Copper (I) Mediated Conjugate Addition of Grignard Reagents to 2-Oxoethylcyclohexenols. A Versatile, Efficient and Diastereoselective Route to *anti, Z* 6-Alkyl-2-trialkylsilyloxy-1-(2-trimethylsilyloxypropylid-1-ene)cyclohexanes

Valéry Dambrin, Monique Villiéras, Hassen Amria, Jacques Lebreton, Jean Villiéras*

Laboratoire de Synthèse Organique, UMR CNRS 6513, Faculté des Sciences et Techniques, 2, rue de la Houssinière, BP 92208 - F44322 Nantes Cedex 03, France

Fax +33 (2) 51 12 54 12; E-mail: villiera@chimie.univ-nantes.fr

^a Laboratoire de Chimie Organique et Organométallique, Faculté des Sciences, Campus Universitaire -1060-Tunis-Tunisie Received 12 April 1999

Abstract: The copper (I) mediated conjugate addition reactions of Grignard reagents to 2-silyloxycyclohexenyl methylketones lead exclusively to the corresponding *anti*, Z 1-(2-trimethylsilyloxypropylid-1-ene)-cyclohexan-2-ols in almost quantitative yields and with high diastereoselectivities (d.e. \geq 95%).

Key words: conjugate addition, polyfunctional Michael acceptor, enolate trapping, silyl enols ethers, diastereoselectivity

In our continuing interest towards the synthesis of 5- and 6-membered ring cycloalkanol carboxylates substituted at three contiguous atoms, we would like to report our recent results concerning the behaviour of acetyl-substituted analogues. While, in the case of 2-silyloxycycloalkenes carboxylates¹, copper (I) mediated conjugate addition reactions of Grignard reagents afforded related alkylated cycloalkanols in high yields and diastereoselectivities (Scheme 1), ketocycloalkenols have led to quite unexpected results.

Scheme 1

Under the same conditions the keto analogs **2a-b** led always to quantitative formation of **3**, probably through an addition-elimination process, while no desired cycloalkanols could be observed (Scheme 2).

The use of stronger electrophiles in order to trap the intermediate enolate (TMSBr, TMSI, TMSOTf or TBDMSCl) yielding to a potentially more stable enoxysilane, however did not provide any change in the course of the reactions. Besides, in the presence of HMPA (0.5 eq.) or at reaction temperatures up to - 30 °C, concomitant formation of **4**

(inseparable mixture of diastereoisomers) was observed as resulting from conjugate addition to 3.

Conjugate addition to the 6-membered ring analogues **5bc** was less disappointing. In this case, the reaction proceeded smoothly at -10 °C affording the corresponding enoxysilanes **6a-i**, *without formation of* **7**, in almost quantitative yields (no cyclohexene was recovered) and high diastereoselectivities (one single isomer detected, according to ¹H- and ¹³C NMR) (Scheme 3 and Table 1).

As previously reported for the ester analogues, the formation of **6** and **7** must be considered as the result of concurrent *O*-silylation and β -elimination on the intermediate keto-enolate resulting of the addition reaction. It seems to be a reflection of the nucleophilic behaviour of these enolates for *O*-silylation. This phenomenon seems to be

Table 1 Preparation of the enoxysilanes 6a-i

Z (cyclohexene 5)	6 / 7a	R (adduct 6 ^b)	d.e. (%) ^d
H (5a)	0 / 100	<i>n</i> -Bu (6a)	-
SiPh₂ <i>t</i> -Bu (5c)	100 / 0	<i>n-</i> Bu ^C (6a)	≥ 95
SiMe ₂ <i>t</i> -Bu (5b)	100 / 0	<i>n</i> -Bu (6b)	
	0	Me (6c)	
	"	Et (6d)	
и	11	<i>i</i> -Pr (6e)	
n	п	<i>t</i> -Bu(6f)	
n	n	H ₂ C=CH (6g)	•
	п	Ph (6h)	"
н	u	Bn (6i)	н

^aEstimated according to ¹H NMR. ^bQuantitative crude yields without purification over silica gel in order to prevent from β -elimination. ^cSilica gel chromatography could be achieved successfully on this compound (96%). ^dEstimated since no other diastereoisomers could be observed in ¹H and ¹³C NMR.

strongly ring-size dependent since cyclopentylidene enolates seems to be much less stable than cyclohexylidenes enolates. As a consequence, subsequent rate-limiting Osilylation with TMSX is much more favoured in the 6membered ring series.

Structure determination of 6 could be accomplished by comparison with our previous results¹ on 6-membered ring silyl ketene acetals. Indeed spectral data analogy with a related 3-n-butyl-2-(ethoxytrimethylsilyloxymethylene)-cyclohexan-1-ol dimethyl-tert-butylsilyl ether led us to assign the exclusive relative anti, Z configuration for **6b**. All attempts to purify over silica gel (with or without Et₃N) or basic alumina, however consisted in the sole formation of the β -elimination by-products 7. The same results were obtained by trying to regenerate the carbonyl moiety with various acids (including aqueous HF, CF_3CO_2H , Amberlyst (15)), with TBAF² or with MeLi, whereas acetic acid did leave the enoxysilanes 6 unchanged. Despite this, the method seems particularly attractive by enabling a short and diastereoselective synthesis of numerous disubstituted exocyclic 6-membered ring enoxysilanes under very simple operating conditions.³ Furthermore, it can be considered as an alternative and efficient route to the previously described methods (zinc enolate silylation,4 ketene alkylation-silylation,⁵ C. Ainsworth⁶).

There is no doubt that those preliminary results will offer new opportunities in the field of multi-step synthesis involving asymetric aldolisation and related Mukaiyama reactions.⁷ We thank G. Nourisson for recording of the mass spectra and Dr. A. Guingant for fruitful discussions.

References and Notes

- (a) V. Dambrin, M. Villiéras, C. Moreau, H. Amri, L. Toupet, J. Villiéras, *Tetrahedron Lett.* **1996**, *37*, 6323-6326. (b) V. Dambrin, M. Villiéras, J. Lebreton, L. Toupet, H. Amri, J. Villiéras, *Tetrahedron Lett.* **1999**, *40*, 871-874. (c) V. Dambrin, M.Villiéras, P. Janvier, J. Lebreton, L. Toupet, H. Amri, J. Villiéras *Tetrahedron*, submitted.
- (2) E. J. Corey, B. B. Snider, J. Am. Chem. Soc. 1972, 94, 2549-2550.
- (3) **Typical procedure** : anti, (Z)-6-n-Butyl-2-dimethyl-tertbutylsilyloxy-(2-trimethylsiloxypropylid-1-ene)-cyclohexane **6b**.
 - To a solution of 2.5 mmol (1 eq.) of 5b in 40 mL THF at -10 °C was added 0.25 mL (0.1 eq.) of a 1N solution of LiCuBr₂ in THF and trimethylsilyl chloride (0.8 mL, 6.25 mmol, 2.5 eq.). After 5 min, a solution of the Grignard reagent (7 mmol, 2.8 eq.) was slowly added during ca. 1 h and the mixture was stirred for another hour until completion. Then the mixture was guenched with saturated aqueous NH₄Cl. After extraction with diethyl ether, the combined organic layers were washed with brine and dried (MgSO₄). Removal of the solvents under vacuum yielded the crude silyl enol 6b as a colourless viscous oil, which was not purified over silica gel in order to prevent β -elimination (1.05 g, quant.), d.e. > 95%. ¹H NMR (200 MHz, CDCl₃ / TMS) : δ 4.40 (1H, m, HC-OSi), 2.84 (1H, m, HC-nBu), 1.97 (3H, s, CH₃), 1.79-1.27 (12H, *m*), 0.90 (9H, *s*, *t*-Bu), 0.9 (3H, *broad t*, CH₃ (n-Bu)), 0.18 (6H, s, Me-Si), 0.08 (9H, m, SiMe₃). ¹³C NMR (50 MHz, CDCl₃) : δ 139.7 (C=COSiMe₃), 123.0 (C=COSIMe₃), 69.5 (CH-OSi), 36.1 (HC-n-Bu)), 35.9 (C=C-CH₃), 30.7 (CH₂), 30.6 (2CH₂), 26.3 (CH₂), 25.9 (C(CH₃)₃), 25.7 (CH₂), 22.8 (CH₂), 19.8 (C(CH₃);), 14.2 (CH₃), 0.66 (SiMe₂ and SiMe₃). MS m/z (CI) 385 (M-H+) IR v max (thin film) 1673 (C=C), 1096 (broad, O-Si).
- (4) C. Ainsworth, F. Chen, K. Yu-Neng, J. Organomet. Chem. 1972, 46, 59-71.
- (5) G. M. Rubottom, Synth. Commun. 1977, 7, 327-332.
- (6) L. M. Baigrie, D. Lenoir, H. R. Seikaly, T. T. Tidwell, J. Org. Chem. 1985, 50, 2105-2109.
- (7) Selected papers of related interest: (a) L. A. Telan, C.-D. Poon, S. A. Evans Jr, J. Org. Chem. 1996, 61, 7455-7462.
 (b) J. Otera, Y. Fujita, S. Fukuzumi, Tetrahedron 1996, 52, 9409-9418. (c) A. Bernardi, G. Colombo, C. Scolastico, Tetrahedron Lett. 1996, 37, 8921-8924. (d) C. Palazzi, L. Colombo, C. Gennari, Ibid. 1986, 27, 1735-1738. (e) C. H. Heathcock, S. K. Davidesn, K. T. Hug, L. A. Flippin, J. Org. Chem. 1986, 51, 3027-3037.

Article Identifier:

1437-2096,E;1999,0,07,1057,1058,ftx,en;G07799ST.pdf