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 Abstract: The formation of aryl-alkyl ether bonds through cross 
coupling of alcohols with aryl halides represents a useful strategic 
departure from classical SN2 methods. Numerous tactics relying on 
Pd-, Cu-, and Ni-based catalytic systems have emerged over the past 
several years. Herein we disclose a Ni-catalyzed electrochemically 
driven protocol to achieve this useful transformation with a broad 
substrate scope in an operationally simple way. This electrochemical 
method does not require strong base, exogenous expensive transition 
metal catalysts (e.g. Ir, Ru), and can easily be scaled up in either a 
batch or flow setting. Interestingly, e-etherification exhibits an 
enhanced substrate scope over the mechanistically related 
photochemical variant as it tolerates tertiary amine functional groups 
in the alcohol nucleophile. 

 Aryl-alkyl ether bond construction is one of the most often-
employed transformations in the pharmaceutical industry.[1] Such 
linkages are often forged using classical substitution chemistry 
such as SN2 displacement represented by Williamson ether 
synthesis[2] and Mitsunobu reaction[3] or nucleophilic aromatic 
substitution.[4] The synthesis of BET inhibitor intermediate 1 
(Figure 1) is emblematic of this approach wherein a phenol 4 is 
alkylated with an alkyl halide 3, followed by the second alkylation 
to attach the piperazine unit 2 and Miyaura borylation for installing 
the requisite C-B bond.[5] Although the approach is quite 
straightforward, step-count and overall yield are not satisfactory. 
The explosive success of transition-metal catalyzed N-arylation 
methods [6] has inspired the invention of mild methods for an 
analogous union of alcohols and aryl halides [7] by using Pd,[8] 
Cu,[9] and Ni[10-15] catalysis. This coupling strategy is an attractive 
alternative to classic SN2-based retrosynthesis; the aryl halide 
building blocks are often easier to access, and the conditions 
employed can sometimes be more chemoselective. Continuing 
with this case study, the coupling approach (Figure 1) requires 
building blocks 5 and 6, which are both commercially available. 
However, the key C-O bond formation was found to be 
challenging even under the latest state-of-the-art conditions. For 
example, catalytic reactions based on Pd (conditions A[8i] and 

B[8h]) and Cu (conditions C[9n] and D[9o]) in combination with 
recently described ligands struggled to forge the C-O bond. 
Methods based on Ni such as conditions E[13] and photochemical 
conditions F[11a] also failed to deliver 1 presumably due to their 

Figure 1. Comparison between SN2-based strategies and coupling approach in 
the synthesis of BET inhibitor intermediate 1. Whereas the SN2 approach suffers 
from low overall yield and known methods (A-F) for ether cross coupling fail, e-
etherification proceeds smoothly. The yields shown in conditions A-H are crude 
1H-NMR yields. 
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incompatibility with the tertiary amine motif, which is ubiquitous in 
pharmaceutical molecules. This study reports the development of 
a Ni-catalyzed electrochemical etherification (e-etherification) that 
can succeed in this demanding context (conditions G) without 
recourse to specialized experimental setups (e.g. electrolysis with 
sinusoidal AC current,14 conditions H) or expensive metals and 
ligands. This electrochemical method exhibits a broad substrate 
scope, high chemoselectivity, and represents an economically 
viable and sustainable means to conduct such etherification 
reactions on scale. 
 
 The development and optimization of the Ni-catalyzed aryl 
halide etherification commenced with the lessons learned during 
studies on the analogous e-amination reaction,[16] and employed 
bromoarene 7 and cyclopentanol 8 to access ether 9 (Figure 2). 
Prior detailed mechanistic and optimization studies for e-
amination pointed to the importance of the ligand/Ni ratio, the use 
of DBU as a base, and nBu4NBr as the electrolyte. In the case of 
etherification, those variables proved critical; however the 
maximum yield obtained using those conditions was only 10% 
yield. Remarkably, by simply changing the ligand from L5 to L7 
and adding 3Å molecular sieves the yield improved to 62%. 
Control experiments reinforced several important aspects of this 
reaction. First, electricity is necessary for the reaction to proceed 
(shutting off electrical current immediately halts the reaction). 
Second, the Ni-catalyst is playing a crucial role for the product 
formation under basic conditions as the omission of Ni or DBU 
resulted in no ether formation. Third, replacement of electricity 
with a chemical reductant (Zn powder) resulted in no product 
formation. These results are consistent with chemical,[17-18] 
photochemical,[11a,11c,19-21] and electrochemical[16b] mechanistic 
studies, consistent with the Ni-catalytic cycle being driven in a 
paired electrolysis fashion,[16,22] requiring both oxidation and 
reduction. Although it was recently found that sinusoidal AC 
current may improve yield in such Ni-catalyzed electrochemical 
coupling,14 this method was not applicable in our case as the 
optimal anode and cathode are made of different material. 
Exclusion of air by using a simple Ar-balloon is sufficient to 
efficiently perform this reaction, and no laborious procedures for 
degassing (or a glovebox) are needed. As described below, 
during scale-up a modified procedure can be used in flow that 
does tolerate air. DMA and NMP were found to be ideal solvents 
as they render reactions good solubility and have high 
conductivity. Finally, the use of a Ni-L7 precatalyst, NiCl2(dtbbpy)3, 
improved the operational simplicity of the reaction without any 
reduction in yield (64%). This readily prepared, bench-stable, and 
non-hygroscopic Ni-precatalyst (see SI for preparation) was 
utilized for the remainder of these studies. 
 

Table 1 provides a snapshot of the broad scope of e-
etherification with 41 out of >80 examples shown (see SI for full 
scope and limitations). The use of a relatively mild organic base 
DBU and room temperature conditions enabled a range of 
functional groups to be tolerated. For example, reductively labile 
C-X bonds (X = Br, Cl, F) and fluoroethers (10-22, 39, 40, 41, 47 
48), ester (49) and ketones (42, 50) were well tolerated. Even an 
aromatic aldehyde (43) was compatible in this reaction. Of note, 
only small amount of di-etherification product was observed when 
1,4-dibromobenzene was used as the starting material due to 
much lower reactivity of 16 to low-valent Ni species. In addition, 
oxidatively labile groups such as 3º amines (26), electron-rich 

arenes (23, 24) as well as heterocycles (27-33, 45, 46), and C-B 
bond (38, 41-50) were found intact. Sensitive or polar (N-H 
containing) motifs such as carbamates (18, 27, 31-33), Lewis-
basic heterocycles (34, 35, 40, 44), amides (25, 26) and ketals 
(28, 37, 49) showed no complications under the reaction 
conditions. Regarding the scope of alcohol coupling partner, both 
primary and secondary alcohol were compatible whereas tertiary 
alcohols were found to be inefficient. The efficient coupling of 
nucleosides and polyfunctionalized fragments is also notable (36-
37). Taken together, this e-etherification method provides an easy 
access to small molecules and building blocks for pharmaceutical 
drug discovery efforts. 

 

Figure 2. Effects of various reaction parameters. Yields determined by gas 
chromatography. 
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 Table 2 illustrates the synthesis of known ether products 
wherein conventional strategies were used in prior routes and 
also compares the e-etherification with known Cu, Pd, and Ir/Ni-
based methods. The room temperature conditions of e-

etherification avoids the use of highly basic metal alkoxides or 
insoluble inorganic bases, does not require rigorous 
deoxygenation procedures (simple air/argon exchange), and 
deletes precious metal catalysts. With regards to the prior routes 

Table 1. Selected scope of aryl bromides and alcohols (See SI for the full scope). All yields are isolated yields. [a] Using 6 equiv. of alcohol. 
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to access such valuable intermediates, a strong reliance on SN2 
and Mitsunobu chemistry along with Miyaura borylation leads to 
lengthy and low yielding routes. In the case of oxetane-containing 
structures such as 54 and 56, recourse to oxetane ring synthesis 
after ether bond formation is required (See SI for full summary of 
all past routes). Most notably, e-etherification succeeded in 
delivering ether products even with substrates on which 
analogous photochemical conditions did not work (65-67, 26), 
demonstrating broader substrate scope that can be achieved by 
the electrochemical means. The unique success of e-
etherification in such instances despite having mechanistic 
similarities to the photochemical variant might be ascribed to the 
more strongly oxidizing conditions that favor reoxidation of Ni(II) 
to Ni(III) versus tertiary amine oxidation.  
 

In addition to superior functional group tolerance to other 
methods, another important advantage of the current method 
stems from the ease with which scale-up can be accomplished. 

As depicted in Figure 3, the reaction conditions can be used for 
batch preparation of 69, a valuable building block for drug 
discovery using a commercial potentiostat from 2 mmol to 60 
mmol. Most significantly, adaptation to flow carries several salient 
advantages as exemplified for the decagram synthesis of ether 
71. These include: (1) the use of simple inexpensive carbon felt 
electrodes; (2) no precautions to remove air; and (3) no need for 
exclusion of water using molecular sieves. As such, a 100 mmol 
run on aryl bromide 70 can be completed in only 16 hours to 
deliver 70% isolated yield of 71. Furthermore it is possible to 
reduce the amount of the electrolyte to substoichiometric quantity 
(0.75 equiv.) if needed (See Supporting Information for details).    
 
 In conclusion, an electrochemical method for the 
etherification of aryl bromides has been developed that exhibits a 
broad substrate scope tolerating numerous sensitive 
functionalities. To the best of our knowledge, this work exhibits 
the widest substrate scope among all the related methods 
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published thus far. It offers a useful alternative to classic SN2-
based methods for ether synthesis, and represents a practical, 
scalable, and inexpensive gateway to such structures that does 
not rely on precious metal additives or complex ligands. 
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