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Abstract 

New mono-, bis- and tetra-fluorophoric organosilicon naphthalene derivatives, that are able to 

form intramolecular excimers have been synthesized and characterized. The synthesized compounds 

show only monomeric fluorescence in dilute solutions of common organic solvents, but exhibit 

relatively strong excimer-like emission in DMSO-water and THF-water mixtures. In all cases, the 

intensity of excimer fluorescence increases with increasing water content and decreases with 

increasing temperature. Fully and partially overlapping excimer conformations have been modeled 

by DFT-based calculations. Properties of different intramolecular excimers in an ensemble of four 

naphthalene molecules linked to a cyclotetrasiloxane ring in an all-cis arrangement are considered. 

 

Keywords: excimer, fluorescence, naphthalene, siloxane. 
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1. Introduction 

Excimers are excited dimers formed as a result of interaction of one molecule in an excited state 

and another in the ground state. They have attracted great research interest in terms of their 

fundamental and applied value since the seventies of the last century.
1–3

 Typically, molecular 

excimers are formed when there is a small intermolecular distance between two interacting 

molecules, which facilitates the formation of excimers due to π-π interaction. As a rule, this is 

achieved in crystals, amorphous films and concentrated solutions of aromatic hydrocarbons such as 

benzene, naphthalene, anthracene, pyrene, perylene, etc., and their derivatives.
4–6

 

Excimer-based fluorescent probes can be widely used in various fields of science and technology. 

In particular, they may be used as selective fluorescent sensors for the detection of metal ions,
7–9

 in 

biosensing processes as fluorescent probes for the detection of DNA,
10

 amino acids,
11

 enzymes,
12

 

ribonucleases
13

 and bioimaging of living cells, bacteria, etc.
14

 Another area of application for 

excimer-forming compounds is organic electronics, where such compounds are used to develop new 

materials for OLED applications.
15–17

 

At present, naphthalene and its derivatives are one of the most studied classes of organic 

compounds capable of forming fluorescent excimers. Excimers of these compounds were observed 

in the crystalline
18–22

 and liquid states.
23,24

 Naphthalene derivatives are particularly attractive 

fluorescent compounds because their excimers are sensitive to local environmental properties and 

temperature, that leads to a redistribution of the monomer/excimer emission intensity.
25,26

 As a 

consequence, these phenomena can find many applications, for example, in the development of 

fluorescent molecular thermometers
27

 or sensors for detecting metal ions.
27–37

 

In concentrated solutions, naphthalene derivatives exhibit strong excimer emission as a result of 

the interaction of neighboring molecules. An alternative effective approach to increasing the 

probability of excimer formation is to increase the local concentration of chromophores by fixing 

two or more molecules at close distances, usually using alkyl spacers. In a series of studies, it was 

shown that the nature and conformation of the alkyl spacer play a crucial role in the formation of an 

intramolecular excimer, and a stable excimer configuration takes place only in the case of a 

symmetric sandwich arrangement.
38–40

 The literature describes many examples of grafting several 

naphthalene molecules to matrices with different architectures, such as propane,
41–43

 

сyclodextrines,
29,44–54

 dendrimers,
55

 cyclotriphosphazenes,
56,57

 thiacalix[4]arene,
58

 polymers,
59–62

 

silanes,
63

 siloxanes,
64

 POSSs (polyhedral oligomeric silsesquioxanes)
65

 and others.
66,67
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There are several examples of a combination of naphthalene derivatives and a siloxane matrix in 

the literature. Interesting examples include siloxane-bridged cyclic dimers with naphthalene 

fragments,
64

 and naphthalene-containing POSS,
65

 which exhibit excimer fluorescence. Siloxanes of 

different structures are convenient matrices for grafting chromophores, since they make it easy to 

obtain multichromophore systems with a controlled architecture.
68–72

 In addition, rigidity/flexibility 

of the corresponding spacer can be adjusted by using  silane or siloxane bonds in the spacers. This 

approach can be effective for the preparation of intramolecular excimers.
73

 Stereoregular cyclic 

organosiloxanes are of particular interest among a wide range of organosilicon compounds because 

they have the advantage of controlled ring size and cis/trans conformation.
74

 For example, excimer 

formation in cyclotetrasiloxane functionalized with four fluorophores based on terthiophene has 

been shown.
75

 

Understanding the excimer formation in organic materials is of fundamental importance for 

optimizing their performance for a given application. Using femtosecond spectroscopy, Iyer and co-

authors have recently shown that formation of benzene excimers in neat liquid benzene at room 

temperature follows the mechanism involving UV electronic excitation of two nearby benzenes in a 

nearly parallel arrangement that are already in a configuration facilitating sharing the excitation.
76

 

As soon as the excitation selects such a pre-formed excimer, the interaction between the two 

molecules is instantaneously switched to a more stronger attraction and the entities become locked. 

The authors noted that the proposed mechanism of excimer formation can be applied to other 

aromatic systems with short-range stacked configurations. 

In particular, molecular clusters can be considered as an example of such systems. Saigusa and 

co-authors reported that the efficiency of excimer formation in van der Waals naphthalene clusters 

isolated in the supersonic state and consisting of two, three or four naphthalene molecules strongly 

depends on the size and geometry of the clusters.
77

 

The use of a cyclotetrasiloxane framework seems to make it possible to construct similar systems 

for research in solution and solid state. In this paper, we present the observation of intramolecular 

excimers in a bis-naphthalene system as well as in an ensemble of four naphthalene molecules 

linked to a cyclotetrasiloxane ring in an all-cis arrangement with respect to the siloxane cycle. To 

allow the fluorophores to approach neighboring molecules, they were tethered with flexible spacers. 

In order to induce the formation of intramolecular excimers in this system, binary DMSO–water and 

THF-water mixtures were used. 
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2. Results and discussion 

2.1. Synthesis of organosilicon derivatives of naphthalene 

Mono-naphthyl (Mono-Naph) 5, bis-naphthyl (Di-Naph) 7 and tetra-naphthyl (Tetra-Naph) 9, 

organosilicon derivatives were synthesized in two stages according to Scheme 1. It is noteworthy 

that Tetra-Naph contains all naphthalene moieties in the same plane of the cyclotetrasiloxane ring. 

It can be occurring by using functional cyclotetrasiloxane 8 described by us earlier.
74

 At the first 

stage, 1-allylnaphthalene derivative 3 was prepared in almost quantitative yield by the reaction of 

naphthalene-1-boronic acid 1 with allylbromide 2 through refluxing the reaction mixture in dry 

toluene in an argon atmosphere in the presence of Pd2(dba)3 as a catalyst and K2CO3 as a base. Then, 

1-allylnaphthalene 3 was involved into the reaction with 1,1,1,3,3-pentamethyldisiloxane (mono-

silylhydride 4), 1,1,3,3,5,5-hexamethyltrisiloxane (di-silylhydride 6) and cis-

tetra[(phenyl)(dimethylsiloxy)] 

cyclotetrasiloxane
74

 (tetra-silylhydride 8) in dry toluene using Karstedt’s catalyst. After isolation 

and purification by column chromatography on silica using hexane and hexane–toluene mixture as 

an eluent, the corresponding Mono-Naph 5, Di-Naph 7 and Tetra-Naph 9 were obtained as viscous 

oils. All compounds were fully characterized by NMR- and IR-spectroscopy (Supporting 

Information). 
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Scheme 1. Synthesis of Mono-Naph, Di-Naph and Tetra-Naph. 

2.2. Photophysical properties 

The photophysical characteristics of the synthesized organosilicon naphthalene derivatives were 

studied in various solvents. The results obtained are summarized in Table 1. Figure 1 shows the 

normalized electronic absorption and emission spectra of Mono-, Di- and Tetra-Naph in various 

solvents at room temperature. The absorption spectra of the compounds have an almost identical 

vibration structure up to 320 nm which is typical for naphthalene derivatives (Figure 1). The 

absorption maxima of solutions of all studied compounds in cyclohexane, dichloromethane, ethanol 

and DMSO vary in the range of 283-285 nm (Table 1), which indicates that the solvent polarity does 

not have a strong effect on the absorption spectra. There are no spectral shifts for Di-Naph and 

Tetra-Naph in comparison with Mono-Naph that indicates the absence of intramolecular electronic 

interactions between the naphthalene chromophores in the ground state. The molar extinction 

coefficient ε for Mono-Naph is about 7 000 M
-1

 cm
-1

 which corresponds to the data for 

unsubstituted naphthalene. In the case of Di- and Tetra-Naph the molar extinction coefficient ε is 

about 13 000 M
-1

cm
-1

 and 28 000 M
-1

cm
-1

, respectively. The data indicate that an increase in the 

amount of naphthalene entities in these molecules leads to an almost proportional increase in the 

molar extinction coefficient (Table 1). The solvent polarity does not affect the value of the molar 

extinction coefficient.  
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Table 1. Optical properties of Mono-Naph, Di-Naph and Tetra-Naph in various solvents.  

λabs – Absorption wavelength; λem – emission wavelength; ε – extinction coefficient at the maximum; Фf – fluorescence 

quantum yield; ΔνSt – Stokes shift. The wavelength of the second fluorescence peaks are given in parentheses. 
a
 Low 

extinction coefficient most likely is due to error obtained through solution preparation because the compound is poorly 

soluble in ethanol. 
b
 Naphthalene was used as a standard for calculating the quantum yield (Фf =0.23; argon-purged 

solution in cyclohexane).
78

 

Compound Solvent 
λabs 

(nm) 

ε 

(M-1 cm-1) 

in S0→S2 maximum 

λem 

(nm) 

Фf
 b

 

(air) 

Фf
 b

 

(argon) 

ΔνSt 

(cm-1) 

Mono-Naph 

Cyclohexane 
315 (S0→S1)  

283 (S0→S2) 
7 300 328 (340) 0.10 0.24 1258 

Dichloromethane 
314 (S0→S1) 
285 (S0→S2) 

7 170 336 (328) - - 2085 

Ethanol 
314 (S0→S1) 

283 (S0→S2) 
7 370 327 (336) - - 1266 

DMSO 
315 (S0→S1) 
285 (S0→S2) 

7 530 337 (328) - - 2072 

Di-Naph 

Cyclohexane 
315 (S0→S1) 

284 (S0→S2) 
12 800 328 (340) 0.12 0.25 1258 

Dichloromethane 
315 (S0→S1) 

285 (S0→S2) 
12 700 338 (328) - - 2160 

Ethanol 
314 (S0→S1) 

283 (S0→S2) 
12 600 338 (328) - - 2261 

DMSO 
315 (S0→S1) 

285 (S0→S2) 
13 100 337 (328) - - 2072 

Tetra-Naph 

Cyclohexane 
315 (S0→S1) 

284 (S0→S2) 
28 300 328 (340) 0.13 0.27 1258 

Dichloromethane 
315 (S0→S1) 

285 (S0→S2) 
27 700 338 (328) - - 2160 

Ethanol 
314 (S0→S1) 

283 (S0→S2) 
20 630a 328 (338) - - 1359 

DMSO 
315 (S0→S1) 

285 (S0→S2) 
28 000 337 (328) - - 2072 
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Figure 1. Normalized electronic absorption spectra of Mono-Naph (c = 13 × 10
-5

 M) (a), Di-Naph 

(c = 6.5 × 10
-5

 M) (b), Tetra-Naph (c = 3.3 × 10
-5

 M) (c) and fluorescence spectra of Mono-Naph 

(c ≈ 1.3 × 10
-5

 M) (d), Di-Naph (c ≈ 6.5 × 10
-6

 M) (e), Tetra-Naph (c ≈ 3.3 × 10
-6

 M) (f) in different 

solvents at room temperature (λex = 270 nm for all compounds). 
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Figure 1 shows the normalized fluorescence spectra of Mono-, Di- and Tetra-Naph that were 

measured in solvents with different polarity (cyclohexane, dichloromethane, ethanol, 

dimethylsulfoxide) at room temperature. It was found that the solvent polarity does not affect the 

fluorescence spectra of studied compounds (Figure 1). The obtained fluorescence spectra consist of 

two well-defined maxima at 327-328 nm and 336-340 nm, respectively, and a shoulder at about 360 

nm. These spectra are assigned to fluorescence of the naphthalene monomer. The quantum yields of 

the fluorescence of studied compounds were measured using deaerated solutions in cyclohexane. 

Solution of naphthalene in cyclohexane (Фf = 0.23) was used as the fluorescence standard. As seen 

from Table 1 Mono-, Di- and Tetra-Naph exhibit a slightly higher quantum yield than naphthalene, 

which increases on going from mono-chromophoric to tetra-chromophoric derivatives (0.24 → 0.25 

→ 0.27). In addition, the fluorescence intensity of Mono-, Di- and Tetra-Naph drops twice in 

aerated solvents, which is typical for naphthalene derivatives and is associated with their long 

fluorescence lifetime (120 ns for solution of naphthalene in cyclohexane and 77 ns for solution of 1-

methylnaphthalene in n-hexane) and corresponding fluorescence quenching by oxygen.
79

 

2.3. Results of modeling  

To determine what types of intramolecular complexes are possible for the synthesized 

compounds, we performed theoretical modeling. Structures of molecules and complexes in the 

ground electronic states were calculated by the DFT method with the PBE functional and the def2-

SVP basis set with the dispersion correction. More complete description of the calculation method is 

given in the Supplementary Information. 

Two structures (Mono-Naph-1 and Mono-Naph-2) of the dimer were optimized for Mono-

Naph (Figure 2). In the ground electronic state, naphthalene fragments are shifted, whereas for the 

excited state the structures exhibit exactly face-to-face arrangement. Mono-Naph-2 was found more 

favorable than structure Mono-Naph-1 by 4.9 and 2.3 kcal/mol for the ground and excited states, 

respectively. 

Different structures were obtained for the Di-Naph molecule including the open structure (Di-

Naph-1) and several structures that can be considered as intramolecular complexes (Di-Naph-2, Di-

Naph-3 and Di-Naph-4) including the stacked structure Di-Naph-4 (Figure 3). In the latter structure, 

naphthalene fragments are shifted in the ground state and exhibit exact face-to-face arrangement in 

the excited state (Figure 4). The intramolecular structure is more favorable than the open one by 10–

12 kcal/mol for the ground state. For the excited state, the exact face-to face structure Di-Naph-ftf-

ES is more favorable than the shifted structure Di-Naph-sh-ES by 4 kcal/mol. 
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                       Mono-Naph-1-GS                                                   Mono-Naph-1-ES 

               

                        Mono-Naph-2-GS                                                 Mono-Naph-2-ES    

Figure 2. Calculated equilibrium structures of Mono-Naph dimers in the ground (GS) and excited 

(ES) electronic states. 

              

       Di-Naph-1-GS          Di-Naph-2-GS 

                  

                   Di-Naph-3-GS                                   Di-Naph-4-GS 
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Figure 3. Calculated equilibrium structures of Di-Naph in the ground (GS) electronic state. 

               

             Di-Naph-sh-ES              Di-Naph-ftf-ES 

Figure 4. Calculated equilibrium structures of Di-Naph in the excited (ES) electronic state. 

It was failed to obtain an “open” structure for Tetra-Naph. The naphthalene fragments stack 

together in the course of geometry optimization for all of tested initial configuration. Some 

optimized structures are shown in Figure 5, including structure Tetra-Naph-3-GS with two pairs of 

stacked naphthalene fragments. The stacked structure is the most favorable, structures Tetra-Naph-

1-GS and Tetra-Naph-2-GS are higher in energy by 6.6 and 1.6 kcal/mol. It should be emphasized 

that a unique feature of Tetra-Naph is the possibility of the simultaneous formation of two pairs of 

dimers or a trimer cluster from naphthalene molecules. Obviously, these preformed face-to-face 

conformations can promote the formation excimers through π-π-staking interactions, provided that 

they are sufficiently close to each other. The calculated average equilibrium distance between 

naphthalene molecules in these ground-state dimer complexes is 3.8-4.0 Å. This distance decreases 

up to 3.0-3.2 Å after formation of corresponding excimers according to calculations. 

To calculate the emission spectrum (position of the emission band), it was necessary to reduce 

the size of the molecule. Towards this, two of the propylnaphthalene fragments were removed 

retaining only one stacked pair and all phenyl fragments replacing them with hydrogens. The 

structures of truncated (tr) molecules were optimized for the first excited state (Figure 6). In 

structure Tetra-Naph-3tr-ES, the naphthalene fragments assumed the exact face-to face 

arrangement, whereas in structure Tetra-Naph-2tr-ES, the fragments were shifted with respect to 

each other. Calculated fluorescence spectra (wavelengths of emission maxima) for all of the 

considered systems are presented in Table 2. For all of the systems (naphthalene excimer, Mono-

Naph dimer, Di-Naph, and Tetra-Naph), where two naphthalene fragments assume face-to face 

arrangement, the calculated emission wavelength is in the range 425–437 nm. 
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            Tetra-Naph-1-GS                                    Tetra-Naph-2-GS   

 

                                             Tetra-Naph-3-GS 

Figure 5. Calculated equilibrium structures of Tetra-Naph in the ground (GS) electronic state. 
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            Tetra-Naph-2tr-ES        Tetra-Naph-3tr-ES 

Figure 6. Calculated equilibrium structures of truncated Tetra-Naph molecule in the first excited 

(ES) electronic state. 

Table 2. Calculated positions of emission bands for Mono-, Di- and Tetra-Naph. 

System 
λ 

(nm) 

E 

(eV) 

Naphthalene 287 4.32 

Naphthalene excimer 437 2.84 

Mono-Naph 294 4.22 

Mono-Naph-1-ES 429 2.89 

Mono-Naph-2-ES 425 2.92 

Di-Naph-sh-ES 316 3.93 

Di-Naph-ftf-ES 437 2.84 

Tetra-Naph-2tr-ES 329 3.77 

Tetra-Naph-3tr-ES 428 2.90 

2.4. Study of excimer formation 

To assess the presence of intramolecular excimers in dilute solutions of Di- and Tetra-Naph in 

cyclohexane, dichloromethane, ethanol and DMSO, correspond fluorescence spectra were compared 

with fluorescence spectra of Mono-Naph measured in the same solvents (Figure S31). Then, using 

equation (1), which is as a rule used for this purpose, the ratio excimer/monomer was found.
80

  

                                                   Iex/Im=(Iex400-IMono-Naph400)/Inorm                                                                                                

(1) 
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where Iex is the intensity of excimer emission; Im denotes the intensity of monomer emission; Iex400 is 

the intensity at 400 nm in normalized emission spectra of Di- and Tetra-Naph (400 nm was 

selected as the wavelength close to the excimer emission maximum); IMono-Naph400 denotes intensity 

at 400 nm in normalized emission spectra of Mono-Naph; Inorm is the intensity used for 

normalization of emission spectra at the maximum. 

Table 3. Iex/Im ratio in Di-Naph and Tetra-Naph in various solvents with c = 3.3-6.5 × 10
-6

 M.  

Compound Solvent Iex/Im 

Di-Naph 

Cyclohexane 0.02 

Dichloromethane 0.02 

Ethanol 0.03 

DMSO 0.01 

Tetra-Naph 

Cyclohexane 0.03 

Dichloromethane 0.02 

Ethanol 0.03 

DMSO 0.03 
The spectra were normalized: in cyclohexane at 328 nm, in dichloromethane at 337 nm, in ethanol at 338 nm, in DMSO 

at 337 nm. Excimer intensity was measured at 400 nm. 

The obtained data presented in Figure S31 and Table 3 show that Di- and Tetra-Naph can form 

subtle excimers with Iex/Im ratio in the range of 0.01-0.03 in dilute solutions at room temperature.  

It should be noted that these results differ from the data reported by Bravo et al.,
81

 for the 

formation of intramolecular excimers in naphthalene-attached isomeric pure cyclohexane 

derivatives. The authors also found that the conformation of the compounds plays a crucial role in 

the formation of intramolecular excimers. 

Fluorescence lifetime measurements were performed for Tetra-Naph and Di-Naph in DMSO at 

emission maxima wavelength (Supporting information Figures S16-S17 and Tables S1-S3). The 

fluorescence decay curve obtained for Di-Naph is in good agreement with the mono-exponential 

model with a lifetime of 37.2 ns. Using the bi-exponential model, two lifetimes will be obtained 

equal to 36 and 80 ns, with a relative contribution of the second component to the total intensity 

equal to approximately 3%. This value is comparable to the contribution of excimer radiation to the 

total intensity obtained from the analysis of steady-state fluorescence spectra, and thus a small 

fraction of excimers can exist in dilute Di-Naph solutions. 

In the case of Tetra-Naph, the fluorescence decay cannot be described by mono-exponential 

model. Two lifetimes were obtained, 29.1 ns and 45 ns, with a relative contribution of 54% and 

46%, respectively. These results clearly indicate the formation of an excimer in the case of Tetra-
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Naph, although its contribution to the fluorescence spectra seems to be rather small. To test this 

assumption, ten fluorescence decay curves were measured at different wavelengths. The global 

fitting procedure shows that the data obtained can be significantly well described by two exponents 

with lifetimes of 24 ns and 40.9 ns with wavelength-dependent contributions (Supporting 

Information, Figures S18- S20 and Tables S4-S5). These results are in good agreement with the 

model of kinetics of excimer formation described by Birks.
82

 

Practical absence of excimers in dilute organic solutions of Tetra-Naph and Di-Naph is not 

unexpected. The relatively weak dispersion interaction is known to be the primary cause of 

attraction in the naphthalene dimers.
83

 Note that polar DBMBF2 derivative connected by the same 

spacer as in Di-Naph exhibits spectrum characteristic of intramolecular excimer.
73

   

Figure 7 shows the fluorescence spectra of Mono-, Di- and Tetra-Naph in films. As seen, their 

solid-state emission spectra consist of monomeric (minor) and excimeric (main) components. These 

results are very similar to those obtained for 1-methylnaphthalene.
84
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Figure 7. Normalized fluorescence spectra of Mono-Naph, Di-Naph and Tetra-Naph in the solid 

state (λex = 270 nm). 

In recent years, binary mixtures containing water and polar organic molecules such as THF and 

DMSO have been widely used as solvents in many experiments, particularly, in studies of 

aggregation-induced fluorescence. Such mixtures exhibit composition-dependent properties in bulk 

which deviate significantly from the ideal behavior as a result of microscopic heterogeneity and 

liquid–liquid phase separation. The heterogeneity results from a delicate balance of intermolecular 
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interaction between different components. For example, mixing of THF and water leads to 

formation of nanodroplets, which are highly enriched in THF molecules.
85

 Dissolved molecules may 

be localized in either of the two liquid phases or the interface. Molecular dynamics simulations 

predict, for instance, that in DMSO-water mixtures, the highly polar formamide should preferably 

be surrounded by water, while the less polar dimethylformamide is surrounded by DMSO.
86

 Cheng 

et al. reported that the presence of a trace amount of a hydrophobic compound in THF-water 

mixtures results in the formation of core-shell structures with a core made from the compound and a 

shell made from THF-rich aqueous mixture.
87

 

Thus, it can be assumed that Mono-, Di- and Tetra-Naph, consisting of hydrophobic 

naphthalene molecules and hydrophobic linkers, will tend to form relatively large solute–THF or 

solute–DMSO clusters in such solvents. With increasing the water content of the solvent mixtures, 

THF or DMSO molecules can be gradually displaced by water in the solvation shells of such 

solutes. As a consequence, this should lead to a compression of the DMSO-rich solvation shells and 

a closer arrangement of the terminal naphthyl groups, which should facilitate the formation of 

complexes between them. 

To check whether Tetra-Naph exhibits solvent-controlled emission properties, the changes in its 

fluorescence spectrum were recorded using THF-water and DMSO–water mixtures with different 

water fractions. In both cases, new emission appears in the region of 350-450 nm, which is 

characteristic of naphthalene excimer (Figure 8). The intensity of the excimer fluorescence increases 

with increasing water content from 0 to 90 vol. % and this effect is much more pronounced in the 

case of DMSO. 
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Figure 8. Normalized fluorescence spectra of Tetra-Naph in THF-water and DMSO-water 

mixtures with different water contents (c ≈ 10
-6

 M, λex = 270 nm). 
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Figure 9. Normalized fluorescence spectra of Mono-Naph (a), Di-Naph (b) and Tetra-Naph (c) in 

pure DMSO and DMSO:water mixtures with different water contents at room temperature (c ≈ 10
-6

 

M, λex = 270 nm) and corresponding normalized excitation spectra of Mono-Naph (d), Di-Naph (e) 

and Tetra-Naph (f) recorded at various wavelengths of emission in DMSO:water mixture (10:90 

(Mono-Naph, Di-Naph) and 20:80 (Tetra-Naph). In the case of emission, all spectra were 

normalized by short-wavelength maximum. 
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Table 4. Iex/Im ratio in Mono-Naph, Di-Naph and Tetra-Naph solutions in mixtures DMSO:water 

with different ratio at room temperature with c ≈ 10
-6

 M.  

Compound 
DMSO:water 

mixture 
Iex/Im 

Mono-Naph 

100 : 0 0 

90 : 10 0 

80 : 20 0 

70 : 30 0 

60 : 40 0.02 

50 : 50 0.14 

40 : 60 0.64 

30 : 70 1.10 

20 : 80 1.30 

10 : 90 1.67 

Di-Naph 

100 : 0 0.02 

90 : 10 0.02 

80 : 20 0.02 

70 : 30 0.04 

60 : 40 1.12 

50 : 50 0.99 

40 : 60 1.20 

30 : 70 1.50 

20 : 80 1.70 

10 : 90 1.98 

Tetra-Naph 

100 : 0 0.03 

90 : 10 0.03 

80 : 20 0.30 

70 : 30 0.53 

60 : 40 0.67 

50 : 50 0.78 

40 : 60 0.82 

30 : 70 0.92 

20 : 80 0.94 

10 : 90 0.95 
All spectra were normalized by short-wavelength maximum. Excimer intensity was measured at 400 nm. 

Figure 9 shows fluorescence spectra of Mono-, Di-, and Tetra-Naph in the DMSO:water 

mixture with ratios  from 100:0 to 10:90 (λex = 270 nm) normalized at short-wavelength maximum. 

As can be seen from Figure 9, there is notable excimer existence in DMSO:water mixtures already 
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with ratios 50:50 (Mono-Naph), 60:40 (Di-Naph) and 80:20 (Tetra-Naph). Moreover, in the case 

of Mono- and Di-Naph, the excimer fluorescence maxima are shifted in the short-wavelength 

region and are located at 375 nm. It should be noted that fluorescence spectra measured from 

solutions of Mono-, Di- and Tetra-Naph in DMSO:water mixture with 90 vol% water content are 

very similar to the fluorescence spectra of these compounds in the solid state (Figure 7). Excitation 

spectra of of Mono-, Di- and Tetra-Naph obtained by monitoring at various emission wavelengths 

are almost identical that suggests the dynamic nature of the formation of intramolecular excimers 

(Figure 9). In addition, a twofold dilution of the Tetra-Naph solution only leads to decreasing in the 

total fluorescence intensity, which confirms the assumption of the intramolecular nature of its 

excimers (Figure S32). Using formula (1) the ratios Iex/Im for Mono-, Di-, and Tetra-Naph in the 

mixture DMSO:water with various proportions of solvents were calculated and summarized in Table 

4 and Figure S33. 
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Figure 10. Fluorescence spectra of Mono-Naph (a), Di-Naph (b) and Tetra-Naph (c) in the 

mixture DMSO:water (10:90) at different temperatures (λex = 270 nm) with c= ≈ 10
-6

 M. 

 

Table 5. Iex/Im ratio in Mono-Naph, Di-Naph and Tetra-Naph solutions in the mixture 

DMSO:water (10:90) at different temperature with c ≈ 10
-6

 M.  

Compound 
Temperature 

(°C) 
Iex/Im 

Difference between 

Iex/Im at 20 and 70 °C 

Mono-Naph 

20 1.50 

0.58 

25 1.36 

30 1.29 

35 1.26 

40 1.28 

50 1.19 

60 1.08 

70 0.92 

Di-Naph 

20 1.90 

0.49 

25 1.73 

30 1.71 

35 1.74 

40 1.73 

50 1.64 

60 1.53 

70 1.41 

Tetra-Naph 

20 0.88 

0.30 

25 0.85 

30 0.81 

35 0.77 

40 0.73 

50 0.67 

60 0.61 

70 0.58 

Fluorescence decay curves obtained for Tetra-Naph and Di-Naph in 10:90 DMSO:water  (v:v) 

mixtures at wavelengths corresponding to fluorescence maxima can be fitted only by 

multiexponential models.  To get detailed information about exact number of exponents required to 

describe observed decays, data were collected at ten wavelengths and global fitting was performed. 

The details can be found in the Supporting Information (Figures S21-S30 and Table S6-S9). In the 
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case of Di-Naph, three exponents are essential to describe obtained data. Four exponents are needed 

for Tetra-Naph for the good agreement. The multiexponential character of decay curves indicates 

complex interaction of fluorophores in the ground and excited states in DMSO:water mixtures 

which can be attributed to formation of dimers and  high order aggregates and their rearrangements 

after excitation. 

The influence of temperature on the efficiency of excimer formation was investigated and the 

results are presented in Figure 10. For this purpose, the fluorescence spectra for solutions of Mono-, 

Di-, and Tetra-Naph in the DMSO:water mixture with water content 90 vol% were measured at 

various temperatures from 20 to 70 °C. As can be seen from Figure 10, Mono-, Di- and Tetra-Naph 

show a decrease in the excimer fraction as well as in general fluorescence intensity with an increase 

in temperature. Iex/Im ratios in Mono-, Di- and Tetra-Naph solutions in the mixture DMSO:water 

(10:90) at different temperature were calculated using formula (1) and summarized in Table 5 and 

Figure S34. The observed temperature dependences are typical for aryl excimers in solutions and are 

considered as a consequence of thermal dissociation of excimers. However, the decay of pre-

excimers can also lead to the same dependence, especially since their binding energy is much lower. 

Assessing the contribution of both of these processes requires further study. 

3. Conclusion 

We have synthesized three new naphthalene derivatives based on siloxane matrices of linear and 

cyclic structures. In neat solvents, such as cyclohexane, dichloromethane, ethanol and DMSO, these 

compounds, which contain one, two or four naphthalene units, respectively, exhibit the absorption 

and fluorescence spectra characteristic of the naphthalene monomer. However, in the THF-water 

and DMSO-water mixtures, their emission spectra consist of both monomer and excimer bands due 

to formation of intermolecular or intramolecular excimers. The time-resolved emission data confirm 

the existence of excimers in solutions of Di- and Tetra-Naph. The position and intensity of the 

intramolecular excimer emission depend on the number of naphthalene units, solvent composition 

and water content of binary mixtures. In all cases, the intensity of excimer emission decreases with 

increasing temperature from 20 C to 70 C. Molecular modeling reveals that intramolecular 

complexes of the pre-excimer type can be formed in the derivative consisting of four naphthalene 

monomers. 

Experimental Section 
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Experimental details, 
1
H, 

13
C, 

29
Si NMR and IR spectroscopic data for all compounds are given 

in the supporting information. 
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