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ABSTRACT: A 1,2-reductive dearomatization of quinolines
and copper(II) acetate monohydrate/(R,R)-Ph-BPE/P(p-
tolyl)3-catalyzed enantioselective hydroamination sequence
was developed, affording diverse 4-amino-1,2,3,4-tetrahydro-
quinolines with high levels of enantioselectivity in either a
stepwise or one-pot fashion. Pleasingly, internal cis-cyclic
alkenes, which are challenging substrates in copper hydride-catalyzed enantioselective hydroamination reactions, were
transformed efficiently under mild conditions.

Chiral tetrahydroquinolines (THQs) are widespread in
pharmaceuticals and natural products (Figure 1a).1 Their

efficient construction has long been a goal for both organic and
medicinal chemists.2 In addition to well-established cyclization
reactions such as the Pavarov reaction,1c dearomatization of
quinolines represents a straightforward and attractive method
toward these scaffolds. Notable examples include asymmetric
(transfer) hydrogenation and other reduction reactions (Figure
1b).3 Despite considerable progress, the enantioselective
incorporation of THQs with amine functionalities, which are
also ubiquitous components in natural products and drug
molecules, remains less explored.3k−m,o This might be attributed
to the fact that the strong coordination and poisoning capacity of

the substrates and reduced products lead to potential
deactivation of the catalysts. In addition, installation of the
amine moiety on the quinoline is required prior to the
asymmetric transformation, which somehow renders this
protocol impractical. Considering the significant importance
of chiral amine-substituted THQs, as exemplified by 4-amino-
1,2,3,4-tetrahydroquinolines, which show various biological
activities, including CETP inhibition,4 NMDA receptor
antagonism,5 and potent bradykinin antagonism,6 the develop-
ment of a straightforward approach directly starting from
abundant quinolines is highly desirable.7

Reissert-type nucleophilic addition constitutes a commonly
used strategy for direct functionalization of quinolines and offers
a flexible choice to introduce functionalities such as nitrile,
alkyne, and so on (Figure 1b).8 However, to the best of our
knowledge, the engagement of amine moieties is problematic
and remains unknown to date. To circumvent the challenge, we
envisioned that an umpolung tactic using electrophilic amines
might be adopted. This hypothesis was inspired by pioneering
studies by the Buchwald group9a and the Hirano and Miura
groups,9b who seminally reported copper hydride-catalyzed
enantioselective hydroamination reactions independently in
2013. Since then, a series of chiral amines were obtained in good
to excellent yields, regioselectivities, and enantioselectivities
from readily available alkenes and alkynes.9−11 More recently,
our group disclosed that this powerful copper catalysis could be
extended to benzofurans, for which a benzofuran ring opening/
enantioselective hydroamination cascade was observed.9q On
the basis of the above considerations and continuing with our
interest in value-added functionalization of aromatic com-
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Figure 1. Synthesis of chiral 1,2,3,4-tetrahydroquinolines via
dearomatization of quinolines.
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pounds, we explored whether copper hydride catalysis could
provide a general solution toward the synthesis of challenging
amine-substituted THQs with high enantioselective induction
(Figure 1c). Herein we report our results from this study.
At the outset, we envisioned that enantioselective hydro-

amination of quinolinium salts might be directly enabled by
copper hydride catalysis. However, the initial attempts all failed,
along with the observation that the starting materials remained.
This is largely due to the difficulties associated with resonance
stabilization caused by aromaticity. Inspired by the elegant
examples of stepwise reduction/enantioselective catalysis,12 we
therefore used a sequence as an alternative strategy, namely, 1,2-
reductive dearomatization of quinolines followed by copper
hydride-catalyzed asymmetric hydroamination of the resultant
1,2-dihydroquinolines. Nevertheless, this method would be very
challenging since the internal cis-cyclic alkenes are well-known as
challenging and problematic substrates in enantioselective
hydroamination catalyzed by copper hydride.11f

Accordingly, N-protected 1,2-dihydroquinoline 2a, synthe-
sized from quinoline (1a) via 1,2-reductive dearomatization, was
used as the substrate in the hydroamination reaction (Table 1).

Upon treatment of 2a with 1.2 equiv of hydroxylamine ester 3aa
in a THF solution of CuH catalyst (obtained from Cu(OAc)2,
(R)-BINAP, and (MeO)2MeSiH, 0.5 M) at room temperature
for 20 h, the desired product 4aa was obtained in 33% yield with
42% ee (entry 1, Table 1). Encouragingly, after screening of
various ligands, we found that utilization of (R,R)-Ph-BPE (L5)
gave 4aa in 95% yield with 80% ee (entry 5, Table 1). Slightly
improved enantioselectivity was achieved when the substrate
was diluted to a concentration of 0.1 M (84% ee; entry 7, Table
1), but further decreasing the concentration resulted in a poor
yield (32%; entry 8, Table 1). Gratifyingly, the utilization of a
secondary ligand13 was found to be beneficial to the reaction,
and P(p-tolyl)3 provided the best results (87% ee; entry 10,
Table 1). Notably, different dibenzylamine precursors (3aa−ac)
exerted little impact on the reaction outcome (entries 11 and 12,
Table 1). 1-Adamantyl acid-derived hydroxylamine ester 3ac
was chosen as the reaction partner because of its slightly
improved efficiency and relatively ready availability and
cheapness. Further investigations of the substrate ratio, copper
source, reaction temperature, and catalyst loading were
conducted (entries 13−17, Table 1). It was identified that the

Table 1. Optimization of the Reaction Conditionsa

entry ligand conc. (M) 3 yield of 4aa (%)b ee of 4aa (%)c

1 L1 0.5 3aa 33 42
2 L2 0.5 3aa 72 18
3 L3 0.5 3aa 59 57
4 L4 0.5 3aa 6 14
5 L5 0.5 3aa 95 80
6 L6 0.5 3aa 20 12
7 L5 0.1 3aa 93 84
8 L5 0.02 3aa 32 84
9 L5 + PPh3 0.1 3aa 78 86
10 L5 + P(p-tolyl)3 0.1 3aa 83 87
11 L5 + P(p-tolyl)3 0.1 3ab 85 87
12 L5 + P(p-tolyl)3 0.1 3ac 85 87
13d L5 + P(p-tolyl)3 0.1 3ac 87 88
14d,e L5 + P(p-tolyl)3 0.1 3ac 94 88
15d,e,f L5 + P(p-tolyl)3 0.1 3ac 88 89
16d,e,f,g L5 + P(p-tolyl)3 0.1 3ac 92 90
17d,e,f,h L5 + P(p-tolyl)3 0.1 3ac 75 87

aReaction conditions: Cu(OAc)2 (5 mol %), ligand (5.5 mol %), secondary ligand (11 mol %, if used), 2a (0.20 mmol), 3 (0.24 mmol), and
(MeO)2MeSiH (0.8 mmol) in THF at 40 °C for 20 h. Catalyst was preprepared by mixing Cu(OAc)2, ligand and (MeO)2MeSiH together in THF.
bIsolated yields. cDetermined by SFC analysis. d1.4 equiv of 3ac was used. eCu(OAc)2·H2O was used instead of Cu(OAc)2.

fThe reaction was
carried out at room temperature. gCu(OAc)2·H2O (2.0 mol %), L5 (2.2 mol %), P(p-tolyl)3 (4.4 mol %). hCu(OAc)2·H2O (1.0 mol %), L5 (1.1
mol %), P(p-tolyl)3 (2.2 mol %), 48 h.

Organic Letters Letter

DOI: 10.1021/acs.orglett.9b02034
Org. Lett. XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acs.orglett.9b02034


reaction of 2awith 3ac (1.4 equiv) in the presence of Cu(OAc)2·
H2O (2 mol %), (R,R)-Ph-BPE L5 (2.2 mol %), P(p-tolyl)3 (4.4
mol %), and (MeO)2MeSiH (0.8 mmol) at room temperature
gave the best results (92% yield, 90% ee; entry 16, Table 1).
With the optimized conditions in hand, we next explored the

scope of 1,2-dihydroquinolines (Scheme 1). Various protecting

groups on the nitrogen atom of the 1,2-dihydroquinoline, such
as −CO2Me, −CO2Et, −CO2

iBu, −CO2Bn, Fmoc, and −Ac,
were well-tolerated, and good to excellent yields (71−93%) and
enantioselectivities (82−90% ee) were achieved (4aa−fa).
However, the Ts group had a detrimental effect on the reactivity,
leading merely to the observation of recovered substrate 2g
(16% yield, 91% ee; 4ga). The reactions proceeded smoothly
with 1,2-dihydroquinolines bearing different substituents at the
6-position (−CO2Me, −CF3, −F, −Cl, −Br, −I, −Ph, 2-thienyl,
−Me, −OMe, −SMe), in all cases providing the corresponding
THQs in good yields (71−94%) with excellent enantioselectiv-
ities (87−92% ee) regardless of their electronic properties
(4ha−ra). Furthermore, substrates bearing a methyl substituent
at other positions were evaluated (4sa−va). Low conversion was
observed when the methyl group was incorporated at the 3-
position (25% yield, 93% ee, >19:1 dr; 4sa), while the reaction
was inhibited with a methyl group at the 4-position. These
decreased reactivities might be attributed to the unfavorable
steric hindrance encountered in the hydrocupration step. It was
remarkable to observe the formation of 4sa in a highly
enantioselective and diastereoselective fashion. As expected, 5-

and 7-methyl substituted 1,2-dihydroquinolines were suitable
substrates, leading to the isolation of 4ua and 4va in 97% yield
with 84% ee and 78% yield with 85% ee, respectively.
Next, the amine electrophiles were examined. As illustrated in

Scheme 2, various nitrogen sources bearing varied benzylic

moiet ies (4-ClC6H4CH2− , 4 -MeOC6H4CH2− , 4 -
PhC6H4CH2−, 2-BrC6H4CH2−, 2-thienylmethyl, 2-benzofur-
anylmethyl) were well-accommodated, delivering the corre-
sponding chiral tertiary amines (4ab−ag) in 46−94% yield with
91−92% ee. The reaction is also applicable to substrates 3h and
3i containing stereocenters adjacent to the nitrogen with
opposite configuration. The two diastereoisomers 4ah and 4ai
were obtained in 66% yield with 11:1 dr and in 71% yield with
18:1 dr, respectively, indicating that catalyst control process
operates. Interestingly, the cyclopropane motif, which is of
significance in drug discovery,14 could be introduced through
this hydroamination process (82% yield, 92% ee; 4aj). The
robustness of this reaction was further demonstrated by the
successful incorporation of morpholine and benzylamine on
THQs with excellent enantioselectivity (45% yield, 89% ee, 4ak;
48% yield, 92% ee, 4al).
Finally, we achieved the enantioselective construction of 4-

amino-1,2,3,4-tetrahydroquinolines directly from quinolines in a
one-pot fashion. However, the initial results were rather
disappointing, leading to the isolation of 4aa in 18% yield.
With modified reaction conditions (KBH4 was used for the 1,2-
reduction of quinolines), the results were significantly improved,
as shown in Scheme 3. The desired THQs were obtained in
satisfactory yields (55−90%) with good enantioselectivities
(87−90% ee). Notably, there is no need for isolation or

Scheme 1. Investigation of 1,2-Dihydroquinolinesa,b,c

aReaction conditions: as in entry 16 of Table 1. bIsolated yields are
shown. cThe ee values were determined by HPLC or SFC analysis.
d20 h at rt and then 12 h at 40 °C.

Scheme 2. Investigation of Amine Electrophilesa,b,c

aReaction conditions: as in entry 16 of Table 1. bIsolated yields are
shown. cThe ee values were determined by HPLC or SFC analysis.
d4-(N,N-Diethylamino)benzoic acid-derived hydroxylamine ester was
used. e1-Adamantanecarboxylic acid-derived hydroxylamine ester was
used. f2.0 equiv of 3 was used. gBenzoic acid-derived hydroxylamine
ester was used.
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purification of the dihydroquinoline intermediate during the
process.
To our delight, the protocol was also amenable to scale-up and

diverse transformations. As shown in Scheme 4, the reaction of

2lwith 3ac on a 5mmol scale delivered 4la in 86% yield (2.01 g)
with 88% ee (eq 1). The absolute configuration of product 4la
was determined by X-ray crystallographic analysis of its
enantiomeric pure hydrochloride salt (4la·HCl). Transforma-
tions of 4la, including Suzuki coupling (eq 2) and Sonogashira
coupling (eq 3), occurred smoothly to incorporate alkene and
alkyne functionalities, respectively, on the THQ skeleton in high
yields without any erosion of enantiopurity (86% yield, 88% ee,
5; 95% yield, 87% ee, 6). Besides, the −CO2Me group could be
easily removed by treatment of 4la with potassium hydroxide in
a methanol/water mixture at 60 °C (84% yield, 89% ee; 7) (eq
4). Importantly, the introduced functionalities such as alkene,
alkyne, and N−H could offer easy handles for further
modifications.
In conclusion, we have developed a 1,2-reductive dearoma-

tization of quinolines and copper(II) acetate monohydrate/
(R,R)-Ph-BPE/P(p-tolyl)3-catalyzed enantioselective hydroa-
mination sequence. Starting from readily available substituted
quinolines, structurally diverse THQs bearing amine moieties

were obtained in good to excellent yields with high
enantioselectivities. Importantly, this method represents a rare
example of highly enantioselective hydroamination of internal
cis-cyclic alkenes. Compatibility with gram-scale reaction and
versatile manipulations of the resultant THQs further enhance
the synthetic utility of the current method.
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