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Carbenes in Constrained Systems. 4:  
Encapsulation of an Asymmetric Diazirine: 

Reactivity of 2-Methylcyclohexanylidene 
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Abstract: 2-Methyleyclohexanylidene was generated from the corresponding diazirine within the cavities 
of ct-, 13- and y-cyclodextnn by photolysis in the solid state. To surmise how these constrained systems 
affect the residing carbene's selectivity, a comparison with conventional reaction methods was made 
Copyright © 1996 Elsevier Science Ltd 

Carbenes are highly reactive intermediates that often frustrate efforts to steer which reaction pathway they 

follow. Thus, it is difficult to eonlrol which intramolecularly-derived isomer the carbene will prefer to rearrange 

to.' Furthermore, azine formation is always a pertinent option for a freely diffusing carbene or azi-/diazo- 

precursor)  
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Scheme 1. Some intra- and intermolecular reactions of  2-methylcyclohexanylidene (2). 

We have shown, 3 however, the ability of  molecular host media to alter the selectivity of  carbenes. Not only can 

intermoleeular  azine formation be suppressed but certain intramolecular C-H insertions can be enhanced by 
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factors up to 900 times. 3b 
We now extend our pursuit and attempt to control the intramolecular 1,2-hydride shift in carbenes. This 

might seem improbable, considering recent evidence for a quantum mechanical (QM) tunneling mechanism for 
this process? However, we hypothesized that a misalignment of the involved molecular orbitals (MOs) in the 
rearrangements, effected by cyclodextrin (CD) hosts, might reduce orbital overlap and lead to altered selectivities. 

Scheme 1 shows s the transformations that asymmetric 2-methylcyclohexanylidene (2) can undergo. Most 

noteworthy is the choice between formation of 1-methylcyclohexene (3) and 3-methylcyclohexene (4). 
4-Methyl- l ,2-diazaspi ro[2 .5]oct -  1-ene (1) 6 Was prepared from the corresponding ketone via the Schmitz 

reaction 7 and subsequent oxidation with a Ag:O/ether suspension. Photolyses of 1 in solution or in the solid state, 

with a 450-W Hg-arc lamp, were performed for an average of 3h. Typical solution photolyses were conducted by 
vortexing a 2.5-mL argon-purged solution in a test tube equipped with a rubber septum and a syringe. The results 
of solution photolyses are shown in Table 1 (see entries 3-6). The solutions turned peach-colored for a few hours 

during photolysis. We ascribe this to the formation of the linear diazo compound 8 (IR: (n-CsH~2) ~=2025cm j 

(C=N=N); UV: (n-CsHt2) ~,= 492 nm), a valence isomer of 1. 
Carbene 2 can also be generated from the corresponding tosylhydrazone sodium salt via the Bamford- 

Stevens reaction) The gas phase results are also included in the Table (see entry 2) as are the results of Wilt and 

Wagner ~ (see entry 1). 

Table 1. Effect of Reaction Medium on Selectivity of4-Methyl-l,2-diazaspiro[2.5]oct-l-ene (1). a 

Relative % of." 3 4 3:4 5 6 7 
Methods: 

1) b 180°C (NIk, tP) sb 63 27 2.3 

2) ~ 250°C (5 torr) 78 22 3.6 
3) 0.1M n-C~Hiz 45 21 2.1 
4) 0.5M n-CsH12 25 11 2.2 
5) 0.1MMeOH 43 24 1.8 
6) 0.5M MeOH 42 23 1.8 
7) c¢-CD 72 28 2.6 
8) 13-CD 66 34 1.9 
9) y-CD 62 30 2.1 

trace 

34 
64 

33 c 
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a error = +3% 
b tosylhydrazone sodium salt 
c 1 -methoxy-2-methylcyclohexane 

Typical procedure for the preparation of I@CDs: a 1.5-mmol aliquot of 1 from a known (by ~H NMR) 
concentrated pentane solution was injected into a rapidly stirring 90% saturated aqueous solution of the 
appropriate CD (1.5 mmol). The white precipitate was vacuum-filtered and washed with small amounts of water, 
dried overnight in a desiccator and then weighed. Guest:host ratios were determined by ~H NMR spectroscopy 
(DMSO-d~ and were used to calculate absolute yields. 9 These were 50% (I@c~-CD), 57% (I@[3-CD) and 69% 

(1 @y-CD) and may reflect the increasing cavity sizes of the hosts. Solid state photolyses were carried out by 

vortexing 200 mg of I@CD in an argon-purged 10-mL Edenmeyer flask (Pyrex) equipped with a rubber septum 
and a syringe. After 2h no more I was present by NMR nor by GC analysis. The complexes were dissolved in ca. 1 

mL of  DMSO (or DMSO-d6) and the products were then extracted with ca. 0.5 m L  of pentane and dried over 
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(NH4)2SO 4. GC proved to be more accurate for analysis than ~H NIvlR. 
In contrast to all other reaction conditions, trace amounts of norearane 5 are produced only by the 

thermal Bamford-Stevens method in solution. ~ Formation of 2-methylcyclohexanune azine (6) is inhibited in 

MeOH, due to the diazo compound's 8 short lifetime in protic media?" This same inhibition is seen with cto 
and 13-CD and can be attributed either to their hydroxy moieties and/or their supramolecular capabilities. Note 
that small amounts of  6 were formed in y-CD since two molecules of I could be associated with the larger y- 
CD. 
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Figure 1. Generation of  two conformeric isomers ofcarbene 2 from an equilibrated 1. 

Statistically, the rate of formation of alkene 4 should be twice that of alkene 3. This, however, is not the 
ease, due to unequal reactivities oftbe migrating hydrides. For the corresponding carbocation 9, Saytzeff's rule 
predominates, leading to a ratio of 3:4 of about 5.4. t0 This rule is less stringent for the intractable earbene 2 and 
ratios of about 1.8-3.6 were observed (see Table 1). In methanol (see entries 5,6), however, considerable amounts 
of ether 7 (X = OCHs) are formed. This may derive either from protonation of 1 and/or 8 to give carboeation 9, 
which picks up methanol, or from insertion of carbene 2 into the O-H bond of methanol." Because of this 
additional complication, the ratios of 3:4 are obscured. The tight fit o fa  cyclodextrin cavity might disfavor the 
equatorial preference of the methyl group in 1. As depicted in Fig. 1, should the methyl group in 1 be forced to 
adopt an axial conformation, the hydrogen at C-2 would assume an equatorial position. The misalignment of the 
filled MO of the C-H bond (HOMO) with the empty orbital (LUlVlO) at the carbene center would necessarily 
reduce orbital overlap and concomitantly suppress the formation of 3. Of course, the conformation of 2@CD 
must resemble that of I@CD, and also the classical energy barrier to a 1,2-hydride shift cannot be undermined 
by ultrafast QM tunneling This is important because it has been shown for a divalent carbon in a rigid molecule ~2 
that the photolytic I-I~/I-I~ migration preference is 1.2, assuming no QM tunneling. 

it should be noted, from Figs. 1 and 2, that an axially positioned methyl group would be more susceptible 
to a 1,3-C-H insertion. This axial conformer mimics that of the scaffolded adamantanylidane (10) which cannot 
undergo the competing 1,2-hydride migration to afford adamantene. Instead, 10 has been shown to have an up 
to 900 times enhanced 1,3-C-H insertion capability to afford 2,4-dehydroadamantane (11) within supramolecular 
complexes. 3~b Thus, should conformational control over 1 inside CD cavities be achieved, not only would 
production of the less-snhstituted alkene 4 be enhanced, but also the product of 1,3-C-H insertion, norcarane 5, 
should proliferate. 

Table 1 also shows that the ratio of 3"4 is only slightly affected by solid state supramolecular photolysis 
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Figure 2. Analogy of 1,3-C-H insertion for adamantanylidene. 

of I@CDs, compared to conventional methods. This is either because 1) the conformation of 1 inside the CDs 
is the same as in conventional media or 2) that the ring flipped axial methyl conformer 2 ,,is predominant but the 
reaction coordinate for the QM tunneling process is independent of the torsion angle of the involved MOs in the 
rearrangement. However, the absence of norcarane 5 rules out the second conclusion in favor of the first one, 
according to the aforementioned analogy. Finally, the lack of enhanced production of 5 is another testimony for 
the crucial need for optimal orbital alignment in carbene insertion reactions. 

CAS Registry Number®: 4-Methyl-1,2-diazaspiro[2.5]oet- l-ene [14359-89-8] 
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§ Carbene Rearrangements, 45 (Carbene Rearrangements in Constrained Systems, 4); for part 44 (part 3) see re£ 3~ 
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