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Metronidazole thiosalicylate conjugates were synthesized and crystallised in order to discover new mol-
ecules having better efficacy than therapeutically administered drug metronidazole, used against Ent-
amoeba histolytica. The three compounds (4–6) showed lower IC50 values than metronidazole on
HM1:IMSS strain of E. histolytica and displayed low cytotoxicity on MCF-7 cell line. In order to get an
insight into the mechanisms of action of these compounds, a homology model of E. histolytica thioredoxin
reductase (EhTHRase) was constructed and molecular docking was performed into the binding pocket to
identify the nature of interactions. The docking studies suggest that the improved inhibitory activity of
the newly synthesised metronidazole analogues could be due to involvement of the additional hydropho-
bic interactions in the binding mode. The result of the present study indicates the molecular fragments
that play an essential role in improving the antiamoebic activity.

� 2012 Elsevier Ltd. All rights reserved.
N

N
NO2

N

N

S
O

NO2 N

N

Cl

NO2
Invasive amoebiasis is an emerging problem in the developed
East Asian countries men who had sex with men having co-infec-
tion of amoeba and HIV.1 It is well known that amoebeasis caused
by E. histolytica is transmitted by the ingestion of food or water
containing the cyst form of E. histolytica which is prevalent in trav-
elers and immigrants from endemic areas2 causing significant mor-
bidity and mortality.3 Incidence of this infection is further
increasing and now more than 50 million people are getting af-
fected causing 100,000 fatalities worldwide annually.4 Addition-
ally, the infection is not limited to amoebic dysentery but also
causes abscess in other body organs viz. liver4 and brain5 making
it more dreadful and life threatening.

5-Nitroimidazole based drugs have been a boon to human
beings for the treatment of infections caused by bacteria and a
range of pathogenic protozoan parasites since 60 years. Presently,
Metronidazole, Tinidazole and Ornidazole (Fig. 1) are the highly
recommended drugs for the treatment of anaerobic protozoan
infections.6 The activity of 5-nitroimidazole drugs is ascribed to
the reduction at the nitro group that results either in the formation
of single-electron transfer reduction products, nitro radical anions
or further reduced highly reactive intermediates, nitrosoimidazole
or hydroxylamineimiadazoles.7

This reduction can either occur by reduced ferrodoxin8 or by
thioredoxin reductase.9 The damage to the cells mainly occurs in
All rights reserved.
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m).
two ways either by oxidative stress10 or by the formation of ad-
ducts of non-protein thiol or protein with the intermediate metab-
olites (Fig. 2). Recently, in E. histolytica it has been proved that
thioredoxin reductase is a target for nitroimidazole bearing drugs.9

In addition to accepted therapeutic efficacy clinical resistance to
nitroimidazole based drugs has been observed and documented.11

Besides, in many cases concern regarding carcinogenicity of metro-
nidazole has also been raised.12 To combat this neglected disease
and minimize clinical resistance there is continuous need of
designing and developing new compounds endowed with better
activity and low toxicity. In recent years discovery of the novel hy-
brid molecules against protozoal diseases have displayed enhanced
biological activities.13 In view of this we have designed and synthe-
sized some novel thiosalicylate analogs of metronidazole having
different oxidation states of sulfur. Our interest in metronidazole
analogs as an alternative to antiamoebic treatment is facilitated
by the fact that not only metronidazole is effective but also side
OH O Cl
OrnidazoleTinidazoleMetronidazole

Figure 1. Antiprotozoal drugs Nitroimidazole core ring (red).
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Figure 2. Role of thioredoxin reductase in Nitroimidazole activation8–10.

Figure 3. Molecular structure of 2-(2-(2-methyl-5-nitro-1H-imidazol-1-yl) ethyl-
thio) benzoate (4), showing the atomic numbering scheme. The ORTEP plot is at 30%
probability level.
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chains attached to the imidazole ring structure provides an oppor-
tunity to carry out various modifications. Moreover, previously we
have reported that different metronidazole analogues exhibit sig-
nificant antiamoebic activity.14

The primary alcoholic group of metronidazole (1) was con-
verted to the chloro group with thionyl chloride giving the hydro-
chloride salt of 1-(2-chloroethyl)-2-methyl-5-nitro-imidazole (2).
Nucleophilic substitution of methyl thiosalicylate (3) produced
the thioether linked metronidazole analogue (4). The thioether
linkage was easily regioselectively oxidised to sulfoxide (5) by so-
dium metaperiodate and to sulfone (6) by metachloroperbenzoic
acid (Scheme 1).15

The compound 4 crystallizes in the orthorhombic system, with
P212121 space group, and the compound 5 in the triclinic system,
with P �1 space group (Fig. 3, Fig. 4 and Table 1 Supplementary
data).16 The angles C(1)–S(1)–C(9) were found to be 102.88(15)�
in 4 and 95.79(7)� in 5, and the angles O(3)–S(1)–C(1) and O(3)–
S(1)–C(9) were found to be 105.93(7)� and 103.63(7)�, respectively,
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Scheme 1. Synthesis of metronidazole-thiosalicylate c
in 5, all of them closer than S(sp3). These angles can have an expla-
nation for the presence of intramolecular non-bonded S� � �O inter-
action which appear in the crystalline structures of 4 and 5. The
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Figure 5. Relative in vitro antiamoebic activity.

Figure 6. Cytotoxicity assessment by MTT Assay.

Figure 4. Molecular structure of 2-(2-(2-methyl-5-nitro-1H-imidazol-1-yl) ethyl-
sulfinyl) benzoate (5), showing the atomic numbering scheme. The ORTEP plot is at
30% probability level.

Table 1
In vitro antiamoebic activity and cytotoxicity of compounds 4, 5, 6 and metronidazole
(MNZ)

Compound No. Antiamoebic activity HM1:IMSS Cytotoxicity MCF-7

IC50 (lM) S.D. IC50 (lM) S.D.
4 0.028 0.002 >250 0.27
5 0.015 0.002 >250 0.24
6 0.021 0.003 >250 0.21
MNZ 1.46 0.011 >250 0.32
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sum of the van der Waals radii for S–O is 3.25 Å. The non-bonded
S� � �O distances were found to be 2.760 Å, and 2.749 Å, respectively.
The quasi-rings adopt planar, conjugated five-membered struc-
tures, closed by the non-bonded sulfur and oxygen atoms. In 5,
s-cis–s-trans (synperiplanar-antiperiplanar) arrangement was
found around the C–C and C–S single bonds.17 The planarity of
the S(1), O(2), C(1), C(6) and C(7) moiety is better recognized in
the molecule of 5 than in 4 (mean deviations from planarity were
found to be, 0.1002 Å in 4, and 0.0532 Å in 5). Torsion angles for
S(1)–C(1)–C(6)–C(7) and C(1)–C(6)–C(7)–O(2) were found to be
7.3(4)� and 15.3(4)� in 4, and 6.2(2)� and 5.5(2)� in 5. This fairly
stable S� � �O close contact might play an important role in the
low cytotoxicity of these compounds.18 The planes containing ben-
zyl and imidazole rings form a dihedral angles of 29.47(14)� in 4,
and 72.07(6)� in 5. In the crystal packing of 5, the distance between
the centers of imidazole rings is 3.633 Å, which indicate the pres-
ence of p–p stacking interactions between them. In 4, p–p stacking
interactions appear between imidazole and benzene rings and the
distance between the centers of the rings is 3.585 Å.

Experiments were carried out to determine the in vitro anti-
amoebic activity of the three compounds (4–6) and MNZ by mic-
rodilution method using HM1:IMSS strain of E. histolytica.19,20 All
the experiments were carried out in triplicate at each concentra-
tion level and repeated thrice. The data is presented in terms of
percent growth inhibition relative to untreated controls and plot-
ted as probit values as a function of drug concentration. The anti-
amoebic effect was compared with the most widely used
antiamoebic medication metronidazole which had a 50% inhibi-
tory concentration (IC50) of 1.46 lM in our experiments. The Sulf-
oxide compound (5) was most active with IC50 = 0.015 lM. The
sulfone compound (6) showed less activity than the Sulfoxide
with IC50 = 0.021 lM. Among the three compounds the sulfide
(4) was least active with IC50 = 0.028 lM. The results are summa-
rized in Table 1.
All the thiosalicylate analogs evaluated for their antiamoebic
activity were relatively found more active than the standard drug
metronidazole. (Fig. 5)

To examine the effect of compounds 4, 5 and 6 as well as met-
ronidazole on cell proliferation, we studied their cytotoxicity on
human breast cancer MCF-7 cell line by MTT assay.21,22, A sub-
confluent population of MCF-7 cells was treated with increasing
concentrations of compounds and the number of viable cells was
measured after 48 h by MTT cell viability assay based on mitochon-
drial reduction of the yellow MTT tetrazolium dye to a highly blue
colored formazan product. This assay usually shows high correla-
tion with number of living cells and cell proliferation.

The concentration range for all the compounds (4, 5, 6 & MNZ)
is mentioned in Figure 6, which illustrates that all the compounds
and metronidazole were non toxic in the concentration range of
2.5–250 lM.

It was recently demonstrated by applying two-dimensional gel
electrophoresis and mass spectrometry that thioredoxin reductase
reduces metronidazole and other nitro compounds suggesting a
central role for this enzyme in the treatment of infections caused
by microaerophilic parasites, including E. histolytica.9 Therefore,
in order to offer insight into the mechanisms of action of the met-
ronidazole based analogs synthesized and crystallized (4, 5) we
undertook homology modeling of the amoebic enzyme and identi-
fied the interactions of inhibitors with the model.23,24 To build the
3D model of EhTHRase, a BLAST search was performed against the
Protein Data Bank and Yeast THRase (PDB code 3D8X) was selected
as the starting scaffold for model construction as it showed maxi-
mum homology (75%). The sequence alignment of the 3D8X with
EhTHRase sequence that was used for model construction is shown
in Figure 7.

Homology modeling was then carried out through Modeller
9v9.25 The final predicted structure was checked for main chain
conformation using PROCHECK,26 which showed that 92.3% of
the residues were in the ‘most favoured region’ and 7.7% in the
combined ‘allowed region’ as compared to 84.5% and 15.5%,
respectively for the template. No residue was found in the



Figure 7. Sequence alignment of EhTHRase with the template (Pdb id: 3D8X).
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disallowed region. The PROCHECK result summary also showed
only 5 of 307 residues labeled while the torsion angles of the side
chain designated by v1�v2 plots showed only 6 labeled residues
out of 167. Also, it is established that the score for G-factors should
be above �0.50 for a reliable model. We observed that the G-factor
scores of the model was 0.02 for dihedral bonds, �0.14 for covalent
bonds and �0.14 overall. The distribution of the main chain bond
lengths and bond angles was 99.5% and 94.2% within limits. The
high quality of the structure is further evident by the fact that
according to VERIFY 3D27 98.39% of the residues have a score of
greater than 0.2, which indicates a good quality model. Further,
the root-mean-square deviation (RMSD) between the backbone
atoms of the template and the homology model was observed to
be 0.302 Å indicating reasonably good structural parameters of
the predicted structure (Fig. 8).
Figure 8. Structural superimposition of Ca trace of EhTHRase model (represented
in blue color) with known crystal structure (represented in red color). The root-
mean-square deviation (RMSD) between the template and the homology model
was 0.302 Å.
After the final model was built, the active site information was
obtained through superimposing 3-D structure of the EhTHRase
model with that of template protein 3D8X. Active site of modeled
thioredoxin reductase was constituted by amino acid residues Met
124, Gly 159, Gly 161, Ala 163, Arg 183, Arg 184 Arg 188 and Ile
246 corresponding to Met 126, Gly 161, Gly 163, Ser 165, Arg
185, Lys 186, Arg 190 and Ile 248 of template protein. Thus, the ac-
tive site forming residues were found to be mostly conserved
(Fig. 9).

Further, in order to decipher the possible interactions of the
crystal resolved inhibitors (4 and 5) with EhTHRase, the inhibitors
were docked in the binding pocket of the modeled protein using
GOLD v3.1.1 program.28 It was noted that GOLD score of 4 and 5
was 59.29 and 59.70 respectively, which is greater than metronida-
zole (antiamoebic drug in use) score value 39.33. This is in accor-
dance with our activity profile data, which indicated that both
compounds (4) and (5) have IC50 value lower than the standard
drug metronidazole. Further it is evident from the ligplot29 analysis
of docked complexes that the inhibitors place themselves nicely
into the active site of the enzyme and are mainly stabilized by
the hydrophobic interactions (Fig. 10a and 10b). The higher activity
of the synthesized metronidazole analogs compared to MNZ could
be partially due to involvement of these additional hydrophobic
interactions in the binding mode.

Specifically, the residues that interact with compound 4 and
contribute to the hydrophobic interactions are Met 124, Val 158,
Gly 159, Leu 181, His 182, Arg 184, Glu 210 and Ile 246, while
Figure 9. Overlay of the active site residues of the homology model with the
template 3D8X. Blue and red color sticks represents modeled and template proteins
respectively.



Figure 10. Schematic 2D representation of interactions of (a) Compound 4 and (b)
Compound 5. Hydrogen bonds are shown with green dashed lines and hydrophobic
contacts by red arcs with radiating lines.
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the NH1 atom of Arg 183 of the active site of the receptor forms
hydrogen bond with O3 of compound 4 (Fig. 10a). In case of Com-
pound 5, it interacts predominantly with amino acid residue Arg
184 through hydrogen bond and other non ligand residues that
shows involvement in hydrophobic interactions are Met 124, Val
158, Gly 159, Gly 160, Gly 161, Arg 183, Arg 188 and Ile 246.
(Fig. 10b). Previously too, studies from others30 as well as from
our group14b have demonstrated that 5-nitroimidazole analogues
having hydrophobic side chains show better antiamoebic activity
probably because these modifications enhance solubility and
membrane permeability of the compounds. Thus, the docking sim-
ulations corroborate the observed activity profile and confirm the
basis that has led to the development of newer molecules.

To conclude, the present study describes the synthesis of metro-
nidazole thiosalicylate analogs (4–6) and their evaluation as
antiamoebic agents. It was found that 2-(2-(2-methyl-5-nitro-
1H-imidazol-1-yl) ethylsulfinyl) benzoate (5) shows promising
in vitro antiamoebic activity as well as low cytotoxicity. Further,
docking simulations indicated that the enhanced antiamoebic
activity could be due to additional hydrophobic interactions in
the binding site of E. histolytica thioredoxin reductase. These find-
ings provide us lead and encourage us to continue the efforts to-
wards the optimization of the efficacy profile of this structural
moiety for treatment of amoebiasis.
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