Accepted Manuscript

Synthesis, characterization and *in vitro* anticancer evaluation of novel 1,2,4-triazolin-3-one derivatives

Pramod P. Kattimani, Ravindra R. Kamble, Mahadevappa Y. Kariduraganavar, Atukuri Dorababu, Ravindra K. Hunnur

PII: S0223-5234(13)00012-3

DOI: 10.1016/j.ejmech.2013.01.004

Reference: EJMECH 5927

To appear in: European Journal of Medicinal Chemistry

Received Date: 28 September 2012

Revised Date: 31 December 2012

Accepted Date: 3 January 2013

Please cite this article as: P.P. Kattimani, R.R. Kamble, M.Y. Kariduraganavar, A. Dorababu, R.K. Hunnur, Synthesis, characterization and *in vitro* anticancer evaluation of novel 1,2,4-triazolin-3-one derivatives, *European Journal of Medicinal Chemistry* (2013), doi: 10.1016/j.ejmech.2013.01.004.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Synthesis, characterization and *in vitro* anticancer evaluation of novel 1,2,4-triazolin-3-one derivatives

Pramod P. Kattimani, Ravindra R. Kamble, Mahadevappa Y. Kariduraganavar, Atukuri Dorababu, Ravindra K. Hunnur

A series of novel 1,2,4-triazol-3-one appended to different heterocyclic/aryl moieties (**5a-t**) were synthesized and *in vitro* anticancerous action was studied against NCI-60 Human Tumor Cell Lines. The compound **5g** comprising 1,2,4-triazolin-3-one appended to 4-methylcoumarin ring has shown potent anticancer activity against various cell lines.

Highlights

- Novel 1,2,4-triazolin-3-one derivatized with various heterocycles/aryl groups were synthesized.
- *In vitro* anticancer activity against NCI-60 human tumor cell lines was done.
- The compound **5g** comprising 4-methylcoumarin ring has shown potent anticancer activity.

Synthesis, characterization and *in vitro* anticancer evaluation of novel 1,2,4-triazolin-3-one derivatives

Pramod P. Kattimani^a, Ravindra R. Kamble^{a*}, Mahadevappa Y. Kariduraganavar^a, Atukuri Dorababu^a, Ravindra K. Hunnur^b

^a Department of Studies in Chemistry, Karnatak University, Pavate Nagar, Dharwad-580003, India

^b APL Research Ltd., Batchupally, Hyderabad-500090, India

*Corresponding author: Tel: +91-836-2215286, Extn-34; Fax: +91-836-2771275

E-mail: kamchem9@gmail.com

Keywords:	A series of novel 2-(4-chlorophenyl)-5-methyl-4-(2-amine/oxy-ethyl)-2,4-
Cancer, 1,2,4-	dihydro-[1,2,4]triazol-3-one (5a-t) were synthesized and the in vitro
triazole,	anticancerous action of the resulting compounds was studied against NCI-60
sydnone,	Human Tumor Cell Line at a single high dose (10^{-5} M) concentration for
anticancer	primary cytotoxicity assay. Among the tested compounds (5a-e, 5g-h, 5k, 5p),
activity	the compound 5g (NSC: 761736/1) was further evaluated for five dose criteria
	at five different minimal concentrations against the full panel of 60 human
	tumor cell lines which exhibited activity against Leukemia (GI50: 1.10 µM),
	Non-Small Cell Lung Cancer (GI ₅₀ : 1.00 µM), Renal Cancer (GI ₅₀ : 1.00 µM),
	Colon Cancer (GI ₅₀ : 1.66 µM), CNS Cancer (GI ₅₀ : 1.36 µM), Melanoma (GI ₅₀ :
	1.82 µM), Ovarian Cancer (GI ₅₀ : 1.64 µM) and Breast Cancer (GI ₅₀ : 1.69
	μΜ).

A B S T R A C T

1. Introduction

Cancer still remains a potentially life threatening disease and the number of cancer related deaths are increasing alarmingly. Literature clearly indicated that more than 90% of cancer patients die due to chronic tumor metastases - the spread and invasion of other organs [1]. Considering this, the development of newer chemotherapeutic scaffolds which selectively act on the target without side effects has became a primary objective of medicinal chemists. Recently, 1,2,4-triazole derivatives have been incorporated into wide variety of therapeutically interesting molecules to transform them into better drugs and exhibited significant biological activity for wide range of therapeutic properties *viz.*, antimicrobial [2], anti-tumour [3], antiinflammatory [4], antihypertensive [5], analgesic [6], anticonvulsant [7], antiviral [8], antidepressant [9], antitubercular [10], sedative [11] and plant growth regulatory activities [12].

(antiviral agent) [13], terconazole and flucanozole (antifungal agent) [14]. The heterocyclic derivatives of 1,2,4-triazole exhibit a broad spectrum of pharmacological properties, for example 1,2,4-triazoles bearing coumarin, quinoline and morpholine [15-17] **Fig. 1**, have been reported as potential antimicrobial agents. Itraconazole, a potent antifungal agent, possess 1,2,4-triazole bearing piperazine substituent [18].

We opted to synthesize 1,2,4-triazolin-3-one derivatives (**5a-t**) from 3-arylsydnone (**1**) as it is proved to be useful precursor since it undergoes ring transformation *via* 1,3-dipolar cycloaddition reaction into various pharmacologically active heterocycles [19-22]. Also, we have recently demonstrated the anticancer activity of carbazole derivatives synthesized from 3-arylsydnone as synthon [23]. All these factors prompted us to synthesize 1,2,4-triazolin-3-ones appended to different bio-potent moieties in order to explore their *in vitro* anticancer activity against 60 human cancer cell lines at National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, USA.

2. Results and discussion

2.1. Chemistry

Initially, *N*-(4-chlorophenyl)sydnone (**1**) was ring transformed into 3-(4-chlorophenyl)-5-methyl-2-oxo- Δ^4 -1,3,4-oxadiazole (**2**) which was further refluxed with ethanolamine to get 4-(2-hydroxy-ethyl)-2-(4-chlorophenyl)-5-methyl-2,4-dihydro-3*H*-1,2,4-triazol-3-one (**3**) through ring insertion. This (**3**) upon reaction with methanesulphonyl chloride in presence of triethylamine gave the mesilate **4**. Finally, the title compounds (**5a-t**) were obtained by reacting mesilate (**4**) with various secondary amines and/or hydroxyl substituted heterocycles/aromatic hydroxy compounds (**a-t, Scheme 1**) under mild basic condition. All the newly synthesized compounds were characterized by IR, ¹H and ¹³C NMR, mass spectral and elemental analyses. In case of IR studies, all the compounds have shown a sharp intense band at 1698-1716 cm⁻¹ which corresponds to carbonyl group of 1,2,4-triazolin-3-one ring. A medium intense band

appeared around 1595-1624 cm⁻¹ was attributed to C=N stretching. In case of ¹H NMR, the C₅ methyl of 1,2,4-triazolin-3-one ring appeared at 1.86-2.68 ppm. The protons of ethyl chain resonated as two triplets in the upfield region *viz.*, 2.60-4.60 ppm. The signals appeared at 6.61-8.95 ppm were attributed to aromatic protons. For ¹³C NMR, the C₅ methyl carbon of 1,2,4-triazolin-3-one ring resonated in the range 10.86-12.39 ppm. The ethyl carbons showed signals at 37.70-66.58 ppm. A signal resonated at 144-145 ppm was attributed to C₅ carbon of 1,2,4-triazolin-3-one ring. The carbonyl carbon of 1,2,4-triazolin-3-one ring. The carbonyl carbon of 1,2,4-triazolin-3-one ring. The other rings attached to alkyl chain have shown signals at their respective positions. The mass spectral analyses of all the title compounds have shown the *m/z* values which corresponds to their molecular mass.

2.2. Pharmacology

2.2.1. Anticancer activity at a single high dose concentration $(10^{-5}M)$

All the newly synthesized compounds were subjected to *in vitro* anticancer screening in a single high dose (10^{-5} M) concentration against full 60 human cancer cell lines at NCI under DTP drug discovery programme. Output from the single dose screen is reported as a graph of mean growth percent of the treated cells. This allows detecting both growth inhibition values (between 0 and 100) and cytotoxicity values (less than 0). The results of the single dose screening were analyzed by COMPARE program [24]. Compounds **5a** (NSC: 761735/1), **5b** (NSC: 761741/1), **5c** (NSC: 761737/1), **5d** (NSC: 761740/1), **5e** (NSC: 761739/1), **5g** (NSC: 761736/1), **5h** (NSC: 761742/1), **5k** (NSC: 765439/1), **5p** (NSC: 765438/1) have been screened for single high dose (10^{-5} M) concentration on all the 60 human cancer cell lines organized into nine sub-panels derived from nine different human cancer types: leukemia, lung, colon, CNS, melanoma, ovarian, renal, prostate and breast cancer cell lines. The following are the percentage growth inhibition (GI%) of the treated cells at 10^{-5} M concentration with the compound **5b** (comprising 1,2,4-triazolin-3-one bearing morpholine substituent): *CNS Cancer*

SNB-75 (GI% 92.35); *Colon cancer* (GI% 70.54); compound **5g** (comprising 1,2,4-triazolin-3one bearing 4-methylcoumarin substituent, **Table 1**): *Colon Cancer* HT 29 (GI% 99.30), COLO 205 (GI% 89.42), HCT 116 (GI% 84.88), HCT 15 (82.26); *Melanoma* SK-MEL-2 (GI% 96.45), SK-MEL-5 (GI% 89.24), M14 (GI% 85.28), UACC-257 (GI% 77.48); *Leukemia* CCRF-CEM (GI% 86.59), K-562 (GI% 83.73), SR 21.22 (GI% 78.78); *Non-Small Cell Lung Cancer* NCI-H460 (GI% 82.79); *CNS Cancer* SF-295 (GI% 85.97); *Ovarian Cancer* OVCAR-3 (GI% 85.18), OVCAR-8 (GI% 82.32); *Renal Cancer* CAKI-1 (GI% 80.52); *Prostate Cancer* DU-145 (GI% 78.36) and *Breast Cancer* MCF7 (GI% 84.21), MDA-MB-468 (GI% 83.92) and has shown cytotoxic effect against *Leukaemia* HL-60 (TB) and *Melanoma* MDA-MB-435 cancer cell lines. All other compounds (**5a**, **5c-e**, **5h**, **5k**, **5p**) have shown negligible GI%.

2.2.2. Anticancer activity at five dose concentrations

The methodology followed comprised *in vitro* screening of the compounds against full 60 cell lines divided into nine sub panels at five different minimal concentrations (0.01, 0.1, 1, 10 and 100 μ M). The percentage of growth was evaluated spectrophotometrically versus controls not treated with test agents. The 48 h continuous drug exposure protocol was followed and SRB (sulforodamine B) protein assay was used to estimate cell viability or growth. The results were represented by graph of log concentration *vs* GI% and three dose response parameters (GI₅₀, TGI and LC₅₀) were calculated for each cell line. The GI₅₀ value (growth inhibitory activity) corresponds to the molar concentration of the compound that inhibits 50% net cell growth; TGI value (cytostatic activity) is the molar concentration of the compound resulting in total growth inhibition and LC₅₀ value (cytotoxic activity) is the molar concentration of the compound causing 50% net cell death. Furthermore, mean graph midpoints (MGMID) were calculated for GI₅₀ parameter, giving an average activity parameter over all cell panels for tested compounds.

Among the tested compounds *viz.*, **5a-e**, **5g-h**, **5k**, **5p** the derivative possessing 4methylcoumarin ring (**5g**) has shown significant growth inhibition against variety of cell lines at a single high dose (10⁻⁵ M) concentration and has been further evaluated for five dose screening at five different minimal concentrations. The compound **5g** has exhibited broad spectrum of growth inhibition activity against eight tumor cell lines with average GI₅₀ values (MGMID) 2.97-3.65 µM namely, *Leukemia* K-562 (GI₅₀: 1.29 µM), RPMI-8226 (GI₅₀: 1.10 µM); *Non-Small Cell Lung Cancer* EKVX (GI50: 1.00 µM), HOP-92 (GI₅₀: 1.61 µM); *Colon Cancer* KM 12 (GI₅₀: 1.66 µM); *CNS Cancer* SF-268 (GI₅₀: 1.36 µM); *Melanoma* SK-MEL-2 (GI₅₀: 1.82 µM), UACC-62 (GI₅₀: 1.99 µM); *Ovarian Cancer* (GI₅₀: 1.64 µM); *Renal Cancer* A498 (GI₅₀: 1.13 µM) CAKI-1 cell line (GI50: 1.00 µM), TK-10 (GI₅₀: 1.34 µM), UO-31 (GI₅₀: 1.27 µM) and *Breast Cancer* BT-549 (GI₅₀: 1.69 µM) cell lines. The dose response curve of eight sub-panel cell lines for compound **5g** is represented in **Fig 2**.

3. Conclusions

In this communication, we report the synthesis of heterocyclic derivatives of 1,2,4triazolin-3-one (**5a-t**) and their *in vitro* anticancer activity at NCI/NIH, Bethesda, USA. Out of twenty compounds, nine compounds (**5a-e**, **5g-h**, **5k**, **5p**) have been screened at a single high dose (10^{-5} M) concentration. Among these, the 1,2,4-triazolin-3-one bearing 4-methylcoumarin ring (**5g**) has shown nearly 50-99% growth inhibition of the tumor cells against various cell lines at 10^{-5} M concentration. It has also exhibited marked anticancer activity even at micro molar (μ M) concentration against Leukemia, Non-Small Cell Lung Cancer, Renal Cancer, Colon Cancer, CNS Cancer, Melanoma, Ovarian Cancer, Renal Cancer and Breast Cancer cell panels. Structural modifications of these title compounds may lead to the discovery of more effective anticancer agents in future.

4. Experimental

4.1. Materials and methods

The purity of the compounds was checked by TLC on a silica gel plate using ethyl acetate and hexane (30%) as eluent. Melting points were determined in open capillaries. IR spectra (KBr) were recorded on a Nicolet Impact-410 FTIR spectrometer. ¹H (300 MHz) and ¹³C (100 MHz) NMR spectra were recorded on a Bruker Avance FT NMR spectrometer with TMS as an internal standard. Mass spectra were recorded using a Finnegan MAT (Model MAT 8200) spectrometer and elemental analysis was carried out using a Heraus CHN rapid analyzer. Compound **3** and corresponding mesilate **4** from *N*-(4-chlorophenyl)sydnone (**1**) were prepared according to the reported methods [25-27].

4.2. General procedure for the preparation of title compounds (5a-t)

A mixture of compound **4** (0.331 g, 0.001 M), appropriate secondary amine (**a-f**, 0.001 M) or hydroxyl substituted compound (**g-t**, 0.001 M) and anhydrous potassium carbonate (0.002 M) in dry DMF (20 ml) was stirred at 100 °C. The completion of the reaction was checked by TLC using ethyl acetate and hexane (30%) as eluent. The reaction mixture was then poured into ice cold water and neutralized with dil. HCl (few drops). The precipitate thus formed was filtered and dried. All the newly prepared compounds were purified by column chromatography using ethyl acetate and hexane (10%) as eluent.

4.2.1. 4-(2-(1H-1,2,4-Triazol-1-yl)ethyl)-2-(4-chlorophenyl)-5-methyl-2H-1,2,4-triazol-3(4H)-one (5a)

Yield: 85%; m.p: 170-172 °C; IR (KBr, cm⁻¹): 1710 (C=O), 1615 (C=N); ¹H NMR (CDCl₃, δ ppm): 1.86 (s, 3H, C₅-CH₃), 4.04 (t, 2H, N-CH₂), 4.50 (t, 2H, N-CH₂), 7.47-7.50 (d, 2H, *J* = 9 Hz, Ar-H), 7.86-7.89 (d, 2H, *J* = 9 Hz, Ar-H), 7.98 (s, 1H, triazole C₃-H), 8.52 (s, 1H, triazole C₅-H); ¹³C NMR (CDCl₃, δ ppm): 12.39, 43.05, 48.38, 120.98, 130.50, 132.11, 137.55, 145.52, 151.38, 153.17, 154.45; MS (m/z): 306 (M⁺²), 304 (M⁺), 238, 236, 211, 209, 127, 125; Anal.

Calcd. for C₁₃H₁₃N₆ClO (304.08): C, 51.24%; H, 4.30%; N, 27.58%; Found: C, 51.23%; H, 4.28%; N, 27.56%.

4.2.2. 2-(4-Chlorophenyl)-5-methyl-4-(2-morpholinoethyl)-2H-1,2,4-triazol-3(4H)-one (**5b**) Yield: 60%; m.p: 110-112 °C; IR (KBr, cm⁻¹): 1703 (C=O), 1624 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.36 (s, 3H, C₅-CH₃), 2.53 (t, 4H, morpholine CH₂-N-CH₂), 2.64 (t, 2H, N-CH₂), 3.74 (t, 4H, morpholine CH₂-O-CH₂), 3.76 (t, 2H, N-CH₂), 7.35-7.39 (d, 2H, *J* = 12 Hz, Ar-H), 7.92-7.96 (d, 2H, *J* = 12 Hz, Ar-H), ¹³C NMR (CDCl₃, δ ppm): 12.02, 39.11, 53.90, 57.04, 66.94, 119.46, 129.22, 130.24, 136.55, 144.63, 152.04; MS (m/z): 324 (M⁺²), 322 (M⁺), 238, 236, 211, 209, 127, 125; Anal. Calcd. for C₁₅H₁₉N₄ClO₂ (322.12): C, 55.81%; H, 5.93%; N, 17.36%; Found: C, 55.79%; H, 5.90%; N, 17.38%.

4.2.3. 4-(2-(1H-Benzo[d][1,2,3]triazol-1-yl)ethyl)-2-(4-chlorophenyl)-5-methyl-2H-1,2,4triazol-3(4H)-one (**5***c*)

Yield: 82%; m.p: 168-170 °C; IR (KBr, cm⁻¹): 1702 (C=O), 1612 (C=N); ¹H NMR (CDCl₃, δ ppm): 1.92 (s, 3H, C₅-CH₃), 4.28 (t, 2H, N-CH₂), 5.07 (t, 2H, N-CH₂), 7.40-7.42 (m, 2H, Ar-H), 7.44-7.49 (d, 2H, *J* = 15 Hz, Ar-H), 7.80-7.85 (d, 2H, *J* = 15 Hz, Ar-H), 7.88-7.91 (m, 2H, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 10.86, 41.84, 53.90, 118.02, 119.52, 126.61, 126.93, 128.94, 130.37, 136.30, 143.89, 144.66, 151.69; MS (m/z): 356 (M⁺²), 354 (M⁺), 238, 236, 211, 209, 127, 125; Anal. Calcd. for C₁₅H₁₉N₄ClO₂ (354.10): C, 57.55%; H, 4.26%; N, 23.69%; Found: C, 57.58%; H, 4.23%; N, 23.66%.

4.2.4. 3-(2-(1-(4-Chlorophenyl)-3-methyl-5-oxo-1H-1,2,4-triazol-4(5H-yl)ethyl)thiazolidine-2,4-dione (5d)

Yield: 62; m.p: 278-280 °C; IR (KBr, cm⁻¹): 1739 (C=O), 1705 (C=O), 1611 (C=N); ¹H NMR (DMSO, δ ppm): 2.50 (s, 3H, C₅-CH₃), 2.73 (t, 2H, N-CH₂), 2.89 (t, 2H, N-CH₂), 3.63 (s, 1H, C₅-H of thiazolidine), 7.47-7.50 (d, 2H, *J* = 9 Hz, Ar-H), 7.90-7.93 (d, 2H, *J* = 9 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 11.31, 33.85, 37.70, 41.60, 119.00, 128.36, 128.92, 136.66, 145.74,

7

151.50, 164.51, 167.90; MS (m/z): 354 (M⁺²), 352 (M⁺), 281, 278, 238, 236, 254, 251, 211, 209, 127, 125; Anal. Calcd. for C₁₄H₁₃N₄ClO₃S (352.04): C, 47.66%; H, 3.71%; N, 15.88%; Found: C, 47.68%; H, 3.74%; N, 15.86%.

4.2.5. 4-(2-(1H-Benzo[d]imidazol-1-yl)ethyl)-2-(4-chlorophenyl)-5-methyl-2H-1,2,4-triazol-3(4H)-one (5e)

Yield: 76%; m.p: 78-80 °C; IR (KBr, cm⁻¹): 1699 (C=O), 1598 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.16 (s, 3H, C₅-CH₃), 4.05 (t, 2H, N-CH₂), 4.59 (t, 2H, N-CH₂), 7.27-7.29 (m, 2H, Ar-H), 7.32-7.37 (d, 2H, *J* = 15 Hz, Ar-H), 7.39-7.81 (m, 2H, Ar-H), 7.83-7.88 (d, 2H, *J* = 15 Hz, Ar-H), 7.90 (s, 1H, C₂-H of benzimidazole); ¹³C NMR (CDCl₃, δ ppm): 11.20, 40.80, 44.92, 112.21, 115.41, 119.11, 125.66, 125.91, 128.71, 128.89, 131.46, 131.96, 136.16, 142.19, 145.25, 151.34; MS (m/z): 355 (M⁺²), 353 (M⁺), 237, 235, 211, 209, 127, 125; Anal. Calcd. for C₁₈H₁₆N₅ClO (353.10): C, 61.10%; H, 4.56%; N, 19.79%; Found: C, 61.12%; H, 4.53%; N, 19.77%.

4.2.6. 2-(4-Chlorophenyl)-5-methyl-4-(2-(4-methylpiperazin-1-yl)ethyl)-2H-1,2,4-triazol-3(4H)-one (**5f**)

Yield: 65%; semisolid; IR (KBr, cm⁻¹): 1706 (C=O), 1599 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.24 (s, 3H, C₅-CH₃), 2.32 (s, 3H, N-CH₃), 2.52-2.56 (m, 8H, piperazine), 2.66 (t, 2H, N-CH₂), 3.68 (t, 2H, N-CH₂), 7.25-7.28 (d, 2H, *J* = 9 Hz, Ar-H), 7.85-7.88 (d, 2H, *J* = 9 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 12.05, 45.60, 52.95, 54.76, 119.34, 128.78, 130.08, 136.37, 145.32, 151.85; MS (m/z): 337 (M⁺²), 335 (M⁺), 238, 236, 211, 209, 127, 125; Anal. Calcd. for C₁₆H₂₂N₅ClO (335.15): C, 57.22%; H, 6.60%; N, 20.85%; Found: C, 57.23%; H, 6.58%; N, 20.87%.

4.2.7. 2-(4-Chlorophenyl)-5-methyl-4-(2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl)-2H-1,2,4-triazol-3(4H)-one (**5g**) Yield: 76%; m.p: 238-240 °C; IR (KBr, cm⁻¹): 1712 (C=O), 1615 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.34 (s, 3H, coumarin CH₃), 2.38 (s, 3H, C₅-CH₃), 4.11 (t, 2H, N-CH₂), 4.30 (t, 2H, O-CH₂), 6.14 (s, 1H, C₄-H of coumarin), 6.77-7.26 (m, 2H, Ar-H), 7.34-7.37 (d, 2H, *J* = 9 Hz, Ar-H), 7.47-7.49 (m, 1H, Ar-H), 7.89-7.91 (d, 2H, *J* = 9 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 12.05, 18.61, 41.26, 65.78, 101.84, 106.22, 111.76, 112.55, 119.61, 125.81, 128.99, 130.44, 136.28, 144.79, 151.81, 152.26, 155.31, 160.72, 160.95; MS (m/z): 413 (M⁺²), 411 (M⁺), 238, 236, 211, 209, 127, 125; Anal. Calcd. for C₂₁H₁₈N₃ClO₄ (411.10): C, 61.24%; H, 4.41%; N, 10.20%; Found: C, 61.25%; H, 4.44%; N, 10.17%.

4.2.8. 2-(4-Chlorophenyl)-4-(2-(5-chloroquinolin-8-yloxy)ethyl)-5-methyl-2H-1,2,4-triazol-3(4H)-one (**5h**)

Yield: 72%; m.p: 308-310 °C; IR (KBr, cm⁻¹): 1710 (C=O), 1599 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.68 (s, 3H, C₅-CH₃), 4.26 (t, 2H, N-CH₂), 4.46 (t, 2H, O-CH₂), 6.94-6.97 (d, 1H, *J* = 9 Hz, Ar-H), 7.33-7.36 (d, 1H, *J* = 9 Hz, Ar-H), 7.48-7.51 (d, 2H, *J* = 9 Hz, Ar-H), 7.54-7.56 (m, 1H, Ar-H), 7.88-7.91 (d, 2H, *J* = 9 Hz, Ar-H), 8.51-8.92 (m, 2H, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 12.06, 41.43, 66.62, 108.95, 119.53, 122.50, 126.28, 128.95, 130.26, 132.98, 136.43, 144.58, 149.73, 152.37, 158.91; MS (m/z): 418 (M⁺⁴), 416 (M⁺²), 414 (M⁺), 238, 236, 206, 204, 127, 125; Anal. Calcd. for C₂₀H₁₆N₄Cl₂O₂ (414.07): C, 57.84%; H, 3.88%; N, 13.49%; Found: C, 57.85%; H, 3.87%; N, 13.47%.

4.2.9. 2-(4-Chlorophenyl)-5-methyl-4-(2-(2-oxo-2H-chromen-4-yloxy)ethyl)-2H-1,2,4-triazol-3(4H)-one (5i)

Yield: 81%; m.p: 230-232 °C; IR (KBr, cm⁻¹): 1716 (C=O), 1605 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.41 (s, 3H, C₅-CH₃), 4.22 (t, 2H, N-CH₂), 4.49 (t, 2H, O-CH₂), 5.95 (s, 1H, C₄-H of coumarin), 7.36-7.38 (m, 2H, Ar-H), 7.50-7.53 (d, 2H, *J* = 9 Hz, Ar-H), 7.62-7.81 (m, 2H, Ar-H), 7.92-7.95 (d, 2H, *J* = 9 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 11.53, 40.01, 62.48, 91.11, 115.45, 116.47, 119.04, 122.74, 124.21, 128.95, 129.04, 132.81, 137.45, 145.01, 150.09,

154.21, 160.10, 164.23; MS (m/z): 399 (M⁺²), 397 (M⁺), 238, 236, 211, 209, 127, 125; Anal. Calcd. for C₂₀H₁₆N₃ClO₄ (397.08): C, 60.38%; H, 4.05%; N, 10.56%; Found: C, 60.35%; H, 4.04%; N, 10.59%.

4.2.10. 2-(4-Chlorophenyl)-5-methyl-4-(2-(o-tolyloxy)ethyl)-2H-1,2,4-triazol-3(4H)-one (5j)

Yield: 81%; m.p: 138-140 °C; IR (KBr, cm⁻¹): 1711 (C=O), 1608 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.15 (s, 3H, C₅-CH₃), 2.41 (s, 3H, CH₃), 4.09 (t, 2H, N-CH₂), 4.23 (t, 2H, O-CH₂), 6.61-6.99 (m, 4H, Ar-H), 7.09-7.11 (d, 2H, J = 6 Hz, Ar-H), 7.88-7.90 (d, 2H, J = 6 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 12.11, 24.51, 40.71, 66.05, 114.78, 119.72, 121.23, 124.60, 126.04, 128.65, 130.54, 136.61, 144.81, 151.65, 155.68; MS (m/z): 345 (M⁺²), 343 (M⁺), 238, 236, 211, 209, 127, 125; Anal. Calcd. for C₁₈H₁₈N₃ClO₂ (343.11): C, 62.88%; H, 5.28%; N, 12.22%; Found: C, 62.84%; H, 5.26%; N, 12.19%.

4.2.11. 2-(4-Chlorophenyl)-5-methyl-4-(2-(p-tolyloxy)ethyl)-2H-1,2,4-triazol-3(4H)-one (**5**k) Yield: 80%; m.p: 156-158 °C; IR (KBr, cm⁻¹): 1714 (C=O), 1611 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.19 (s, 3H, C₅-CH₃), 2.43 (s, 3H, CH₃), 3.90 (t, 2H, N-CH₂), 4.27 (t, 2H, O-CH₂), 6.65-6.69 (d, 2H, J = 12 Hz, Ar-H), 7.11-7,14 (d, 2H, J = 12 Hz, Ar-H), 7.48-7.52 (d, 2H, J = 12 Hz, Ar-H); 7.88-7.92 (d, 2H, J = 12 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 11.98, 24.63, 40.74, 66.35, 113.64, 119.76, 128.86, 129.63, 130.65, 131.29, 136.52, 144.73, 152.09, 156.32; MS (m/z): 345 (M⁺²), 343 (M⁺), 238, 236, 211, 209, 127, 125; Anal. Calcd. for C₁₈H₁₈N₃ClO₂ (343.11): C, 62.88%; H, 5.28%; N, 12.22%; Found: C, 62.89%; H, 5.27%; N, 12.25%. 4.2.12. 2-(4-Chlorophenyl)-5-methyl-4-(2-(m-tolyloxy)ethyl)-2H-1,2,4-triazol-3(4H)-one (**5**l) Yield: 78%; m.p: 162-164 °C; IR (KBr, cm⁻¹): 1701 (C=O), 1598 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.15 (s, 3H, C₅-CH₃), 2.35 (s, 3H, CH₃), 4.11 (t, 2H, N-CH₂), 4.26 (t, 2H, O-CH₂), 6.75-6.85 (m, 4H, Ar-H), 7.38-7.41 (d, 2H, J = 9 Hz, Ar-H), 7.88-7.91 (d, 2H, J = 9 Hz, Ar-H); ¹³C

130.31, 136.74, 139.09, 144.87, 152.06, 156.79; MS (m/z): 345 (M⁺²), 343 (M⁺), 238, 236,

NMR (CDCl₃, δ ppm): 12.01, 24.58, 40.78, 66.26, 111.49, 113.67, 119.69, 120.37, 128.63,

211, 209, 127, 125; Anal. Calcd. for C₁₈H₁₈N₃ClO₂ (343.11): C, 62.88%; H, 5.28%; N, 12.22%; Found: C, 62.86%; H, 5.27%; N, 12.21%.

4.2.13. 2-(4-Chlorophenyl)-5-methyl-4-(2-(4-nitrophenoxy)ethyl)-2H-1,2,4-triazol-3(4H)-one (5m)

Yield: 72%; m.p: 292-294 °C; IR (KBr, cm⁻¹): 1709 (C=O), 1595 (C=N), 1498, 1340 (NO₂); ¹H NMR (CDCl₃, δ ppm): 2.37 (s, 3H, C₅-CH₃), 4.06 (t, 2H, N-CH₂), 4.27 (t, 2H, O-CH₂), 6.86-6.88 (d, 2H, *J* = 6 Hz, Ar-H), 7.28-7.30 (d, 2H, *J* = 6 Hz, Ar-H), 7.82-7.84 (d, 2H, *J* = 6 Hz, Ar-H), 8.12-8.14 (d, 2H, *J* = 6 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 12.08, 40.65, 66.37, 115.32, 121.72, 119.81, 128.85, 130.56, 136.42, 138.69, 144.92, 151.78, 160.03; MS (m/z): 376 (M⁺²), 374 (M⁺), 238, 236, 211, 209, 127, 125; Anal. Calcd. for C₁₇H₁₅N₄ClO₄ (374.08): C, 54.48%; H, 4.03%; N, 14.95%; Found: C, 54.46%; H, 4.05%; N, 14.97%.

4.2.14. 4-(2-(4-Bromophenoxy)ethyl)-2-(4-chlorophenyl)-5-methyl-2H-1,2,4-triazol-3(4H)-one (5n)

Yield: 74%; m.p: 178-180 °C; IR (KBr, cm⁻¹): 1711 (C=O), 1610 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.18 (s, 3H, C₅-CH₃), 4.02 (t, 2H, N-CH₂), 4.12 (t, 2H, O-CH₂), 6.66-6.70 (d, 2H, *J* = 12 Hz, Ar-H), 7.38-7.42 (d, 2H, *J* = 12 Hz, Ar-H), 7.44-7.48 (d, 2H, *J* = 12 Hz, Ar-H), 7.79-7.83 (d, 2H, *J* = 12 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 12.06, 41.42, 65.56, 113.80, 116.06, 119.53, 128.97, 130.37, 132.48, 136.35, 144.91, 151.82, 157.02; MS (m/z): 411 (M⁺⁴), 409 (M⁺²), 407 (M⁺), 238, 236, 211, 209, 155, 153, 127, 125; Anal. Calcd. for C₁₇H₁₅N₃BrClO₂ (407.00): C, 49.96%; H, 3.70%; N, 10.28%; Found: C, 49.93%; H, 3.73%; N, 10.30%.

4.2.15. 4-(2-(4-Chlorophenoxy)ethyl)-2-(4-chlorophenyl)-5-methyl-2H-1,2,4-triazol-3(4H)-one (50)

Yield: 68%; m.p: 166-168 °C; IR (KBr, cm⁻¹): 1702 (C=O), 1596 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.46 (s, 3H, C₅-CH₃), 4.08 (t, 2H, N-CH₂), 4.23 (t, 2H, O-CH₂), 6.65-6.69 (d, 2H, *J* = 12 Hz, Ar-H), 7.27-7.31 (d, 2H, *J* = 12 Hz, Ar-H), 7.41-7.45 (d, 2H, *J* = 12 Hz, Ar-H), 7.81-7.85

11

(d, 2H, J = 12 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 12.03, 40.89, 65.48, 113.85, 115.75, 119.55, 128.79, 130.28, 132.56, 137.57, 144.98, 151.95, 155.62; MS (m/z): 367 (M⁺⁴), 365 (M⁺²), 363 (M⁺), 238, 236, 211, 209, 155, 153, 127, 125; Anal. Calcd. for C₁₇H₁₅N₃Cl₂O₂ (363.05): C, 56.06%; H, 4.15%; N, 11.54%; Found: C, 56.03%; H, 4.12%; N, 11.56%.

4.2.16. 4-(2-(2-Chlorophenoxy)ethyl)-2-(4-chlorophenyl)-5-methyl-2H-1,2,4-triazol-3(4H)-one (5p)

Yield: 65%; m.p: 188-190 °C; IR (KBr, cm⁻¹): 1705 (C=O), 1597 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.46 (s, 3H, C₅-CH₃), 4.06 (t, 2H, N-CH₂), 4.25 (t, 2H, O-CH₂), 6.93-7.38 (m, 4H, ArH), 7.46-7.49 (d, 2H, J = 9 Hz, Ar-H), 7.84-7.87 (d, 2H, J = 9 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 12.11, 40.76, 65.78, 115.80, 119.74, 121.09, 122.56, 127.11, 128.81, 129.98, 130.29, 136.11, 144.88, 152.01; 155.68; MS (m/z): 367 (M⁺⁴), 365 (M⁺²), 363 (M⁺), 238, 236, 211, 209, 155, 153, 127, 125; Anal. Calcd. for C₁₇H₁₅N₃Cl₂O₂ (363.05): C, 56.06%; H, 4.15%; N, 11.54%; Found: C, 56.05%; H, 4.18%; N, 11.52%.

4.2.17. 2-(4-Chlorophenyl)-4-(2-(2,3-dimethylphenoxy)ethyl)-5-methyl-2H-1,2,4-triazol-3(4H)one (5q)

Yield: 68%; m.p: 183-185 °C; IR (KBr, cm⁻¹): 1712 (C=O), 1610 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.17 (s, 3H, C₅-CH₃), 2.31 (s, 6H, CH₃), 4.06 (t, 2H, N-CH₂), 4.14 (t, 2H, O-CH₂), 6.65-7.06 (m, 3H, ArH), 7.47-7.51 (d, 2H, J = 12 Hz, Ar-H), 7.81-7.85 (d, 2H, J = 12 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 11.89, 11.97, 20.07, 41.71, 65.50, 109.04, 119.73, 123.21, 124.92, 126.01, 128.96, 130.30, 136.43, 138.22, 144.92, 151.87, 156.03; MS (m/z): 359 (M⁺²), 357 (M⁺), 238, 236, 211, 209, 155, 153, 127, 125; Anal. Calcd. for C₁₉H₂₀N₃ClO₂ (357.12): C, 63.77%; H, 5.63%; N, 11.74%; Found: C, 63.75%; H, 5.60%; N, 11.76%.

4.2.18. 2-(4-Chlorophenyl)-4-(2-(3,5-dimethylphenoxy)ethyl)-5-methyl-2H-1,2,4-triazol-3(4H)one (**5***r*)

Yield: 68%; m.p: 186-188 °C; IR (KBr, cm⁻¹): 1708 (C=O), 1598 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.20 (s, 3H, C₅-CH₃), 2.33 (s, 6H, CH₃), 4.14 (t, 2H, N-CH₂), 4.24 (t, 2H, O-CH₂), 6.58-6.77 (m, 3H, Ar-H), 7.61-7.65 (d, 2H, J = 12 Hz, Ar-H), 7.85-7.89 (d, 2H, J = 12 Hz, Ar-H); ¹³C NMR (CDCl₃, δ ppm): 12.02, 24.87, 40.86, 66.01, 110.65, 119.81, 122.56, 128.94, 130.41, 136.57, 138.06, 144.89, 151.79, 157.03; MS (m/z): 359 (M⁺²), 357 (M⁺), 238, 236, 211, 209, 155, 153, 127, 125; Anal. Calcd. for C₁₉H₂₀N₃ClO₂ (357.12): C, 63.77%; H, 5.63%; N, 11.74%; Found: C, 63.74%; H, 5.65%; N, 11.75%.

4.2.19. 2-(4-Chlorophenyl)-5-methyl-4-(2-(naphthalen-1-yloxy)ethyl)-2H-1,2,4-triazol-3(4H)one (5s)

Yield: 71%; m.p: 163-165 °C; IR (KBr, cm⁻¹): 1700 (C=O), 1598 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.32 (s, 3H, C₅-CH₃), 4.05 (t, 2H, N-CH₂), 4.20 (t, 2H, O-CH₂), 6.75-8.25 (m, 11H, ArH); ¹³C NMR (CDCl₃, δ ppm): 12.13, 40.77, 66.41, 106.32, 119.67, 121.09, 122.27, 125.13, 125.98, 126.48, 127.01, 127.52, 128.96, 130.74, 135.61, 136.72, 144.87, 151.63, 156.71; MS (m/z): 381 (M⁺²), 379 (M⁺), 238, 236, 211, 209, 155, 153, 127, 125; Anal. Calcd. for C₂₁H₁₈N₃ClO₂ (379.11): C, 66.40%; H, 4.78%; N, 11.06%; Found: C, 66.42%; H, 4.80%; N, 11.03%.

4.2.20. 2-(4-Chlorophenyl)-5-methyl-4-(2-(naphthalen-2-yloxy)ethyl)-2H-1,2,4-triazol-3(4H)one (5t)

Yield: 68%; m.p: 157-159 °C; IR (KBr, cm⁻¹): 1698 (C=O), 1595 (C=N); ¹H NMR (CDCl₃, δ ppm): 2.30 (s, 3H, C₅-CH₃), 4.03 (t, 2H, N-CH₂), 4.16 (t, 2H, O-CH₂), 6.81-8.22 (m, 11H, ArH); ¹³C NMR (CDCl₃, δ ppm): 12.12, 40.52, 66.58, 105.89, 117.68, 119.87, 124.41, 125.78, 126.31, 127.63, 128.14, 128.94, 129.54, 130.84, 134.80, 136.58, 144.77, 151.64, 157.30; MS (m/z): 381 (M⁺²), 379 (M⁺), 238, 236, 211, 209, 155, 153, 127, 125; Anal. Calcd. for C₂₁H₁₈N₃ClO₂ (379.11): C, 66.40%; H, 4.78%; N, 11.06%; Found: C, 66.42%; H, 4.77%; N, 11.04%.

4.3. Methodology of the in vitro anticancer screen

The human tumor cell lines of the cancer screening panel were grown in RPMI 1640 medium containing fetal bovine serum (5%) and L-glutamine (2 mM). For a typical screening experiment, cells were inoculated into 96 well microtiter plates in 100 μ L at plating densities ranging from 5,000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the microtiter plates are incubated at 37 °C, 5% CO₂, 95% air and 100 % relative humidity for 24 h prior to addition of experimental drugs. After 24 h, two plates of each cell line are fixed *in situ* with TCA to represent a measurement of the cell population for each cell line at the time of drug addition (Tz). Experimental drugs were solubilized in dimethyl sulfoxide at 400 fold the desired final maximum test concentration and stored frozen prior to use. At the time of drug addition, an aliquot of frozen concentrate was thawed and diluted to twice the desired final maximum test concentration with complete medium containing 50 µg/ml gentamicin. Additional four, 10 fold or ¹/₂ log serial dilutions were made to provide a total of five drug concentrations plus control. Aliquots of 100 µl of these different drug dilutions were added to the appropriate microtiter wells already containing 100 µl of medium, resulting in the required final drug concentrations. Following drug addition, the plates were incubated for an additional 48 h at 37 °C, 5% CO₂, 95% air, and 100% relative humidity. For adherent cells, the assay was terminated by the addition of cold TCA. Cells were fixed in situ by the gentle addition of 50 μ l of cold 50% (w/v) TCA (final concentration, 10% TCA) and incubated for 60 minutes at 4 °C. The supernatant was discarded, and the plates were washed five times with tap water and air dried. Sulforhodamine B (SRB) solution (100 µl) at 0.4% (w/v) in acetic acid (1%) was added to each well, and plates were incubated for 10 minutes at room temperature. After staining, unbound dye was removed by washing five times with acetic acid (1%) and the plates were air dried. Bound stain was subsequently solubilized with trizma (10 mM) base, and the absorbance was read on an automated plate reader at a

wavelength of 515 nm. For suspension cells, the methodology was the same except that the assay was terminated by fixing settled cells at the bottom of the wells by gently adding 50 µl of 80% TCA (final concentration, 16% TCA). Using the seven absorbance measurements [time zero (Tz), control growth (C) and test growth in the presence of drug at the five concentration levels (Ti)], the percentage growth is calculated at each of the drug concentrations levels. Percentage growth inhibition was calculated as:

 $[(Ti\text{-}Tz)/(C\text{-}Tz)]\times 100$ (for concentrations for which $Ti \geq Tz)$

 $[(Ti-Tz)/Tz] \times 100$ (for concentrations for which Ti < Tz)

Three dose response parameters were calculated for each experimental agent. Growth inhibition of 50% (GI₅₀) was calculated from $[(Ti-Tz)/(C-Tz)] \times 100 = 50$, which was the drug concentration resulting in a 50% reduction in the net protein increase (as measured by SRB staining) in control cells during the drug incubation. The drug concentration resulting in total growth inhibition (TGI) is calculated from Ti = Tz. The LC₅₀ (concentration of drug resulting in a 50% reduction in the measured protein at the end of the drug treatment as compared to that at the beginning) indicating a net loss of cells following treatment was calculated from [(Ti-Tz)/Tz] $\times 100 = 50$. Values were calculated for each of these three parameters if the level of activity was reached; however, if the effect was not reached or was exceeded, the value for that parameter was expressed as greater or less than the maximum or minimum concentration tested [28-30].

Acknowledgements

Authors wish to thank the University Grants Commission (UGC), New Delhi [F. No. 14-3/2012 (NS/PE) Dated: 14-03-2012] for providing financial support under "*Antitumor activity an integrated approach*" a focused area of UPE programme. The authors acknowledge the University Scientific Instrumentation Centre (USIC), Karnatak University, Dharwad, NMR Research Centre, Indian Institute of Science (IISc), Bengaluru, India for carrying out the

spectral analyses. One of the authors (PPK) acknowledges the UGC, New Delhi, for awarding RFSMS fellowship.

References

- [1] (a) C.D. Simpson, K. Anyiwe, A.D. Schimmer, Anoikis resistance and tumor metastasis, Cancer Lett. 272 (2008) 177-185; (b) P. Mehlen, A. Puisieux, Metastatsis: a question of life or death, Nat. Rev. Cancer 6 (2006) 449-458; (c) Y. Yang, Y.H. Ahn, D.L. Gibbons, Y. Zang, W. Lin, N. Thilaganathan, C.A. Alvarez, D.C. Moreira, C.J. Creighton, P.A. Gregory, G.J. Goodall, J.M. Kurie. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200–dependent pathway in mice, J. Clin. Invest. (2011) DOI: 10.1172/JCI42579.
- [2] H. Yu"ksek, A. Demirbas, A. Ikizler, C.B. Johansson, C. Celik, A.A. Ikizler, Synthesis and antibacterial activities of some 4,5-dihydro-1*H*-1,2,4-triazol-5-ones, Arzn. Forsch. Drug Res. 47 (1997) 405-409.
- [3] (a) Y. Al-Saud, M.N. Al-Dweri, N. Al-Masoudi, Synthesis, antitumor and antiviral properties of some 1,2,4-triazole derivatives, Farmaco 59 (2004) 775-783; (b) B.S. Holla, B. Veerendra, M.K. Shivananda, B. Poojary, Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles, Eur. J. Med. Chem. 38 (2003) 759-767; (c) N. Demirbas, R. Ugurluoglu, Synthesis of 3-alkyl(aryl)-4-alkylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones and 3-alkyl-4-alkylamino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones and 3-alkyl-4-alkylamino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones as Antitumor Agents, Bioorg. Med. Chem. 10 (2002) 3717-3723.
- [4] G. Turan-Zitouni, Z. A. Kaplancikli, A. Ozdemir, P. Chevallet, H.B. Kandilci, B. Gumusel, Studies on 1,2,4-triazole derivatives as potential anti-inflammatory agents, Arch. Pharm. (Weinheim) 340 (2007) 586-590.
- [5] H. Emilsson, H. Salender, J. Gaarder, Synthesis and antihypertensive activity of some 3substituted 4*H*-1,2,4-triazoles, Acta Pharm. Suec. 24 (1987) 123-134.

- [6] G. Turan-Zitouni, Z.A. Kaplancikli, K. Erol, F.S. Kilic, Synthesis and analgesic activity of some triazoles and triazolothiadiazines, Farmaco 54 (1999) 218-223.
- [7] A. Almasirad, S.A. Tabatabai, M. Faizi, A. Kebriaezadeh, N. Mehrabi, F. Dalvandi, A. Shafiee, Sybthesis and anticonvulsant activity of new 2-substitued-5-[2(2-fluorophenoxy)phenyl]1,3,4-oxadiazoles and 1,2,4-triazoles, Bioorg. Med. Chem. Lett. 14 (2004) 6057-6059.
- [8] M. Kritsanida, A. Mouroutsou, P. Marakos, S. Pouli, S. Papakonstantinou-Garoufalias, C. Pannecouque, M. Witvouw, E. De Clercq, Synthesis and antiviral activity evaluation of some new 6-substituted 3-(1-adamantyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles, Farmaco 57 (2002) 253-257.
- [9] C. Radhika, A. Venkatesham, M. Sarangapani, Synthesis and antidepressant activity of di substituted-5-aryl-1,2,4-triazoles, Med. Chem. Res. 21 (2012) 3509-3513.
- [10] I. Kucukguzel, S.G. Kucukguzel, S. Rollas, M. Kiraz, Some 3-thioxo/alkylthio-1,2,4triazoles with a substituted thiourea moiety as possible antimycobacterials, Bioorg. Med. Chem. 11 (2001) 1703-1707.
- [11] J.N. Delgado, W.A. Remers, Text book of Organic, Medicinal and Pharmaceutical Chemistry, tenth ed., J.B. Lippincott Company, Philadelphia, 1998, p. 189.
- [12] A. Er-Rhaimini, R. Mornet, Synthesis and photochemical degradation of N-arylmethyl derivatives of the herbicide 3-amino-1,2,4-triazole, Indian J. Heterocycl. Chem. 29 (1992) 1561-1566.
- [13] R.W. Sidwell, L.B. Allen, J.H. Huffman, J.T. Witkowski, L.N. Sinon, Effect of 1-beta-Dribofuranosyl-1,2,4-triazole-3-carboxamide (ribavarin) on Friend leukemia virus infections in mice, Proc. Soc. Exp. Biol. Med. 148 (1975) 854-858.
- [14] J. Haber, Present status and perspectives on antimycotics with systematic effects, Cas. Lek.Cesk. 140 (2001) 596–604.

- [15] Y. Shi, C.H. Zhou, Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents, Bioorg. Med. Chem. Lett. 21 (2011) 956-960.
- [16] M. Ozyanik, S. Demirci, H. Bektas, N. Demirbas, A. Demirbas, S.A. Karaoglu, Preparation and antimicrobial activity evaluation of some quinoline derivatives containing an azole nucleus, Turk. J. Chem. 36 (2012) 233-246.
- [17] D. Sahin, H. Bayrak, A. Demirbas, N. Demirbas, S.A. Karaoglu, Design and synthesis of new 1,2,4-triazole derivatives containing morpholine moiety as antimicrobial agents, Turk.
 J. Chem. 36 (2012) 411-426.
- [18] S. Castellano, G. Stefancich, A. Chillotti, G. Poni, Synthesis and antimicrobial properties of 3-aryl-1-(1,1[']-biphenyl-4-yl)-2-(1*H*-imidazol-1-yl)propanes as 'carba analouges' of the Narylmethyl-N-[(1,1[']-biphenyl)-4-ylmethyl]-1*H*-imidazol-1-amines, a new class of antifungal agents, Il Farmaco 58 (2003) 563-568.
- [19] S.G. Mallur, B.V. Badami, Transformation of sydnone ring into Oxadiazolinones, Farmaco 55 (2000) 65-67.
- [20] D.L. Browne, J.P.A. Harrity, Recent developments in the chemistry of sydnones, Tetrahedron 66 (2010) 553-568.
- [21] C. Wu, Y. Fang, R.C. Larock, F. Shi, Synthesis of 2*H*-indazoles by the [3+2] cycloaddition of arynes and sydnones, Organic Letters 12 (2010) 2234-2237.
- [22] C.S. Angadiyavar, M.V. George, Photochemical cycloadditions of 1,3-dipolar systems. I. Additions of N,C-diphenylsydnone and 2,5-diphenyltetrazole, J. Org. Chem. 36 (1971) 1589-1594.
- [23] T. Taj, R.R. Kamble, T.M. Gireesh, R.K. Hunnur, S.B. Margankop, One-pot synthesis of pyrazoline derivatized with carbazoles as antitubercular, anticancer agents, their DNA cleavage and antioxidant activities, Eur. J. Med. Chem. 46 (2011) 4366-4373.
- [24] http://dtp.nci.nih.gov/docs/compare/compare.html

- [25] T. Taj, R.R. Kamble, P.P. Kattimani, B.V. Badami, Synthetic utility of sydnones: synthesis of pyrazolines derivatized with 1,2,4-triazoles as antihyperglycemic, antioxidant agents and their DNA cleavage study, Med. Chem. Res. DOI 10.1007/s00044-011-9921-9.
- [26] P.R. Latthe, V.A. Sunagar, B.V. Badami, A simple and efficient synthesis of novel N,N'-bis(1H-pyrrol-1-yl)-1-[2-(2-aryl-5-methyl-3-oxo-2,4-dihydro-3H-1,2,4-triazol-4-yl)ethyl]-1H-1,2,3-triazole-4,5-dicarboxamides, J. Heterocycl. Chem. 44 (2007) 1363-1371.
- [27] A.H. Kategaonkar, P.H. Shinde, A.H. Kategaonkar, S.K. Pasale, B.B. Shingate, M.S. Shingare, Synthesis and biological evaluation of new 2-chloro-3-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]quinoline derivatives *via* click chemistry approach, Eur. J. Med. Chem. 45 (2010) 3142-3346.
- [28] M.C. Alley, D.A. Scudiero, P.A. Monks, M.L. Hursey, M.J. Czerwinski, D.L. Fine, B.J. Abbott, J.G. Mayo, R.H. Shoemaker, M.R. Boyd, Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay, Cancer Res. 48 (1988) 589-601.
- [29] M.R. Boyd, K.D. Paull, Some practical consideration and applications of the NCI in vitro drug discovery screen, Drug Dev. Res. 34 (1995) 91-109.
- [30] M.R. Grever, S.A. Schepartz, B.A. Chabner, The National Cancer Institute: Cancer drug discovery and development program, Seminars in Oncology, 19 (1992) 622-638.

Scheme 1 Synthetic route for title compounds 5a-t

Table 1 Growth percent and growth inhibition (GI%) in single dose assay (10^{-5} M concentration) for compound **5g** (NSC: 761736/1)

Table 2 GI₅₀, TGI and LC₅₀ values against 60 human cancer cell lines for compound 5g

Fig. 1 Reported 1,2,4-triazole derivatives bearing heterocyclic substituent

Fig. 2 Dose response curve of eight sub-panel cell lines for compound 5g

Scheme 1 Synthetic route for the title compounds 5a-t

Panel/ Cell line	Growth percent	Growth inhibition
	-	(GI%)
Leukemia		
CCRF-CEM	13.41	86.59
HL-60 (TB)	-5.70	cytotoxic
K-562	16.27	83.73
MOLT-4	37.58	62.42
RPMI-8226	31.00	69.00
SR	21.22	78.78
Non-Small Cell Lung Cancer		
A549/ATCC	30.22	69.78
EKVX	58.73	41.27
HOP-62	27.35	72.65
HOP-92	47.38	52.62
NCI-H226	50.09	49.91
NCI-H23	45.82	54 18
NCI-H322M	58 72	41.28
NCI-H522	17.21	82.79
Colon Cancer		
COLO 205	10.58	89.42
HCC-2998	46.66	53.34
HCT-116	15.12	84 88
НСТ-15	17 74	82.26
нт29	0.70	99 30
KM12	31.42	68.58
CNS Cancer		
SF-268	50.30	49.70
SF-295	14.03	85.97
SF-539	29.47	70.53
SNB-19	54.49	45.51
SNB-75	20.38	79.62
U251	31.40	68.60
Melanoma		
LOX IMVI	48.02	51.98
MALME-3M	32.87	67.13
M14	14.72	85.28
MDA-MB-435	-38.55	cvtotoxic
SK-MEL-2	3.55	96.45
SK-MEL-28	40.80	59.20
SK-MEL-5	10.76	89.24
UACC-257	22.52	77.48
UACC-62	43 33	56 67
01100 02	10.00	20.07

Table 1 Growth percent and growth inhibition (GI%) in single dose assay (10⁻⁵ M concentration) for compound **5g** (NSC: 761736/1)

Continued Table 1

Panel/ Cell line	Growth percent	Growth inhibiton
	*	(GI%)
Ovarian Cancer		
IGROV-1	59.69	40.31
OVCAR-3	14.82	85.18
OVCAR-4	67.10	32.90
OVCAR-5	38.80	61.20
OVCAR-8	17.68	82.32
NCI/ADR-RES	24.67	75.33
SK-OV-3	41.12	58.89
Renal Cancer		
786-D	32.86	67.14
A498	25.70	74.30
ACHN	41.87	58.13
CAKI-1	19.48	80.52
RXF-393	37.43	62.57
SN12C	51.82	48.18
TK-10	59.63	40.37
UO-31	42.80	57.20
Prostate Cancer		
PC-3	48.50	51.50
DU-145	21.64	78.36
Breast Cancer		
MCF-7	15.79	84.21
MDA-MB-231/ATCC	47.48	52.52
HS 578T	34.82	65.18
BT-549	56.66	43.34
T-47D	47.43	52.57

Panel/ Cell line	GI ₅₀	MGMID	TGI	LD50
	uM	μM	uM	uM
Leukemia			T	r.
HL-60 (TB)	2.80			
K-562	1.29		>1.00	>1.00
MOLT-4	4.71	2.97	>1.00	>1.00
RPMI-8226	1.10	, .	>1.00	>1.00
SR	4.97		6.67	>1.00
	,			1100
Non-Small Cell Lung				
Cancer	6.07		>1.00	>1.00
A549/ATCC	1.00		>1.00	>1.00
EKVX	3.05		3.29	>1.00
HOP-62	1.61	3.03	>1.00	>1.00
HOP-92	2.83		>1.00	>1.00
NCI-H23	2.80		>1.00	>1.00
NCI-H460	3.85		3.82	>1.00
NCI-H522				
Colon Cancer				
COLO 205	2.39		7.34	>1.00
HCC-2998	3.59		>1.00	>1.00
HCT-116	3.57		>1.00	>1.00
HCT-15	3.20	2.91	>1.00	>1.00
HT29	3.82		>1.00	>1.00
KM12	1.66		>1.00	>1.00
SW-620	2.20		>1.00	>1.00
CNS Cancer				
SF-268	1.36		>1.00	>1.00
SF-295	4.73		>1.00	>1.00
SF-539	4.06	3.65	4.74	>1.00
SNB-19	5.37		>1.00	>1.00
SNB-75	2.21		1.51	>1.00
U251	4.18		7.23	>1.00
Melanoma	4.00		1.00	
LOX IMVI	4.83		>1.00	>1.00
MALME-3M	3.85		>1.00	>1.00
M14	2.36		>1.00	>1.00
MDA-MB-435	2.69	3.64	8.37	>1.00
SK-MEL-2	1.82		>1.00	>1.00
SK-MEL-28	3.13		>1.00	>1.00
SK-MEL-5	8.48		>1.00	>1.00
UACC-257			>1.00	>1.00
UACC-62	1.99		>1.00	>1.00

Table 2 GI_{50}, TGI and LC_{50} values against 60 human cancer cell lines for compound $\mathbf{5g}$

Panel/ Cell line	GI_{50}	MGMID	TGI	LD_{50}
	μΜ	μM	μΜ	μΜ
Ovarian Cancer				
IGROV-1	3.50		>1.00	
OVCAR-3	3.25		1.52	>1.00
OVCAR-4	2.68	3.11		>1.00
OVCAR-5	2.19		>1.00	>1.00
OVCAR-8	5.17		>1.00	>1.00
NCI/ADR-RES	1.64		>1.00	>1.00
SK-OV-3	3.36		4.88	>1.00
Renal Cancer				
786-D	5.70		>1.00	>1.00
A498	1.13		3.19	>1.00
ACHN	5.59		>1.00	>1.00
CAKI-1	1.00	3.04	>1.00	>1.00
RXF-393	2.76		3.00	>1.00
SN12C	5.54		>1.00	>1.00
TK-10	1.34		8.84	>1.00
UO-31	1.27		>1.00	>1.00
Prostate Cancer				
PC-3	8.13	6.01	>1.00	>1.00
DU-145	3.90		>1.00	>1.00
Breast Cancer				
MCF-7	2.70		>1.00	>1.00
MDA-MB-231/ATCC	4.53		>1.00	>1.00
HS 578T	2.82	3.65	>1.00	>1.00
BT-549	1.65		9.94	>1.00
T-47D	7.55		>1.00	>1.00
MDA-MB-468	2.69		5.76	>1.00
	1			

Continued Table 2

Fig. 1 Reported 1,2,4-triazole derivatives bearing heterocyclic substituent

Fig. 2 Dose response curve of eight sub-panel cell lines for compound 5g

Continued Fig. 2

Supplementary information: Spectral data of synthesized compounds

¹H-NMR spectrum of compound **5a**

Mass Spectrum of compound 5a

¹H-NMR spectrum of compound **5b**

¹³C-NMR spectrum of compound **5b**

¹H-NMR spectrum of compound **5**c

¹³C-NMR spectrum of compound **5c**

Mass spectrum of compound 5c

¹H-NMR spectrum of compound **5e**

¹³C-NMR spectrum of compound **5e**

¹³C-NMR spectrum of compound **5e**

Mass spectrum of compound 5e

¹H-NMR spectrum of compound **5**g

¹³C-NMR spectrum of compound **5g**

Mass spectrum of compound 5g

¹H-NMR spectrum of compound **5h**

¹³C-NMR spectrum of compound **5h**

Mass spectrum of compound 5h

¹H-NMR spectrum of compound **5**i

¹³C-NMR spectrum of compound **5i**

¹H-NMR spectrum of compound **5d**

¹H-NMR spectrum of compound **5n**

¹³C-NMR spectrum of compound **5n**

¹H-NMR spectrum of compound **5q**

¹³C-NMR spectrum of compound **5q**

¹H-NMR spectrum of compound **5m**

¹H-NMR spectrum of compound **5k**

¹H-NMR spectrum of compound **5p**

Developmental Ther	apeutics Program	NSC: 761741/1	Conc: 1.00E-5 Molar	Test Date: Oct 11, 2011		
One Dose Mea	an Graph	Experiment ID: 1110OS40 Report Date: Aug 21				
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent		
Leukemia	62.40					
HL-60(TB)	63.18 104.76		Company of the local division of the local d			
K-562	70.10					
MOLT-4	90.92					
SB	95.30					
Non-Small Cell Lung Cancer	55.55					
A549/ATCC	56.42		and the second se			
HOP-62	75.45					
HOP-92	30.07		ALC: NOT THE OWNER.			
NCI-H226	79.41		-			
NCI-H23 NCI-H322M	92.25					
NCI-H460	41.75		and the second se			
NCI-H522	69.00					
COLO 205	106.54					
HCC-2998	91.29					
HCT-116	29.46					
HT29	104.09		Commentation and			
KM12	81.31		-			
CNS Cancer	49.39					
SF-539	67.02					
SNB-19	58.72					
SNB-75	7.65					
Melanoma	42.07					
LOX IMVI	81.63					
MALME-3M M14	59.07		-			
MDA-MB-435	84.91		-			
SK-MEL-2	61.12					
SK-MEL-28 SK-MEL-5	92.88					
UACC-257	73.43					
UACC-62	82.81					
OVCAR-3	79.22		_			
OVCAR-4	93.43					
OVCAR-5	92.36		Character of the second se			
NCI/ADR-RES	75.90		-			
SK-OV-3	42.79					
Renal Cancer	50.26					
A498	104.95		-			
ACHN	38.67					
RXF 393	72.36					
SN12C	89.62		_			
TK-10	64.40					
Prostate Cancer	05.90					
PC-3	80.84		-			
DU-145 Breast Cancer	78.45		-			
MCF7	73.39					
MDA-MB-231/ATCC	57.30		a second			
BT-549	42.71		right of the local division of the local div			
T-47D	78.33					
MDA-MB-468	90.32					
Mean	71.01					
Delta	63.36					
Range	108.74					
	150	100 50	0 -50	-100 -150		

Fig. 1	In vitro	anticancer	screening	data (g	growth	percentage	e) on	the	60 1	human	cancer	cell	line in
	single of	dose assay ((10^{-5} M co)	ncentra	ation) fo	or compou	nd 5	b					

Fig. 2 *In vitro* anticancer screening data (growth percentage) on the 60 human cancer cell line in single dose assay (10⁻⁵ M concentration) for compound **5g**

Developmental Ther	apeutics Program	NSC: 761736/1	Conc: 1.00E-5 Molar	Test Date: Oct 11, 2011			
One Dose Me	an Graph	Experiment ID: 111	Experiment ID: 1110OS40 Report Date: Aug 21				
Panel/Cell Line	Growth Percent	Mean Growth	h Percent - Growth Per	cent			
Leukemia	13.41						
HL-60(TB)	-5.70		Management and				
K-562	16.27						
MOLT-4	37.58		-				
RPMI-8226	31.00						
Non-Small Cell Lung Cancer	21.22						
· A549/ATCC	30.22			1 1			
EKVX	58.73		Automatica State				
HOP-62	27.35						
HOP-92	47.38						
NCI-H226	50.09						
NCLH322M	40.02						
NCI-H460	17.21		and the second sec				
Colon Cancer	14.10						
COLO 205	10.58						
HCC-2998	46.66			1 1			
HCT-15	17 74						
HT29	0.70						
KM12	31.42			1 1 /			
CNS Cancer							
SF-268	50.30						
SF-295 SF-530	14.03		_				
SNB-19	54.49						
SNB-75	20.38		anon a				
U251	31.40						
Melanoma	49.02						
MALME-3M	32.87						
M14	14.72		100000				
MDA-MB-435	-38.55		the second second	—			
SK-MEL-2	3.55						
SK-MEL-20	40.80						
UACC-257	22.52		-				
UACC-62	43.33						
Ovarian Cancer							
IGROV1	59.69						
OVCAR-5	67 10						
OVCAR-5	38.80						
OVCAR-8	17.68						
NCI/ADR-RES	24.67		_				
Renal Cancer	41.12						
786-0	32.86						
A498	25.70						
CARL	41.87						
RXF 393	37 43						
SN12C	51.82		Committe				
TK-10	59.63						
UO-31 Prostate Cancer	42.80						
Prostate Cancer PC-3	48 50						
DU-145	21.64		and a				
Breast Cancer							
MCF7	15.79						
HS 578T	47.48						
BT-549	56.66		time and the second sec				
T-47D	47.43						
MDA-MB-468	16.08						
Mean	31.27						
Delta	69.82			-			
Range	105.65			-			
	150	100 50	0 -50	-100 -150			
	-7-41-5kt	200769 (CDP)	(5 1) 83717-				

Panel/Cell Line	Log10 GESO	GI50	Log ₁₀ T3I	101	Log 1050 L	.C\$0
sukemia HL-60(TB) K-662 MOLT-4 RPMI-8226 SR SR SR SR SR SR SR SR SR SR SR SR SR	-5.55 -5.89 -5.83 -4.96 -6.30	-	> 4.00 > 4.00 > 4.00 > 4.00 5.18		* 400 * 400 * 400 * 400	
A549/ATCC EKVX HOP-62 HOP-62 NCI-H23 NCI-H460 NCI-H522	-5.22 - 4.00 - 4.52 - 4.79 - 6.55 - 6.55 - 5.41	-	> 4,00 > 4,00 4,48 > 4,00 > 4,00 > 4,00 > 4,00 > 4,48		******	
olon Cancer COLO 205 HCC-2998 HCT-116 HT29 HT29 KM12 SW-620	-5.62 -5.44 -6.45 -5.50 -5.542 -6.78 -5.86		5.13 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00	Γ	* 4400 * 4400 * 4400 * 4400 * 4400	
NS Cancer SF-285 SF-295 SNB-19 SNB-75 U251	-4.87 -5.32 -6.39 -6.27 -6.65 -6.38	1	> 4.00 > 4.00 -4.32 > 4.00 -4.82 -4.14	1	* * * * * * * * * * * * * * * * * * *	
elanoma LOX IMM MALME-3M MDA-ME-435 SK-MEL-2 SK-MEL-2 SK-MEL-28 SK-MEL-26 UACC-62 UACC-62	-5.32 -5.41 -5.63 -6.57 -4.74 -5.50 -6.07 -5.70		× 4.00 × 4.00		> 400 > 400 > 400 > 400 > 400 > 400 > 400 > 400 > 400	
Varian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	-4.46 -5.49 -5.57 -4.66 -5.29 -5.78 -5.47	-	> 4.00 4.82 > 4.00 > 4.00 > 4.00 > 4.00 = 4.31	F	* 400 * 400 * 400 * 400 * 400 * 400	
enal Cancer 785-0 A498 ACHN CAKL-1 RXF 393 SN12C TK-10 UQ-31	-5.24 -5.95 -5.25 - 4.00 -5.56 -5.56 -5.87 -4.90		> 4.00 + 4.50 > 4.00 > 4.00 > 4.00 > 4.05 > 4.05 > 4.05	-	**************************************	
PC-3 DU-145	-5.09 -5.41	-	> 4.00 > 4.00	-	\$ 400	×.,
Breast Cancer MCF-7MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	-5.57 -6.34 -6.55 -4.78 -5.12 -6.57	P.	> 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.24		100 1400 1400 1400 1400 1400 1400 1400	

Fig. 3 Log_{10} values of GI_{50} , TGI_{50} and LC_{50} for compound 5g

		Nati	onal	Cano	cer li	nstitu In-	ute De -Vitro	evelop Testii	mer ng R	ntal T esult	⁻ hera ts	apeuti	cs Progra	am	
NSC : 761736 / 1 Experiment ID : 1110NS53						Test	Туре : 08	Units : I	Molar						
Report Date :	August	21, 201	2		Tes	st Date	: Octob	er 31, 20)11			QNS	;	MC :	
COMI : CI-EA	-COU (*	110655)			Sta	in Rea	gent : S	RB Dual	-Pass	Related	Ь	SSP	L: 0YGI		
	Log10 Concentration														
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mean	n Optica	Densit	ies	-8.0	-7 0	ercent C	Growth	-4.0	GI50	TGI	1.050
Leukemia	0.824	2 665	2 690	2.744	0.0	0.019	0.847	101	104	-0.0	-0.0	-4.0	0.005.0	101	1.005 (
K-562	0.235	1.605	1.697	1.686	0.966	0.553	0.400	107	104	53	23	12	2.80E-6 1.29E-6	> 1.00E-4	> 1.00E-4 > 1.00E-4
RPMI-8226	0.980	2.408	2.475	2.559	2.402	1.207	1.068	104	109 97	100 95	26 50	17 45	4.71E-6 1.10E-5	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
SR Non-Small Cell Lun	0.238 g Cancer	0.704	0.711	0.701	0.371	0.224	0.207	101	99	29	-6	-13	4.97E-7	6.67E-6	> 1.00E-4
A549/ATCC	0.300	1.827	1.782	1.802	1.762	0.870	0.717	97	98	96	37	27	6.07E-6	> 1.00E-4	> 1.00E-4
HOP-62	0.333	0.925	0.933	0.942	0.862	0.382	0.308	101	103	89	8	-8	3.05E-6	> 1.00E-4 3.29E-5	> 1.00E-4 > 1.00E-4
NCI-H23	0.596	1.765	1.686 1.796	1.666	1.662 1.390	1.497 0.995	1.361 0.830	87 98	83 91	83 64	55 32	32 19	1.61E-5 2.83E-6	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
NCI-H460 NCI-H522	0.248 0.706	1.960 2.087	2.023 2.088	1.947 2.038	1.672 1.912	0.401 1.032	0.394 0.553	104 100	99 96	83 87	9 24	8 -22	2.80E-6 3.85E-6	> 1.00E-4 3.32E-5	> 1.00E-4 > 1.00E-4
Colon Cancer	0.454	0.000	0.110												
HCC-2998	0.451	2.080	2.113	2.119	1.896	0.389	0.278 0.854	102 95	102 91	89 76	-14 29	-38 17	2.39E-6 3.59E-6	7.34E-6 > 1.00E-4	> 1.00E-4 > 1.00E-4
HCT-116 HCT-15	0.235 0.400	1.681 2.176	1.702	1.650	1.472	0.543	0.562	101	98 95	86 80	21	23	3.57E-6	> 1.00E-4	> 1.00E-4
HT29 KM12	0.275	1.711	1.762	1.803	1.704	0.481	0.401	104	106	100	14	9	3.82E-6	> 1.00E-4	> 1.00E-4
SW-620	0.282	1.464	1.454	1.437	1.084	0.468	0.579	99	98	68	16	25	2.20E-6	> 1.00E-4	> 1.00E-4
CNS Cancer SF-268	0.588	1,758	1.810	1 751	1 605	1 198	1 013	104	99	87	52	36	1 36E-5	> 100F-4	> 100E 4
SF-295	0.818	2.647	2.540	2.381	2.163	1.526	1.119	94	85	74	39	16	4.73E-6	> 1.00E-4	> 1.00E-4
SNB-19	0.608	1.917	1.816	1.774	1.652	1.119	0.872	92	89	80	39	20	4.06E-6 5.37E-6	4.74E-5 > 1.00E-4	> 1.00E-4 > 1.00E-4
U251	0.597	1.223	1.146	1.093 1.842	1.692	0.631	0.448 0.384	88 98	79 97	74 87	5 27	-25 -4	2.21E-6 4.18E-6	1.51E-5 7.23E-5	> 1.00E-4 > 1.00E-4
Melanoma	0 233	1 738	1 673	1 555	1 240	0.040	0 600	0.6	00	74	20	20	4 005 0		
MAI ME-3M	0.676	1.206	1.233	1.228	1.108	0.823	0.891	105	104	82	28	41	4.83E-6 3.85E-6	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
MDA-MB-435	0.433	1.952	1.944	1.856	0.399	0.318	0.885	99	94	-8	-27	-26	2.36E-6 2.69E-7	> 1.00E-4 8.37E-7	> 1.00E-4 > 1.00E-4
SK-MEL-2 SK-MEL-28	0.758 0.604	1.329	1.351 1.719	1.369	1.395	1.115	0.840	104 105	107 87	112 67	62 33	14	1.82E-5 3.13E-6	> 1.00E-4	> 1.00E-4
SK-MEL-5	0.418	2.140	2.089	1.998	1.224	0.634	0.485	97	92	47	13	4	8.48E-7	> 1.00E-4	> 1.00E-4
UACC-62	0.561	2.047	2.004	1.891	1.471	0.913	1.014	95	90	61	24	30	1.99E-6	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
Ovarian Cancer	0 609	1 5 4 4	1 600	1 660	1 400	4 4 9 4	0.000	400	440						
OVCAR-3	0.611	1.641	1.754	1.742	1.480	0.679	0.988	108	112	93	51	41 -29	3.50E-5 3.25E-6	> 1.00E-4 1.52E-5	> 1.00E-4 > 1.00E-4
OVCAR-4 OVCAR-5	0.605	1.200	1.198	1.143 1.287	1.130 1.198	0.599	0.841 0.871	100 105	90 102	88 89	-1 53	40 45	2.68E-6 2.19E-5	> 1.00E-4	> 1.00E-4 > 1.00E-4
OVCAR-8 NCI/ADR-RES	0.310	1.335	1.288	1.312	1.306	0.629	0.558	95	98	97	31	24	5.17E-6	> 1.00E-4	> 1.00E-4
SK-OV-3	0.578	1.207	1.279	1.226	1.129	0.680	0.536	111	103	88	16	-7	3.36E-6	4.88E-5	> 1.00E-4
Renal Cancer 786-0	0.674	2.090	2,127	2,150	2 046	1 168	0.890	103	104	97	35	15	5 70E 6	> 100E 4	> 100E 4
A498	1.238	1.905	1.779	1.743	1.587	1.290	1.144	81	76	52	8	-8	1.13E-6	3.19E-5	> 1.00E-4
CAKI-1	0.955	2.534	2.482	2.411	2.034	1.812	1.784	97	92	68	35 54	25 52	5.59E-6 1.00E-4	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
SN12C	0.630	1.269	1.234	1.206	1.106	0.750 1.058	0.501 1.021	95 94	90 90	75 82	19 39	-21 37	2.76E-6 5.54E-6	3.00E-5 > 1.00E-4	> 1.00E-4 > 1.00E-4
TK-10 UO-31	0.567 0.554	1.145 1.463	1.107 1.340	1.153 1.307	1.226 1.225	0.901 1.020	0.549 0.913	94 86	101 83	114 74	58 51	-3 39	1.34E-5 1.27E-5	8.84E-5	> 1.00E-4 > 1.00E-4
Prostate Cancer											- 4				
PC-3 DU-145	0.645 0.338	1.959 1.351	1.921 1.462	1.826	1.619 1.311	1.271 0.522	1.095 0.437	97 111	90 108	74 96	48 18	34 10	8.13E-6 3.90E-6	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
Breast Cancer MCF7	0.337	1 533	1 5 1 5	1 444	1 262	0.504	0.595	00	0.2	77	14	24	0.705.0	> 1.005 /	
MDA-MB-231/ATCO	0.337	1.029	1.005	0.957	0.824	0.504	0.585	96	88	66	42	11	2.70E-6 4.53E-6	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
BT-549	0.943	1.742	1.652 1.844	1.620 1.832	1.507 1.702	1.215 1.491	1.060 0.942	88 105	83 104	68 89	28 64	7	2.82E-6 1.65E-5	> 1.00E-4 9.94E-5	> 1.00E-4 > 1.00E-4
T-47D MDA-MB-468	0.770 0.544	1.923 1.205	1.897 1.165	1.913 1.140	1.796 1.051	1.284 0.641	1.185 0.519	98 94	99 90	89 77	45 15	36 -5	7.55E-6 2.69E-6	> 1.00E-4 5.76E-5	> 1.00E-4 > 1.00E-4

Table 2 GI50, TGI and LC50 values against 60 human cancer cell lines for compound 5g