the
Supporting Information.
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HCI afforded compound 3 in 98% yield. In this way, the
basic skeleton of nagelamide K has been accessed, with two
amino and taurine moieties to be introduced.

In summary, a novel method toward the synthesis of
nagelamide K has been developed, and the detaurine—
dediamino analogue of nagelamide 3 has been prepared
efficiently. Noteworthy features of this concise synthesis
include (a) a dimeric imidazole acrylate intermediate B via
a Ni-catalyzed coupling of o-bromomethyl urocanote,
which may serve as a common precursor for nagelamide
Q/K and ageliferin; (b) an efficient intramolecular aza-
Michael addition to synthesize the rare imidazole—
piperidine ring; and (c) generally excellent yields and

Org. Lett,, Vol. 14, No. 8, 2012

high selectivities. Studies toward the total synthesis of
nagelamide K/Q and ageliferin are now in progress in
our laboratory.
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