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Abstract: An intramolecular Wittig olefination was utilized to
produce the key isoflav-3-ene intermediate needed to prepare (±)-
vestitol and bolusanthin III in ca. 30% and 20% respective yields af-
ter eight steps.
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lar Wittig olefination

Often displaying phytoestrogenic and antioxidant proper-
ties, polyphenolic isoflavans remain of interest for poten-
tial use as selective estrogen receptor modulators (SERM)
and as cancer preventative agents.1 Within this structural
theme, vestitol and bolusanthin III (1 and 2 in Figure 1, re-
spectively) are a closely-related pair of isoflavonoids that
differ in their degree of conformational rigidity and extent
of conjugation between two similarly appended phenolic
hydroxyl groups. The levorotatory2 and dextrorotatory3

enantiomers of isoflavan 1 have been isolated from vari-
ous sources, as has its achiral isoflavene relative 2.4 Both
(–)-1 and 2 are present in the common licorice Glycyrrhi-
za pallidiflora.5 Vestitol, in particular, has been found to
have significant activity against antibiotic resistant H. py-
lori while licorice extracts, in general, are considered to
be potentially useful as chemopreventatives for peptic ul-
cer and gastric cancer.6 Given their structural similarity to
human estrogen receptor ligands, such as estradiol and di-
ethylstilbestrol (3 and 4 in Figure 1, respectively), we
have undertaken a multistep, total synthesis of racemic 1
and 2 in order to generate quantities that can be deployed
to further scope their potential anticancer profile and to
ascertain if they have demonstrable phytoestrogenic prop-
erties. Although 1 has been synthesized previously,1a,2d,7

to our knowledge this is the first report of a total synthesis
for 2.

Drawing from our evolving studies pertaining to the syn-
theses of various pterocarpan phytoalexins,8a–d we imag-
ined that an intramolecular Wittig reaction could be used
to form the isoflav-3-ene system in 2. Reduction of the lat-
ter can readily yield (±)-1.5 This synthetic strategy is
shown in Scheme 1.

4-Methoxy-2-hydroxyacetophenone was protected with a
benzyl group under mildly basic conditions and then sub-
jected to selective a-iodination using either Selectfluor8c

or copper oxide9 to provide intermediate 5.10 As we have
done previously, selective benzylation of 2,4-dihydroxy-
benzaldehyde at the para position was followed by reduc-
tion with sodium borohydride to provide the salicyl
alcohol intermediate 6.8c,d Coupling of 5 and 6 was ac-
complished by a nucleophilic substitution reaction11 to
form ether 7.12 The latter was converted to a Wittig salt by
treatment with triphenylphosphine hydrobromide13 and
used in an intramolecular olefination reaction8c,d–i to ob-
tain the key, penultimate intermediate 8.14 A total synthe-
sis of racemic vestitol was then achieved in eight steps
upon catalytic hydrogenation5 which simultaneously re-
duced the olefin while cleaving the two benzyl-protecting
groups. The overall yield was 29%.15

Alternatively, to produce bolusanthin III, we first attempt-
ed to remove the benzyl groups in 8 by treatment with
pentamethylbenzene/trifluoroacetic acid (PMB/TFA)16

and with boron tribromide (BBr3).
17 However, both re-

agents proved too harsh and resulted in degradation of 8
to multiple side products without providing detectable
levels of desired material (TLC). A possible mechanism
for this ready decomposition could involve the allylic
ether either becoming protonated in the case of TFA or
chelated with the Lewis acid in the case of BBr3. Either
species can collapse to a benzyl carbocation that leads to
multiple decomposition pathways. Ultimately, the synthe-
sis of 2 was achieved by treating 8 with BCl3 in the pres-
ence of PMB at –78 °C.18 An eight-step procedure leading
to 2 was thus accomplished in 21% overall yield.19 Unlike
the previous isolations of 2 from natural sources, the syn-
thesized product can be obtained conveniently as a free-

Figure 1 Target compounds (±)-vestitol [1, depicted as the (–)-en-
antiomer obtained from licorice] and bolusanthin III (2), and their
structural similarities to human estrogen receptor ligands estradiol (3)
and diethylstilbestrol (4)
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flowing powder that displays a discernable melting point.
This constitutes the first published report20 for the total
synthesis of bolusanthin III.
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Scheme 1 Synthesis of racemic vestitol and bolusanthin III.
Reagents and conditions: (a) BnBr, K2CO3, MeCN, reflux, 24 h, 96%;
(b) Selectfluor, I2, CH2Cl2–MeOH (1:5), r.t., 20 h, 84%; (c) BnBr,
KHCO3, MeCN, reflux, 15 h, 85%; (d) NaBH4, EtOH, 0 °C 1 h, r.t.,
10 h, 58%; (e) K2CO3, Me2CO, reflux, 16 h, 78%; (f) (i) Ph3P·HBr,
MeCN, r.t., 1 h; (ii) KOt-Bu, MeOH, reflux, 24 h, 70% across two
steps; (g) 10% Pd/C, EtOAc, H2 (2.4 bar), r.t., 14 h, 84%; (h) BCl3,
PMB, CH2Cl2, –78 °C, 15 min, 61%.
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