This article was downloaded by: [McGill University Library] On: 19 December 2012, At: 03:49 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lsyc20</u>

Direct Phosphorylation of N-Protected Imidazoles and Benzoimidazoles-A Route to 1H-Imidazol(benzoimidazol)-2yl Phosphonic and Phosphinic Acids and Their Derivatives

Igor V. Komarov^a, Aleksandr V. Strizhak^a, Mikhail Yu.Kornilov^a, Aleksandr N. Kostyuk^b & Andrey A. Tolmachev^b

^a Department of Chemistry, Kiev Taras Shevchenko University, Vladimirskaya street, 64, Kiev, 252033, Ukraine

^b Institute of Organic Chemistry of National Academy of Sciences of Ukraine, Kiev, Murmanskaya street, 5, Kiev, 252094, Ukraine Version of record first published: 20 Aug 2006.

To cite this article: Igor V. Komarov , Aleksandr V. Strizhak , Mikhail Yu.Kornilov , Aleksandr N. Kostyuk & Andrey A. Tolmachev (1998): Direct Phosphorylation of N-Protected Imidazoles and Benzoimidazoles-A Route to 1H-Imidazol(benzoimidazol)-2yl Phosphonic and Phosphinic Acids and Their Derivatives, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 28:13, 2355-2370

To link to this article: http://dx.doi.org/10.1080/00397919808004288

Full terms and conditions of use: <u>http://www.tandfonline.com/page/terms-and-conditions</u>

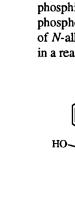
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

DIRECT PHOSPHORYLATION OF *N*-PROTECTED IMIDAZOLES AND BENZOIMIDAZOLES – A ROUTE TO 1*H*-IMIDAZOL(BENZOIMIDAZOL)-2-YL PHOSPHONIC AND PHOSPHINIC ACIDS AND THEIR DERIVATIVES

Igor V. Komarov^{*}, Aleksandr V. Strizhak, Mikhail Yu. Kornilov,

Department of Chemistry, Kiev Taras Shevchenko University, Vladimirskaya street, 64, Kiev 252033, Ukraine

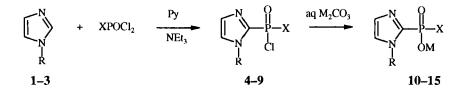

Aleksandr N. Kostyuk, Andrey A. Tolmachev

Institute of Organic Chemistry of National Academy of Sciences of Ukraine, Kiev, Murmanskaya street, 5, Kiev 252094, Ukraine

Abstract: Synthetic approaches to 1H-imidazol-2-yl and 1H-benzoimidazol-2-yl phosphinic and phosphonic acids and their derivatives are reported, based on phosphorylation of *N*-protected heterocylcles by PhPOCl₂ or MePOCl₂. Reaction of *N*-alkylbenzoimidazoles with POCl₃ did not lead to C-phosphorylated products in a reasonable yield, [2,2']-bis-benzoimidazolyles being formed instead.

Figure 1.

Phosphinic or phosphonic acids possessing 1*H*imidazole or 1*H*-benzoimidazole residues have attracted our attention as potential precursors to nucleotide analogues with a phosphorus-contain-



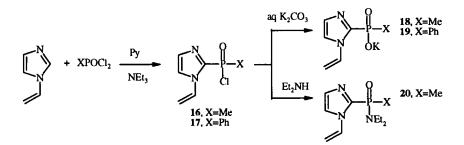
To whom correspondence should be addressed

Copyright © 1998 by Marcel Dekker, Inc.

ing grouping attached to a carbon atom of the heterocyclic ring, an example is depicted in the Figure 1.

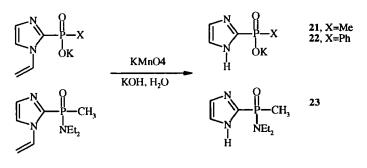
Firstly, direct phosphorylation of imidazole or benzoimidazole by phosphorus(V) acid chlorides was tried as a seemingly obvious way towards these targets. The analogous acylation of heterocycles by benzoyl chloride is well-documented¹. However, our attempts at phosphorylation of unsubstituted imidazole and benzoimidazole failed. This prompted us to find appropriate protecting groups at the 1-N atom of the imidazole ring. A screening of various protecting groups has been performed. *N*-Substituted imidazoles 1–3 were subjected to reaction with MePOCl₂ or PhPOCl₂ in a pyridine-triethylamine solution. All the starting compounds readily underwent C-phosphorylation. The intermediate heteroaryl-substituted phosphinic acid chlorides 4 9 were transformed into the corresponding acids or their salts 10–15 without isolation (scheme 1):

Scheme 1.

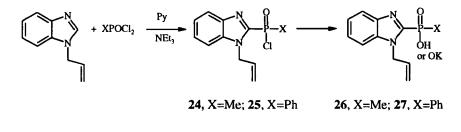

	Sta	rting co	mpounds	Intermediate phosphinic acid chlorides						
N ⁰	1	2	3	4	5	6	7	8	9	
R	Bz*	MOM*	CF ₂ CHFCI	Bz	Bz	MOM	MOM	CF2CHFC1	CF₂CHFCI	
x				Me	Ph	Me	Ph	Ме	Ph	

	Isolated phosphinic acid salts									
N ⁰	10	11	12	13	14	15				
R	Bz	Bz	MOM	MOM	CF₂CHFC1	CF ₂ CHFC1				
X	Me	Ph	Me	Ph	Ме	Ph				
М	Na	Na	К	Na	Na	К				

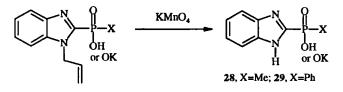
* Bz – benzyl, MOM – methoxymethyl.


Despite the successful phosphorylation our goal was not achieved: removal of benzyl, methoxymethyl, and polyfluoroalkyl protecting groups under standard conditions was accompanied by the C-P bond scission. Other possible candidates, *N*-trityl- and *N*-dimethoxymethyl-imidaloles and benzoimidazoles simply did not react with MePOCl₂, PhPOCl₂ to give the C-phosphorylated products.

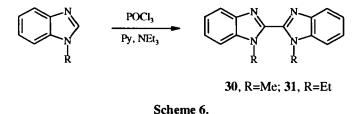
Progress was achieved with the vinyl protecting group. 1-Vinyl-1*H*-imidazole was transformed easily to the phosphinic acids or their derivatives **18–20** (scheme 2):


Scheme 2.

The removal of the vinyl protecting group was accomplished in water by treatment with aqueous KMnO₄ at pH~8, 20°C (scheme 3). The P–C bond is stable under these conditions, providing an excess of KMnO₄ is not used.

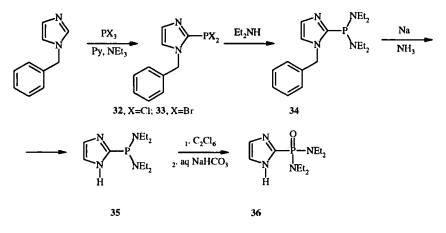

Scheme 3.

In the case of benzoimidazole, N-allyl protection seems to be a better choice than N-vinyl because the starting 1-allylbenzoimidazole is readily available. As with 1-vinilimidazoles, the phosphinic acids **26**, **27** were easily obtained in moderate yield (scheme 4):


Scheme 4.

Allyl group removal was performed again with a KMnO₄ solution (scheme 5):

Scheme 5.


It should be noted that only phosphinic acids can be obtained using the reactions shown on the schemes 3, 4 and 5. Reaction of *N*-substituted imidazoles and benzoimidazoles with POCl₃ did not lead to the corresponding phosphonic acids or their derivatives. Instead, we have found that the main products of the reaction between benzoimidazoles and POCl₃ are the corresponding [2,2']-bisbenzoimidazolyles (scheme 6):

This reaction could be used for the preparative synthesis of **30**, **31**. The yield was somewhat higher than that described in the literature for other reactions leading to [2,2']-bis-benzoimidazolyles²⁻⁴.

For the synthesis of phosphonic acid derivatives we have developed another approach which includes *N*-benzyl group removal by sodium in liquid ammonia⁵. It seems to be impossible to apply this deprotection method to P(V) derivatives like 10 or 11 due to side reactions at phosphorus. However, for P(III) acid amides this method seemed to be feasible. We have prepared *N*-benzylimidazolyl phosphinous amide using the previously described C-phosphorylation reaction of *N*-benzylimidazole by PCl₃ or PBr₃. In contrast to other imidazol-2-yldihalo-

phosphines reported to date^{6a,b}, compound **32** did not polymerize in the pyridine solutions used and was characterized by its ³¹P-NMR spectrum. Compounds **32**, **33** were transformed to the corresponding amide **34** without isolation, the benzyl group was removed by sodium-liquid ammonia at -78° C. The target 1*H*-imidazol-2-yl tetraethyl diamidophosphonate **36** was obtained by oxidation (scheme 7):

Scheme 7.

EXPERIMENTAL

NMR spectra were recorded on a Bruker WP-100SY spectrometer (100.13 MHz for protons), TMS was used as an internal standard for ¹H and ¹³C-NMR spectra, 85% H3PO4 was an external standard for ³¹P-NMR measurements. IR spectra were measured on SP3-300 Pye Unicam infrared spectrophotometer. Melting points were measured on a hot stage and are uncorrected. Pyridine and triethylamine were dried over KOH and distilled.

Phosphorylation of 1–3, 1-vinyl-1*H*-imidazole and 1-allyl-1*H*-benzo-imidazole by PhPOCl₂, CH₃POCl₂ was performed using the following standard procedure. (All the operations must be carried out under a dry, inert atmosphere). To a stirred mixture of the starting heterocyclic compound (1 equiv., usually 8 mmol), triethylamine (1.2 equiv., usually 9.6 mmol) and pyridine (to obtain approximately

equiv.) was added dropwise during 10 min. The reaction is slightly exothermic; the formation of crystals (NEt3⁻HCl) was observed. The course of the reaction can be easily followed by ³¹P-NMR spectroscopy. After no changes in the ³¹P-NMR specta were observed, the reaction mixture was worked-up as described below.

1M solution of the heterocyclic compound) the phosphorylating reagent (1.1

(1-benzyl-1*H*-imidazol-2-yl)-methyl-phosphinic acid sodium salt 10 was obtained from 2.5 g of 1 (15.8 mmol) and MePOCl₂. The reaction mixture obtained after the phosphorylation was poured carefully into water (about 100 ml). Solid sodium hydrocarbonate was added to the stirred mixture until no more carbon dioxide formed. The resulting solution was evaporated to dryness and the product was extracted from the formed solid with dry methanol. Crystallization from 2-propanol yielded 10 as colourless needles (3.05 g, 74 %). ³¹P-NMR (CD₃OD, δ) 11.6; ¹*H*-NMR (CD₃OD, δ) 7.39 (m, 2H), 7.29 (m, 5H), 5.67 (s, 2H), 1.35 (d, ²J_{P-H}=16.5 Hz, 3H). Anal. Calcd for C₁₁H₁₂N₂NaO₂P: C, 51.17; H, 4.68; N, 10.85. Found: C, 51.06; H, 4.73; N, 10.78.

(1-benzyl-1*H*-imidazol-2-yl)-phenyl-phosphinic acid sodium salt 11 was obtained from 3.0 g of 1 (19.0 mmol) and PhPOCl₂. The reaction mixture obtained

after the phosphorylation was poured carefully into 100 ml of 25% NaOH in H₂O. The solution was evaporated to about 20 ml and cooled. The crude product formed was collected by filtration and recrystallized from wet chloroform. The crystals were dried *in vacuo* over P₄O₁₀ to obtain 11 as white powder (5.66 g, 93%). ³¹P-NMR (CD₃OD, δ) 7, in acidic soln. 0 (in the presence of CF₃COOD); ¹H-NMR (CD₃OD, δ) 7.90–7.58 (m, 2H) 7.44–7.84 (m, 10H), 5.50 (s, 2H). Anal. Calcd for C₁₆H₁₄N₂NaO₂P: C, 60.01; H, 4.41; N, 8.75. Found: C, 59.96; H, 4.43; N, 8.79.

(1-methoxymethyl-1*H*-imidazol-2-yl)-methyl-phosphinic acid potassium salt 12 was obtained from 2.2 g of 2 (19.6 mmol) and MePOCl₂. The reaction mixture obtained after the phosphorylation was poured carefully into water (about 100 ml). Solid potassium carbonate was added until no more carbon dioxide formed. After that the solution was evaporated to dryness and the product was extracted from the solid with dry methanol. The solvent was removed under reduced pressure and the remained 12 was recrystallized from DMSO. White powder (3.04 g, 68 %). ³¹P-NMR (CD₃OD, δ) 21; ¹*H*-NMR (DMSO-d₆, δ) 7.11 (s, 1H), 6.85 (s, 1H), 5.72 (s, 2H), 3.24 (s, 3H), 1.22 (d, ²J_{P-H}=14.7 Hz, 3H). Anal. Calcd for C₆H₁₀KN₂O₃P: C, 31.58; H, 4.42; N, 12.27. Found: C, 31.50; H, 4.44; N, 12.30.

(1-methoxymethyl-1*H*-imidazol-2-yl)-phenyl-phosphinic acid sodium salt 13 was obtained from 2.2 g of 2 (19.6 mmol) and PhPOCl₂. The reaction mixture obtained after the phosphorylation was poured carefully into solution of NaOH (3.45 g) in water (100 ml), the solution was evaporated, dried and the product was extracted from the solid with wet chloroform. Re-precipitated from chloroform with benzene. Pale yellow powder (3.87 g, 72 %). ³¹P-NMR (CD₃OD, δ) 8.5, in acidic soln 3.5 (in the presence of CF₃COOD); ¹H-NMR (CD₃OD, δ) 7.90–7.62 (m, 2H), 7.34–7.19 (m, 3H), 7.14 (s, 1H), 6.97 (s, 1H), 5.52 (s, 2H), 2.93 (s, 3H) . Anal. Calcd for C₁₁H₁₂N₂NaO₃P: C, 48.19; H, 4.41; N, 10.22. Found: C, 48.11; H, 4.74; N, 10.25.

[1-(2-chloro-1,1,2-trifluoroethyl)-1*H*-imidazol-2-yl]-methyl-phosphinic acid sodium salt 14 was prepared analogously to 12 from 2.32 g of 3 (12.6 mmol) and MePOCl₂. Sodium hydrocarbonate was used to neutralize the reaction mixture. White powder (2.55 g, 71 %). ¹*H*-NMR (DMSO-d₆, δ) 8.68 (dt, ²J_{F-H}=46 Hz, J_{F-H} =8.3 Hz, 1H), 7.50 (s, 1H), 7.02 (s, 1H), 1.23 (d, ²J_{P-H}=18 Hz, 3H). Anal. Calcd for C₆H₆ClF₃N₂NaO₂P: C, 25.33; H, 2.13; N, 9.85. Found: C, 25.29; H, 2.14; N, 9.88.

[1-(2-chloro-1,1,2-trifluoroethyl)-1*H*-imidazol-2-yl]-phenyl-phosphinic acid potassium salt 15 was obtained from 2.39 g of 3 (12.9 mmol) and PhPOCl₂. The work-up is analogous to that for 12, the product was recrystallized from wet chloroform. Colorless needles (3.51 g, 75 %). ³¹P-NMR (CD₃OD, δ) 9.9; ¹*H*-NMR (CD₃OD, δ) 8.20 (t, downfield component of dt, J_{F-H}=7.9 Hz, 0.5H), 7.86–7.56 (m, 2.5H), 7.42–7.18 (m, 4H), 7.02 (s, 1H). Anal. Calcd for C₁₁H₈ClF₃KN₂O₂P: C, 36.43; H, 2.22; N, 7.72. Found: C, 36.37; H, 2.23; N, 7.76. Methyl-(1-vinyl-1*H*-imidazol-2-yl)-phosphinic acid potassium salt 18 was prepared analogously to 10 from 2.7 ml of 1-vinyl-1*H*-imidazole (29.8 mmol) and MePOCl₂ except that potassium carbonate was used instead of Na₂CO₃ during the work-up. Pale yellow crystals (4.45 g, 71 %). ³¹P-NMR (CD₃OD, δ) 22; ¹*H*-NMR (CD₃OD, δ) 7.88 (dd, ³J_{*H*-H}=15.5 Hz, ³J_{*H*-H}=7.9 Hz, 1H), 7.53 (s, 1H), 6.97 (s, 1H), 5.34 (d, ³J_{*H*-H}=15.5 Hz, 1H), 4.86 (d, ³J_{*H*-H}=7.9 Hz, 1H), 1.50 (d, ²J_{P-H}=13.8 Hz, 3H). Anal. Calcd for C₆H₈KN₂O₂P: C, 34.28; H, 3.84; N, 13.33. Found: C, 34.21; H, 3.86; N, 13.35.

Phenyl-(1-vinyl-1*H*-imidazol-2-yl)-phosphinic acid potassium salt 19 was prepared analogously to 10 from 2.7 ml of 1-vinylimidazole (29.8 mmol) and PhPOCl₂. White crystals (6.49 g, 80%). ³¹P-NMR (CD₃OD, δ) 7.2; ¹*H*-NMR (CD₃OD, δ) 7.98–7.68 (m, 4H), 7.65–7.24 (m, 4H), 5.65 (d, ³J_{*H*-H}=18.5 Hz, 1H), 5.25 (d, ³J_{*H*-H}=11.1 Hz, 1H). Anal. Calcd for C₁₁H₁₀KN₂O₂P: C, 48.52; H, 3.70; N, 10.29. Found: C, 48.56; H, 3.71; N, 10.25.

Methyl-(1-vinyl-1*H*-imidazol-2-yl)-phosphinic acid diethylamide 20 was prepared from 5.0 ml of 1-vinylimidazole (55.2 mmol) and MePOCl₂. After the reaction the mixture was treated with diethylamine (16.3 ml, 158.2 mmol). The volatile products were removed under reduced pressure and 20 was extracted with benzene. The solvent was removed, and the remained oil was distilled to obtain 20 as yellow solid (b.p. 110° C/0.15 mm) which was recrystallized from hexane. Colorless needles, m.p. 79° C (7.78 g, 62 %). ¹*H*-NMR (CD₃OD, δ) 7.59–7.85 (m, 2H), 7.10 (s, 1H), 5.41 (dd, ³J_{*H*-H}=15.8 Hz, ²J_{*H*-H}=2 Hz, 1H), 4.94 (dd, ³J_{*H*-H}=9.0

IMIDAZOLES AND BENZOIMIDAZOLES

Hz, ${}^{2}J_{H-H}=2$ Hz, 1H), 2.98 (dq, 4H), 1.77 (d, ${}^{2}J_{P-H}=15.1$ Hz, 3H), 0.92 (t, 6H); Anal. Calcd for C₁₀H₁₈N₃OP: C, 52.85; H, 7.98; N, 18.49. Found: C, 52.80; H, 7.96; N, 18.52.

General methods for deprotection of 18–20. A saturated aqueous $KMnO_4$ solution was added dropwise to a stirred solution of a phosphorylated heterocyclic compound in water until the colour of the mixture does not change during 30 sec after addition of a drop of $KMnO_4$. The precipitate of MnO_2 was filtered off and the filtrate was treated as described below.

(1*H*-imidazol-2-yl)-methyl-phosphinic acid potassium salt 21 was prepared from 1,6 g of 18 (7.6 mmol). After the oxidation 5 ml of conc. hydrochloric acid was added and the solution was evaporated to dryness to remove the formic acid. The remained solid was dissolved in water, solid K₂CO₃ was added until no more CO₂ was formed and the solution was evaporated to dryness. The product was extracted from the remainder with dry methanol and precipitated by three-fold excess of acetone. Pale yellow powder (0.86 g, 61%). ³¹P-NMR (CF₃COOD, δ) 15; ¹*H*-NMR (CF₃COOD, δ)(s, 2H), 1.98 (d, ²J_{P-H}=16 Hz, 3H).Anal. Calcd for C₄H₆KN₂O₂P: C, 26.09; H, 3.28;N,15.21. Found: C, 26.02;H, 3.30; N, 15.25.

(1*H*-imidazol-2-yl)-phenyl-phosphinic acid 22 was prepared from 1.73 g of 19 (6.4 mmol). After oxidation the mixture was evaporated to about 10 ml and 20% hydrochloric acid was added until pH 5. The formed precipitate was collected by filtration and dried over P_4O_{10} . Colorless powder (1.32 g, 68%). ³¹P-NMR

(DMSO-d₆, δ) 1.0; ¹*H*-NMR (CD₃OD, δ) 7.65–7.98 (m, 2H), 7.26–7.63 (m, 5H). Anal. Calcd for C₉H₉N₂O₂P: C, 51.93; H, 4.36; N, 13.46. Found: C, 51.88; H, 4.39; N, 13.49

(1*H*-imidazol-2-yl)-methyl-phosphinic acid diethylamide 23 was prepared from 1 g of 20 (4.41 mmol). After the oxidation the solution was evaporated to dryness and the product was extracted from the remained solid with benzene. The solvent was removed under reduced pressure and the remained oil was crystallized from heptane. Colorless crystals (0.62 g, 70%). ³¹P-NMR (CD₃OD, δ) 30.5; ¹*H*-NMR (CD₃OD, δ) 7.23 (d, ⁴J_{P-H}=2 Hz, 2H), 3.03 (m, 4H), 1.77 (d, ²J_{P-H}=16 Hz, 3H), 1.01 (t, 6H). ¹³C-NMR (100 MHz, CDCl₃, δ): 142.2 (d, J_{P-H}= 170.9Hz), 130.6, 119.6, 39.2 (d, J_{P-H}=4.1), 15.0 (d, J_{P-H}=100 Hz),14.4 (d, J_{P-H} = 2.1 Hz). Anal. Calcd for C₈H₁₆N₃OP: C, 47.76; H, 8.01; N, 20.88. Found: C, 47.70; H, 8.03; N, 20.91.

(1-allyl-1*H*-benzoimidazol-2-yl)-methyl-phosphinic acid potassium salt 26 was synthesized analogously to 12 from 2.2 g of 1-allylbenzoimidazole (13.9 mmol) and MePOCl₂. White powder (2.40 g, 63%). ³¹P-NMR (CD₃OD, δ) 22; ¹*H*-NMR (DMSO-d₆, δ) 7.76–7.56 (m, 1H), 7.52–7.32 (m, 1H), 7.31–7.06 (m, 2H), 6.26–5.81 (m, 1H), 5.40 5.02 (m, 4H), 1.32 (d, ²J_{P-H}=14.8 Hz, 3H). Anal. Calcd for C₁₁H₁₂KN₂O₂P: C, 48.17; H, 4.41; N, 10.21. Found: C, 48.12; H, 4.44; N, 10.24.

(1-allyl-1*H*-benzoimidazol-2-yl)-phenyl-phosphinic acid 27 was synthesized from 2.2 g of 1-allylbenzoimidazole (13.9 mmol) and PhPOCl₂. The reaction mix-

ture obtained after the phosphorylation of by PhPOCl₂ was poured carefully into water (50 ml). The solution formed was evaporated by half, cooled. The product was collected by filtration and dried over P₄O₁₀. An analytical sample was recrystallized from i-PrOH. Colorless powder (3.11 g, 75%). ³¹P-NMR (CD₃OD, δ) 4.0; ¹*H*-NMR (CD₃OD, δ) 8.0–7.29 (m, 9H), 5.81–5.22 (m, 2H), 4.97 (d, ³J_{*H*-H}=13.0 Hz, 1H), 4.79 (s, 2H). Anal. Calcd for C₁₆H₁₅N₂O₂P: C, 64.43; H, 5.07; N, 9.39. Found: C, 64.39; H, 5.11; N, 9.40.

(1*H*-benzoimidazol-2-yl)-methyl-phosphinic acid potassium salt 28. Salt 26 (2 g, 7.30 mmol) was dissolved in water and saturated solution of KMnO₄ (4.00 g, 28.98 mmol) was added with stirring. The mixture was then stirred for 4h at room temperature. The precipitate of MnO₂ was filtered off, the filtrate was evaporated. The product was extracted with dry methanol and was re-precipitated by three-fold excess of acetone. Yellow powder (0.94 g, 55%). ³¹P-NMR (DMSO-d₆, δ) 15.0; ¹*H*-NMR (DMSO-d₆, δ) 7.82–7.60 (m, 2H), 7.48–7.30 (m, 2H), 1.52 (d, ²J_{P-H} =15.0 Hz, 3H). Anal. Calcd for C₈H₈KN₂O₂P: C, 41.02; H, 3.44; N, 11.96. Found: C, 40.95; H, 3.48; N, 11.92.

(1*H*-benzoimidazol-2-yl)-phenyl-phosphinic acid 29. Phosphinic acid 27 (1 g , 2.97 mmol) was dissolved in water by addition of KOH and saturated solution of KMnO₄ (2.09 g, 13.23 mmol) was added under stirring. The mixture was then stirred for 5h at room temperature. MnO_2 was filtered off, the mixture was evaporated to about 8 ml and conc. HCl was added dropwise to the filtrate until no more precipitate was formed. The product was collected by filtration and dried

over P_4O_{10} . White powder (0.56 g, 73%). ³¹P-NMR (CF₃COOD, δ) 4.9; ¹*H*-NMR (CF₃COOD, δ) 8.17–7.54 (m). Anal. Calcd for $C_{13}H_{11}N_2O_2P$: C, 60.47; H, 4.29; N, 10.85. Found: C, 60.43; H, 4.31; N, 10.83.

General methods for the preparation of 30, 31 by the oxidative coupling of benzoimidazoles. *N*-alkylbenzoimidazole (10 mmol) was dissolved in pyridine (10 ml), triethylamine (14 mmol) and POCl₃ (12 mmol) were added to the solution under stirring. After the reaction was complete (20 h), the mixture was poured carefully into water (50 ml), the formed solution was evaporated to about 15 ml and cooled. The crude product was collected by filtration and purified as described below.

1,1'-dimethyl-1*H***,1'***H***-[2,2']***-bis*-benzoimidazolyl **30** was recrystallized from 50% ethanol or purified by column chromatography (Silica gel Merck 60, CHCl₃: CH₃OH 9:1 as eluent). Yield: 68%. M.p, ¹*H*- and ¹³C-NMR spectra are identical with the literature data^{2,3}. Anal. Calcd for C₁₆H₁₄N₄: C, 73.26; H, 5.38; N, 21.36. Found: C, 73.22; H, 5.41; N, 21.33.

1,1'-diethyl-1*H*,1'*H*-[**2**,2']-*bis*-benzoimidazolyl **31** was recrystallized from ethanol. Yield: 77%, m.p. 177–178 C, ¹*H*-NMR (DMSO-d₆, δ) 7,92–7,66 (m, 2H); 7,50–7,24 (m, 2H); 4,87 (q, 4H); 1,42 (t, 3H). Anal. Calcd for C₁₈H₁₈N₄: C, 74.46; H, 6.25; N, 19.30. Found: C, 74.40; H, 6.29; N, 19.27.

(1-benzyl-1*H*-imidazol-2-yl)-phosphonous acid *bis*-diethylamide 34 (all operations were carried out under a dry nitrogen atmosphere) was obtained from

2.37 g of (15.0 mmol), 1.43 ml of PBr₃ or 1.31 ml of PCl₃ (15.0 mmol) and 2.49 ml of NEt₃ (18.0 mmol). In case of the reaction with PCl₃ the ³¹P-NMR signal of the formed (1-benzyl-1*H*-imidazol-2-yl)-dichlorophosphine 32 appears at 120 ppm (pyridine-d₅). After the phosphorylation (24 h) diethylamine (9.2 ml, 90 mmol) was added to the reaction mixture. The volatile products were removed under reduced pressure and the product was extracted with benzene, ammonium salts were filtered off. The solvent was removed under reduced pressure, the oily residue was dissolved in heptane. The heptane solution was cooled to about 0°C, decanted from non-soluble dark oil and freeze-dried. Pale yellow oil (4.59 g, 92%). ³¹P-NMR (CD₃CN, δ) 71; ¹*H*-NMR (CD₃CN, δ) 7.66–7.26 (m, 7H), 5.56 (s, 2H), 2.41 (dq, 8H), 1.30 (dt, 12H). Anal. Calcd for C₁₈H₂₉N₄P: C, 65.04; H, 8.79; N, 16.85. Found: C, 64.82; H, 8.96; N, 16.88.

(1*H*-imidazol-2-yl)-phosphonic acid *bis*-diethylamide 36. To a solution of sodium (0.56 g, 24.22 mmol) in liquid ammonia (25 ml) a solution of amide 34 (4.02 g, 12.11 mmol) in toluene was added dropwise under stirring at -78° C. The reaction was complete after 10–12 min which can be easily determined by the color of the solution which changed from blue to light-red. Ammonium chloride (1.30 g, 24.22 mmol) was added and the reaction mixture was allowed to evaporate. A solution of hexachloroethane (2.79 g, 12.11 mmol) in benzene (30 ml) was added afterwards, the formed mixture was washed with 10% NaHCO₃. The aqueous layer was washed with chloroform (3×30 ml), the combined organic layers were dried (CaCl₂) and evaporated to dryness *in vacuo*. The oily residue was dried *in vacuo*

(0.1 mm Hg, 80°C, 5 h). Pale yellow oil (2.97 g, 95%). ¹H-NMR (CD₃OD, δ) 7.19
(s, 2H), 3.02 (dq, 8H), 1.02 (dt, 12 H). Anal. Calcd for C₁₁H₂₃N₄OP: C, 51.15; H, 8.97; N, 21.69. Found: C, 50.91; H, 9.21; N, 21.74.

ACKNOWLEDGEMENTS

Financial support from INTAS, the International Association for the promotion of cooperation with scientists in the independent states of the former Soviet Union, (Grant INTAS-93-3532) is gratefully acknowledged.

LITERATURE AND NOTES

- 1. Regel, E.; Buchel, K.-H. Lieb. Ann. Chem. 1977, 145.
- 2. Khristich, B.I.; Bondarenko, E.V. Khim. Heterotsikl. Soedinenii 1987, 339.
- Khristich, B.I.; Simonov, A.M.; Shepelenko, E.N.; Yatsimirski, V.A. Khim. Heterotsikl. Soedinenii 1983, 98.
- Ro, J.S.; Iyengar, D.S.; Bhalerao, U.T.; Rao, S.N.*Heterocycles* 1987, 26 (5), 1161.
- Tolmachev, A.A.; Kozlov, E.S.; Pinchuk, A.M. Zhurn. Obshch. Khim. 1982, 52 (10), 2352.
- a. Tolmachev, A.A.; Yurchenko, A.A.; Rozhenko, A.V.; Semenova, M.G. Zh. Org. Khim. 1993, 63 (8), 1911.

b. Tolmachev, A.A.; Yurchenko, A.A.; Merkulov, A.S.; Pinchuk, A.M.*Heteroatom.*, in press

(Received in the UK 31 October 1997)