A Cyclobutene-1,2-Bis(imidazolium) Salt as Efficient Precursor of Palladium-Catalyzed Room-Temperature Suzuki–Miyaura Reactions

Alireza Rahimi, Andreas Schmidt*

Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany Fax +49(5323)723861; E-mail: schmidt@ioc.tu-clausthal.de

Received 17 February 2010

Abstract: 3,3'-[3,4-Bis(dichloromethylene)cyclobut-1-ene-1,2diyl]bis(1-methyl-1*H*-imidazolium) bis(tetrafluoroborate), palladium(II)acetate, and sodium *tert*-butoxide in toluene catalyze effectively Suzuki–Miyaura cross-coupling reactions of aryl bromides, chlorides, and iodides with arylboronic acids at room temperature.

Key words: biphenyls, cross-coupling, Suzuki–Miyaura cross-coupling reactions

As C-C bond formations are often key steps in a broad variety of organic processes, transition-metal-catalyzed cross-coupling reactions represent a valuable tool in organic synthesis.¹ Among these, the Suzuki–Miyaura reaction has emerged as a favorite, as numerous organoboron nucleophiles can be coupled with aryl iodides, bromides, chlorides, and aryl and vinyl sulfonates (triflates, nonaflates, tosylates) as electrophiles.² Ligand structure proved to be crucial in successfully achieving metal-catalyzed cross-coupling, and, as a consequence, a plethora of different ligands have been investigated. The most important goals of catalyst design has been the ability to couple a broad substrate scope, to establish methods for the synthesis of sterically hindered biaryls, the possibility to work at room temperature, and the development of reaction conditions which allow a low catalyst loading. Remarkable success has been achieved during the last decade.1-3

We report here Suzuki–Miyaura reactions using a cyclobutene-1,2-bis(imidazolium) bis(tetrafluoroborate) as catalyst precursor which proceed at room temperature starting from a variety of substrates.

The catalyst is readily available from 1,2-dichloro-3,4bis(dichloromethylene)cyclobut-1-ene (1) on treatment with 1-methylimidazole (NMI) which results in the formation of (cyclobut-1-ene-1,2-diyl)bis(1-methylimidazolium) bischloride. In a one-pot procedure anion exchange gave 3,3'-(3,4-bis(dichloromethylene)cyclobut-1-ene-1,2-diyl)bis(1-methyl-1*H*-imidazolium) bis(tetrafluoroborate) (2) in 73% yield (Scheme 1).⁴

The Suzuki–Miyaura reaction of 4-bromotoluene and phenylboronic acid was used to optimize the reaction conditions with respect to catalyst loading, temperature, and time (Scheme 2). Thus, the reaction of 1.0 mmol of 4-bromo-

SYNLETT 2010, No. 9, pp 1327–1330 Advanced online publication: 13.04.2010 DOI: 10.1055/s-0029-1219824; Art ID: G06810ST © Georg Thieme Verlag Stuttgart · New York toluene, 1.2 mmol of phenylboronic acid, and 1.7 mmol of NaO*t*-Bu in 5.0 mL of toluene at room temperature gave 96% of 4-phenyltoluene within 30 minutes, when 2.0 or 1.0 mol% of Pd(OAc)₂ and bis(imidazolium) salt **2** were employed, respectively (Table 1). Smaller amounts of palladium salt and imidazolium salt **2** required longer reaction times and/or elevated temperatures to give slightly decreased yields of the product. To examine the scope of the reaction, we used the conditions of entry 2 (Table 1).

Scheme 1 Synthesis of the precursor

1 equiv

Scheme 2 Conditions of Suzuki–Miyaura reactions using precursor 2

 Table 1
 Optimizing Reaction Conditions

Entry	Pd(OAc) ₂ /2 (mol%)	Temp (°C)	Time (h)	Yield (%)
1	2 1	r.t.	0.5	96
2	1 1	r.t.	0.5	96
3	0.5	r.t.	2.5	91
4	0.2	r.t.	5	91
5	0.2	50	3	94
6	0.1	50	5	92

Table 2 Suzuki–Miyaura Reactions at Room Temperature

Entry	Aryl halide	Boronic acid	Product	Time (min)	Yields (%) ^a
1	Br	(HO) ₂ B		25	94
2	Br	(HO) ₂ B		60	87
3	Br	(HO) ₂ B		70	96
4	F ₃ C-	(HO) ₂ B	F ₃ C	60	99
5	F ₃ C-Br	(HO) ₂ B	F ₃ C	60	94
6	F ₃ C-Br	(HO) ₂ B	F ₃ C	45	99
7	OMe Br	(HO) ₂ B	OMe	100	91
8	Me ₂ N-Br	(HO) ₂ B	Me ₂ N	150	86
9	F ₃ C-	(HO) ₂ B	F ₃ C	75	94
10	OH Br	(HO) ₂ B	OH	120	94
11	Br	(HO) ₂ B	Ph	90	91
12		(HO) ₂ B-CF ₃		70	93
13		(HO) ₂ B		55	96
14	OMe I	(HO) ₂ B	OMe	100	94
15		(HO) ₂ B		65	97
16	— CI	(HO) ₂ B		55	93
17	F ₃ C-CI	(HO) ₂ B	F ₃ C	70	95
18	F ₃ C-CI	(HO) ₂ B	F ₃ C	70	96

Synlett 2010, No. 9, 1327–1330 © Thieme Stuttgart · New York

Entry	Aryl halide	Boronic acid	Product	TimeYields(min)(%) ^a
19	CI	(HO) ₂ B		75 91
20	NCI	(HO) ₂ B		80 93

 Table 2
 Suzuki–Miyaura Reactions at Room Temperature (continued)

^a Yields refer to isolated products characterized by spectroscopic data [¹H NMR, ¹³C NMR, MS (EI), IR, CHN analyses].

As illustrated in Table 2, our catalytic system enables the cross-coupling of electron-rich as well as electron-deficient aryl bromides (entries 1-11) in very good to excellent yields at room temperature. Thus our method to prepare terphenyl (entry 2) competes with recent Suzuki-Miyaura reactions under microwave irradiation in water (7 h, 83%),⁵ or a procedure starting from boronic esters in aqueous EtOH or *i*-PrOH (6–18 h, 90–95%).⁶ Alternatively, this coupling can be carried out in the presence of an encapsulated Pd catalyst under microwave irradiation (15 min, >98%)⁷ or using hydrazones as catalyst precursors (3) h, 88%).⁸ The synthesis of 4-trifluoromethylbiphenyl (entry 4) proceeds in quantitative yield within only 1 hour applying our catalyst system. As a comparison, a recent literature procedure using cyclometallated cis-chelated bidentate benzimidazolylidene palladium complexes gave 91% yield within 24 hours at room temperature.⁹ Essentially, the same yield of 4-methyl-4'-(trifluoromethyl)biphenyl (Table 2, entry 5) was obtained either starting from cyclic triol borates and JohnPhos as ligand of Pd(OAc)₂ in DMF-water within a period of 5 hours,¹⁰ or according to our procedure within 60 minutes. Noteworthy are the reactions of the very electron-rich 4-bromo-N,N-dimethylaniline (entry 8) and 2-bromophenol (entry 10) which gave 86% and 94% yield of the corresponding biaryls at room temperature, respectively, in considerably shorter reaction times than reported for other catalyst systems (24 h,¹¹ 18 h¹²). Aryl iodides usually are the most reactive halides in Suzuki-Miyaura reactions. All iodides tested here reacted in excellent yields (entries 12-15). The 1,4-diiodobenzene (entry 15) was reacted with two equivalents of phenyl boronic acids to give terphenyl in almost quantitative yield at room temperature. A literature survey revealed that our cross-coupling requires the mildest reaction conditions (entries 12, 13,¹³ and 14¹⁴), or the shortest reaction time at room temperature (entry 15^{15}). The use of chlorides as coupling partners has been a challenge over a longer period of time, as they proved to be less reactive under standard Suzuki-Miyaura conditions; nevertheless efforts have been devoted to this class of compounds due to its attractive cost and readily available diversity.¹⁶ We tested 4-chlorotoluene, 1-chloro-4-trifluoromethylbenzene, 1-acetyl-2-chlorobenzene, and 4-chloropyridine as coupling partners which all reacted at room temperature in 91% to 95% yield (entries 16–18). The preparation of 4-(trifluoromethyl)biphenyl (entry 17) as presented here is by far the mildest method, except for the usage of in situ generated nanoparticles in PEG-400 under aerobic conditions.¹⁷ To the best of our knowledge, no room-temperature Suzuki–Miyaura reactions of the chlorides presented in entries 18–20 have been published to date. Noteworthy is the formation of the sterically hindered 1-(trimethylbiphenyl-2-yl)ethanone (entry 19) which is a tri-*ortho*-substituted biaryl.

In summary we present a very efficient catalyst system for Suzuki–Miyaura reactions which allows for roomtemperature cross-couplings.¹⁸

Acknowledgment

The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support.

References and Notes

- (a) Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: New York, **1985**. (b) Principles and Applications of Organotransition Metal Chemistry; Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G., Eds.; University Science: Mill Valley CA, **1987**. (c) Metal-Catalyzed Cross-Coupling Reactions; Diederich, F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim, **1998**.
- (2) (a) Felpin, F.-X.; Ayad, T.; Mitra, S. *Eur. J. Org. Chem.*2006, 2679. (b) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Greeser, M. J.; Garner, J.; Breuning, M. *Angew. Chem. Int. Ed.* 2005, 44, 5384; *Angew. Chem.* 2005, 117, 5518.
 (c) Miyaura, N. *Top. Curr. Chem.* 2002, 219, 11.
 (d) Suzuki, A.; Brown, H. C. *Organic Synthesis via Boranes*, Vol. 3; Aldrich: Milwaukee, 2003.
- (3) (a) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew. Chem. Int. Ed. 2004, 43, 1871; Angew. Chem. 2004, 116, 1907. (b) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685.
- (4) Schmidt, A.; Rahimi, A. Chem. Commun. 2010, 46, in press.
- (5) Lipshutz, B. H.; Petersen, T. B.; Abela, A. R. *Org. Lett.* **2008**, *10*, 1333.
- (6) Kitamura, Y.; Sakurai, A.; Udzu, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. *Tetrahedron* **2007**, *63*, 10596.

- (7) Baxendale, I. R.; Griffiths-Jones, C. M.; Ley, S. V.; Tranmer, G. K. *Chem. Eur. J.* **2006**, *12*, 4407.
- (8) Mino, T.; Shirae, Y.; Sakamoto, M.; Fujita, T. J. Org. Chem. 2005, 70, 2191.
- (9) Liu, Z.; Zhang, T.; Shi, M. Organometallics 2008, 27, 2668.
- (10) Yamamoto, Y.; Takizawa, M.; Yu, X.-Q.; Miyaura, N. Angew. Chem. Int. Ed. 2008, 47, 928; Angew. Chem. 2008, 120, 942.
- (11) Cui, X.; Zhou, Y.; Wang, N.; Liu, L.; Guo, Q.-X. *Tetrahedron Lett.* **2007**, *48*, 163.
- (12) Mu, B.; Li, T.; Li, J.; Wu, Y. J. Organomet. Chem. 2008, 693, 1243.
- (13) Uozumi, Y.; Nakai, Y. Org. Lett. 2002, 4, 2997.
- (14) Song, C.; Ma, Y.; Chai, Q.; Ma, C.; Jiang, W.; Andrus, M. B. *Tetrahedron* 2005, *61*, 7438.
- (15) Lu, F.; Ruiz, J.; Astruc, D. Tetrahedron Lett. 2004, 45, 9443.
- (16) Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 4176; Angew. Chem. 2002, 114, 4350.
- (17) Han, W.; Liu, C.; Jin, Z.-L. Org. Lett. 2007, 9, 4005.
- (18) Typical Procedure for the Synthesis of 3-Methylterphenyl (Entry 3)A flame-dried two-necked flask was charged with 4-bromo-

biphenyl (1 mmol, 233 mg), 3-methylphenylboronic acid

(1.2 mmol, 163.2 mg), salt 2 (1 mol%, 0.01 mmol, 5.6 mg), Pd(OAc)₂ (1 mol%, 0.01 mmol, 2.5 mg), and NaOt-Bu (1.7 mmol, 163.5 mg), capped with a rubber septum, evacuated, and refilled with nitrogen. Evaporation and refilling was repeated three times. Then toluene (5 mL) was added via a syringe. The reaction mixture was stirred at r.t. for 70 min, then diluted with of n-hexane (10 mL), and filtered through a small amount of silica gel. The solvent was then evaporated, and the residue was purified by column chromatography (silica gel). The compound was obtained as colorless solid in 96% yield (234 mg), mp 123-124 °C. ¹H NMR (200 MHz, CDCl₃): $\delta = 7.65$ (s, 5 H), 7.62–7.60 (m, 1 H), 7.48–7.29 (m, 6 H), 7.18–7.17 (m, 1 H), 2.41 (s, 3 H) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 140.8, 140.7, 140.3, 140.0, 138.4, 128.8, 128.7, 128.4, 128.1, 127.9, 127.5, 127.4, 127.3, 127.1, 124.2, 21.6 ppm. IR (KBr): 3033, 2974, 2845, 1626, 1585, 1210, 973, 827 cm⁻¹. MS: *m/z* (%) = 244 (100%) [M⁺]. Anal. Calcd for $C_{19}H_{16}$: C, 93.40; H, 6.60. Found: C, 93.48; H, 6.49.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.