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Abstract— Infrared small target detection technology is one of
the key technologies in the field of computer vision. In recent
years, several methods have been proposed for detecting small
infrared targets. However, the existing methods are highly
sensitive to challenging heterogeneous backgrounds, which are
mainly due to: 1) infrared images containing mostly heavy clouds
and chaotic sea backgrounds and 2) the inefficiency of utilizing
the structural prior knowledge of the target. In this article,
we propose a novel approach for infrared small target detection in
order to take both the structural prior knowledge of the target
and the self-correlation of the background into account. First,
we construct a tensor model for the high-dimensional structural
characteristics of multiframe infrared images. Second, inspired
by the low-rank background and morphological operator, a novel
method based on low-rank tensor completion with top-hat reg-
ularization is proposed, which integrates low-rank tensor com-
pletion and a ring top-hat regularization into our model. Third,
a closed solution to the optimization algorithm is given to solve
the proposed tensor model. Furthermore, the experimental results
from seven real infrared sequences demonstrate the superiority
of the proposed small target detection method. Compared with
traditional baseline methods, the proposed method can not only
achieve an improvement in the signal-to-clutter ratio gain and
background suppression factor but also provide a more robust
detection model in situations with low false–positive rates.

Index Terms— Low-rank tensor completion, multiframe
infrared image, ring top-hat regularization, small target detec-
tion, structural prior knowledge.

I. INTRODUCTION

INFRARED small target detection is an important tech-
nology for signal processing. With the development of

the top-hat filter [1], matrix completion [2], [3], and tensor
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completion [4]–[6], the related technologies of infrared small
target detection have been greatly improved and significantly
advanced the detection of accuracy. Infrared small target
detection technology is widely used in various fields, such
as aerospace technology [1], remote sensing [7], [8], medical
imaging [9], and target detection and tracking [10]. However,
it is still a challenging problem, mainly due to: 1) the complex
background with low signal-to-clutter ratio (SCR) caused by
cluttered noise and 2) dim targets with long-imaging distances.
Specifically, small infrared targets may be affected by thick
cloud or sea–sky plane [11]–[13]. Infrared small target detec-
tion has been studied for decades, and various infrared small
target detection methods have been proposed to handle these
challenges [14].

Recently, many infrared small target detection methods have
been proposed, such as the max-mean/max-median filter [15]
and the top-hat filter [1]. However, these methods require prior
knowledge of the background scene, which limits the industrial
applicability of the method. To solve this issue, nonparametric
regression [16] is introduced to estimate the background of the
changes. Benefiting from the salient prior assumption between
the target and background, it is noticeable that the local priors
play a significant role in infrared small target detection. For
example, by only comparing a pixel or a region with its
neighbors one can detect the target well, i.e., local contrast
method [7], weighted local difference measure (WLDM) [17],
derivative entropy-based contrast measure [18], local adaptive
contrast operation based on regularized feature reconstruction
[19], directional saliency-based method (DSBM) [20], mul-
tiscale patch-based contrast measure [21], and so on. Due
to the strong edges and other interfering components in the
image, the methods based on local differences may have a
higher false alarm rate. To solve this challenge, a series of
fuzzy metric methods are proposed, such as the multiscale
fuzzy metric [22], multichannel kernel fuzzy correlogram [23],
and an improved fuzzy c-means [24] method based on spatial
information.

Low-rank matrix recovery has been studied for many years
and applied to various fields. The inherent spatial correlation
between the pixels of an image indicates that the background is
expressed in a continuous way, and the pixels are highly corre-
lated. In contrast, the target is viewed as the object that breaks
this local correlation. Therefore, the segmentation of the target
from the background can be seen as the recovery of the
low-rank matrix. However, rank minimization is an NP-hard
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problem. To solve this challenge, the nuclear norm [25], [26] is
often used as an alternative to the rank function. Gao et al. [2]
proposed an infrared patch image model (IPM) based on the
local block structure similarity, which described infrared small
target detection as the optimization problem of restoring a low-
rank and sparse matrix. To correctly detect infrared small tar-
gets located in highly heterogeneous backgrounds, He et al. [3]
proposed a low-rank and sparse representation model under the
multisubspace cluster hypothesis. However, nuclear norm min-
imization (NNM) tends to over shrink the rank components.
Specifically, an approximation method is proposed in [27],
which enforces low-rank regularization by using the Schatten
p-norm, which is defined as the L p norm of the singular values
(
∑

k σk
p(IB))1/p with 1 > p > 0. However, the Schatten p-

norm is not flexible enough to deal with different important
rank components because it treats all singular values equally.
Therefore, it has been proposed in [28] to solve the challenge
by utilizing the Schatten p-norm. Since the detection of an
infrared small target in a single-frame image only considers the
low-rank structure in one unfolding, it lacks the main structural
information, and it is not sufficient to handle a complex scene.
Therefore, it motivates us to consider whether we can use the
other two unfolding modes. In recent years, this idea of a low-
rank constraint has been applied to the low-rank completion of
tensors. Unlike a matrix, a tensor is a multilinear generation
of a multidimensional matrix that usually directly operates
on higher order data. In addition, this idea facilitates the
learning process in which CANDECOMP/PARAFAC (CP),
Tucker decomposition, or tensor train decomposition [29] and
low-rank constraints in different mode expansion matrices are
used, such as reweighted infrared patch tensor (RIPT) model
[6]. Dai and Wu [6] proposed a target detection model based
on nonlocal self-correlation ship and local tensor structure
priors. In addition, a local prior is added for optimizing the
problem of nonlocal low-rank tensor recovery. While Dai and
Wu [6] exploited the NNM to reserve the constraints on the
low-rank tensor, this algorithm ignored the importance of
dissimilarities between different low-rank components. Low-
rank tensor constraints have been applied in different fields,
such as Tucker decomposition for discriminative tracking [30],
big data driven [31], hyperspectral image denoising [32],
tensor completion for estimating missing values [4], and low-
rank tensor train [5].

Mathematical morphology is a theory and technique for
the analysis and processing of geometrical structures of
image [33]. In recent years, morphology has been widely
used in infrared small target detection. Bin and Xiong [34]
proposed a method-based top-hat operator for small target
detection. However, the traditional morphological operator
uses a uniform structuring element, which ignored the informa-
tion between the target and the surrounding area and resulted
in an unsatisfactory detection effect. A new morphological
operator [35], [36] with two different structuring elements
was proposed to solve this shortcoming. The shape and
pixel values of the structuring elements are important factors
for the final result of the morphological target detection.
However, the prior knowledge of structuring elements is not

known, and the selection of structural elements is a hard
task. Recently, the combination of morphology and neural
networks has become a major trend, such as the use of neural
networks and genetic algorithms to extract the structuring
element information of the morphology [1], suppression neural
network [37], and morphological sharing weight network [38].
However, a large amount of training data is required, and the
calculation is expensive.

In this article, in order to solve the problem of different low-
rank components with different importance and insufficient
local prior knowledge, we propose a novel infrared target
detection method based on low-rank tensor completion with
top-hat regularization (TCTHR). We have listed the main
contributions of this article as follows.

1) We propose that the traditional top-hat transformation is
tailored into top-hat regularization term for addressing
infrared small target detection for the sake of penalizing
the noises and clutters. In addition, ring top-hat regular-
ization term is formulated into our proposed detection
model to properly utilize the local structural prior to the
target and antinoise.

2) To properly enforce the low-rank regularization for dif-
ferent low-rank components of tensor data, we introduce
a weighted Schatten p-norm into the tensor model,
which makes the most use of the structural character-
istics of the low-rank tensor.

3) We propose a novel infrared small target detection tensor
model (TCTHR) and introduce the detailed solution
process of the alternating direction multiplier method
(ADMM).

This article is organized as follows. In Section II, we intro-
duce in detail the theoretical basis of our model, the proposed
model, and the related solution process. In Section III, we give
some preliminaries for tensor and tensor decomposition, and
the background of morphological regularization. In Section IV,
we conducted many experiments and verified the superiority of
our model from various aspects. In Section V, our conclusion
is given.

II. PRELIMINARIES

A. Tensor Notation and K-Mode Unfolding

In this article, we use lower case letters to denote vectors,
e.g., t , upper case letters for matrices, e.g., ID, IB · · · , and
calligraphic letters for tensors, e.g., ID,IB · · · . For a tensor
of order N is denoted as ID ∈ RI1×I2×···×IN . The elements of
ID are denoted as id1 · · · idn · · · idN , where 1 ≤ dn ≤ In . For
tensor ID,IB ∈ RI1×I2×···×IN , we define the inner product as
�ID ·IB� =∑I1

i1=1 · · ·∑IN
iN =1 id (i1···iN )ib(i1···iN ). The Frobenius

norm of ID is defined as �ID�F = (�ID · ID�)1/2.
The mode-n unfloding matrix ID(n) obtained from ID is

the process of unfolding or reshaping the tensor into a matrix
by rearranging the mode-n fibers to be the columns of the
resulting matrix. The unfolding matrix ID(n) = un f oldn(ID)
is composed by taking the mode-n vectors of ID as its
columns. At the same time, the mode-n unfolding matrix ID(n)

of the tensor ID can also be transformed back to the tensor
by ID = f oldn(ID(n)), 1 ≤ n ≤ N .
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B. Background of Morphological Regularization

Morphological detection is the main research method for
infrared small target detection, which mainly includes two
basic operations: corrosion and expansion. In the infrared
small target detection based on a morphological operator,
the key technology is the design of the morphological operator
and the structuring elements. At present, the top-hat opera-
tion has become a popular method for infrared small target
detection.

We need to understand the structuring element and image
information to be processed. Let b and f represent the struc-
turing element and the image to be processed, respectively.
The dilation and erosion of f (x, y) by b(u, v), denoted by
f ⊕ b and f �b, are defined by

( f ⊕ b)(x, y) = max
u,v

( f (x − u), y − v) + b(u, v) (1)

( f �b)(x, y) = min
u,v

( f (x + u), y + v) − b(u, v) (2)

The dilation operation, ( f ⊕ b), can expand the gray value
of the image, and the erosion operation, ( f �b), can reduce
the gray value of the image because of the maximum and min-
imum operation. Based on dilation and erosion, the opening
and closing of f (x, y) by b, denoted by f ◦ b and f • b, are
defined by

( f ◦ b)(x, y) = ( f �b) ⊕ b (3)

( f • b)(x, y) = ( f ⊕ b)�b. (4)

The opening operation, f ◦ b, can smooth the outline of
an image, break the narrow connections between images,
and eliminate tiny burrs. The closing operation, f • b, can
bridge the narrow gap between images and fill the holes. The
opening and closing operations do not change the size of
the target. Then, based on the opening operation and closing
operations, the white top-hat transformation and black top-
hat transformation of image f , denoted by wT H and bT H ,
respectively, are defined by

wT H (x, y) = f (x, y) − ( f ◦ b)(x, y) (5)

bT H (x, y) = ( f • b)(x, y) − f (x, y) (6)

White top-hat transformation (wT H ) can effectively detect
bright targets, whereas black top-hat transformation (bT H )
can effectively detect dark targets.

C. Traditional Model for Infrared Small Target Detection

The infrared small target detection model can be uniformly
written as follows:

ID = IT + IB + IN (7)

where ID , IT , IB , and IN are the original infrared image,
the target image, the background image, and the noise image,
respectively. To achieve the purpose of infrared small target
detection, on the one hand, we can suppress the background
(IB ) and noise (IN ) of the input image (ID). On the other hand,
we can exploit the conversion operator to efficiently augment
the target (IT ).

Fig. 1. Tensor of input image.

Gao et al. [2] have proposed that the small target detection
task is a typical problem of intrinsically recovering a low-
rank component and a sparse component from a data matrix.
Ideally, this problem can be effectively addressed by solving
the following formulation:

min
IB ,IT

rank(IB) + α�IT �0 s.t. IB + IT = ID (8)

where rank (IB) denotes the rank of IB and � ∗ �0 denotes the
l0-norm of IT which counts the number of nonzero entries.

III. METHOD FOR SMALL TARGET DETECTION

In this section, we introduce the properties of the proposed
model in detail. We take a multiframe image and superimpose
it into a tensor as the input image (ID). The detail of the tensor
is described in Fig. 1. Then, we formulate a task for target
detection to solve the Gaussian noise convex optimization
minimization problem with the background low-rank and
morphological operators as constraints. First, we introduce
the characteristics of the target (IT ), background (IB), and
noise (IN ), which provide a theoretical basis for the proposed
tensor model. Furthermore, we present the whole method for
target detection. Finally, we introduce the solution of each
part separately, and the corresponding algorithm is explained
in detail.

A. Ring Structural Element for Top-Hat Transformation

As revised in (3), the classic morphological theory usually
uses two identical structuring elements in the procedure.
However, it ignores the difference between the target area
and the surrounding background area. In general, the target
area is different from its surrounding background area. We can
use the dissimilarity information between the target area and
background area to model the differences, thus providing a
small target with further highlights. Inspired by [36], we use a
ring structuring element for top-hat transformation. The details
of the structuring element are described in Fig. 2.

Let s Bo and s Bi represent two structuring elements with
the same shape, and s Bo is bigger than s Bi . Let s(Bo) and
s(Bi) represent the sizes of the structuring elements, s Bo and
s Bi , respectively. We define a double-ring structuring element,
s1B , and set s1B = s Bo − s Bi . s(1B) is the radial distance
from the center of s1B to the outer edge of s1B . Let s2B
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Fig. 2. Detail of structuring element.

represents the ring structuring element whose size is between
s Bo and s Bi .

Then, the ring opening operation and closing operation,
denoted by f 
 s B and f � s B , are defined by

( f 
 s B)(x, y) = ( f ⊕ s1B)�s2B (9)

( f � s B)(x, y) = ( f �s1B) ⊕ s2B. (10)

Then, ring white top-hat transformation and black top-hat
transformation of image, denoted by nW T H and nBT H , are
defined by

nW T H (x, y) = f (x, y) − ( f 
 s B)(x, y) (11)

nBT H (x, y) = ( f � s B)(x, y) − f (x, y) (12)

where s B represents that the operation is related to s Bo and
s Bi . Here, we use the ring morphology as a regular item to
constrain the target.

The above-mentioned definitions indicate that the ring top-
hat transformations are different from classical top-hat trans-
formations.

For the formula (9), f ⊕ s1B first uses s1B to replace the
pixels of the target area with the pixels of target surrounding
area. Then, �s2B operation uses s2B calculate the differ-
ence between target surrounding area and target area. In this
operation, regardless of the difference between the target area
and the target surrounding area, the s1B can introduce this
difference information into the structural element.

In this article, we use the W (.) and OS(.) to replace the
nW T H (.) and f � s B(.). Therefore, we define the ring top-
hat operator

W (IT ) = IT − OS(IT ). (13)

B. Low-Rank Tensor Model in Infrared Background

It is notable that a consistent local background prior is
exploited, assuming that the background transitions slowly
and the nearby pixels are highly correlated. We leverage

the low-rank property in the reconstruction stage. The initial
assumption can be described as

rank(IB) < k (14)

where the constant k is determined by the background and k
constrains the complexity of the background image. The value
k of a complex background is larger than that of a uniform
background.

However, rank minimization is an NP-hard problem, and
the nuclear norm defined as �IB�* :=

∑
k σk(IB) is typically

utilized in rank-minimization problems. In addition, σk(IB)
denotes the kth singular value of IB since it is the close
convex approximant to the rank (IB ) [25]. However, it has
been indicated in [27] that NNM causes too much shrinking
because of the low-rank components of the data. The Schatten
p-norm can guarantee a more accurate recovery of the low-
rank components and requires weaker isometric equivalence
properties compared with the traditional trace norm. To add
prior knowledge to different singular values, [28] proposed a
weighted nuclear norm, which can be defined as

�IB�w,p∗ =
(∑

k

wkσk
p(IB)

)1/p

(15)

where wk= 1/(σk+ε), and ε is a small positive scalar.
Since the matrix image is the mode-3 unfolding matrix

of a tensor, the matrix image model can be considered as a
special case of the tensor model. Since detecting an infrared
small target in a single frame image only considers the low-
rank structure in one unfolding, lacking the main structural
information, it is not sufficient to address a complex scene.
Therefore, it motivates us to think about whether we can use
the other two unfolding modes. In fact, in a tensor composed of
consecutive multiple images, each dimension can be regarded
as a low-rank matrix by tensor decomposition. Their unfolding
matrices are low rank, which is defined as

rank(IB(i)) < ki (16)

where IB(i) is the mode i expansion matrix for IB, and ki

are constants determined by the unfold matrices of the tensor
(IB).

Applying(16) to the tensor model can be written as

n∑
j=1

�IB( j )�w,p∗ =
n∑

j=1

(∑
k

wkσk
p(IB( j ))

)1/p

(17)

where n denotes an n-order tensor.

C. Noise Estimate

In this article, we assume that the noise(IN ) is random and
�IN �F ≤ ε, where ε is a small constant. Then, we can obtain
the following factor using (7)

�ID − IT − IB�F ≤ ε (18)

where �.�F is the Frobenius norm (i.e., �IN �F =
(
∑

i j N2
il )

1/2).
Applying (18) to the tensor model can be written as

�ID − IT − IB�F ≤ ε (19)
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D. Proposed Model for Small Target Detection

In this section, we present our proposed TCTHR model for
infrared target detection.

1) Under the No Noise Assumption

First, we assume that the infrared sequence image has no
noise. Therefore, (7) can be changed into

ID=IT +IB. (20)

Then, the model can be considered as a minimization problem

min
IT ,IB

�ID − IB − IT �2
F . (21)

Combined with (13) and (17), the model can be written as

min
IB ,IT

α

3∑
i=1

ui�IB(i)�p
w,sp

+ βW (IT )

s.t. ID=IT +IB. (22)

where α, β, and p are constants and ui is the weight of the
i th dimension.

2) Under the Random Noise Assumption

Now, we consider that the infrared sequence image involves
random noise. Then, model (22) can be written as

min
IB ,IT

α

3∑
i=1

ui�IB(i)�p
w,sp

+ βW (IT )

s.t. �ID − IT − IB�F ≤ ε. (23)

To relax the inequality of the constraint of model (23), it can
be converted into

min
N,B,T

1

2
�IN �2

F + α

3∑
i=1

ui�IB(i)�p
w,sp

+ βW (IT )

s.t. ID = IN + IB + IT . (24)

Considering the variability of each dimension of tensors,
we introduce a variable Yi and make IB = Yi , i = 1, 2, 3.
Then, the model can be written as

min
IN ,IB,IT

1

2
�IN �2

F +α

3∑
i=1

ui�(Yi )(i)�p
w,sp

+βW (IT )

s.t. ID = IN + IB + IT ,IB = Yi , i = 1, 2, 3. (25)

We use the ADMM [39] to solve the model (25). The
detailed algorithm is shown in Algorithm 1. Then, model (25)
can be rewritten as

L(IN ,IB,IT ,IZ ,Yi )

= 1

2
�IN �2

F +α

3∑
i=1

ui�(Yi )(i)�p
w,sp

+ βW (IT ) − �IZ ,IN + IB + IT − ID�

−
3∑

i=1

�Si ,IB − Yi � + a

2
�IN + IB + IT − ID�2

F

+
3∑

i=1

ρi

2
�IB − Yi�2

F (26)

where IZ and Si are Laplace factors, and a and ρi are penalty
factors.

E. Solution of Our Proposed Model

In this section, we describe the solution process for each
parameter of the model in detail.

1) Solution of Noise (IN )

The solution of Step 2.1 in Algorithm 1 is described below

min
IN

1

2
�IN �2

F + a

2
�IN + IB + IT − ID�2

F

− �IZ ,IN + IB + IT − ID�. (27)

Then, model (27) can be rewritten as

min
IN

1

2
�IN �2

F + a

2
�IN + IB + IT − ID − IZ

a
�2

F . (28)

The solution can be given as

IN = 1

a + 1
(IZ − a(IB + IT − ID)). (29)

2) Solution of Target (IT )

The solution of Step 2.2 in Algorithm 1 is described below

min
IT

βW (IT ) + a

2

∥∥∥∥IN + IB + IT − ID − IZ
a

∥∥∥∥
2

F
. (30)

Inspired by [40], the optimal solution of model (30) is
presented in the model, and the corresponding subgradient
can be obtained instead of the gradient because of its concave
property

β

(
δ

δ(IT )
W (IT )

)
+a

(
IN +IB+IT −ID− IZ

a

)
=0. (31)

Then, the corresponding iteration can be written as

IT (n+1) = ID(n+1) + IZ
a

− IN (n+1)

− IB(n+1) − β

a

(
δ

δ(IT )
W (IT )

)
IT (n)

. (32)

In the solution to (32), we derive the subgradients of the
dilated and eroded image with respect to its pixel values.
Let us denote the subgradient of a dilated image Ds1(IT )
as δDs1/δIT and that of an eroded image ES2(IT ) as
δES2/δIT . We can then write the subgradients of the dilated
image and eroded image of j th element of the i th column as

δDs1, j

δti
=
{

1, if ti = maxg∈(s1B)( j ){tg}
0, if ti < maxg∈(s1B)( j ){tg} (33)

δEs2, j

δti
=
{

1, if ti = ming∈(s2B)( j ){tg}
0, if ti > ming∈(s2B)( j ){tg} (34)

where s1B is a double-ring structuring element of size s1,
s2B is a concentric structuring element of size s2, s1B( j)
and s2B( j) are sets of pixels covered under s1B and s2B
translated to the j th pixel t j respectively, and {tg} is a set
of g.
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Algorithm 1 ADMM for Solving Model (25)
1: Step 0: Input: ID, IZ = 1,
2: Step 1: Initialize: IB = ID,Yi = IB,IN = 0,IT = 0
3: Step 2: While not converge do

Step 2.1: min
IN

1
2 �IN �2

F + a
2 �IN + IB + IT − ID�2

F − �IZ ,IN + IB + IT − ID�
Step 2.2: min

IT
βW (IT ) + a

2

∥∥∥IN + IB + IT − ID − IZ
a

∥∥∥2

F

Step 2.3: min
IB

{ a
2

∥∥∥IN + IB + IT − ID − IZ
a

∥∥∥2

F
+

3∑
i=1

ρi
2

∥∥∥IB − Yi − S i
ρi

∥∥∥2

F
}

Step 2.4: min
Yi

aui
∥∥(Yi )(i)

∥∥P
w,sp

+ ρi
2

∥∥∥Yi −
(
IB − Si

ρi

)∥∥∥2

F
4: Step 3: Output

We can write the subgradients of the ring top-hat operator
as

δ

δ(IT )
W (IT ) = I − δ

δ(IT )
OS(IT )

= I − δ

δ(IT )
ES2(DS1(IT ))

= I− δ

δDS1(IT )
ES2(DS1(IT ))

δ

δ(IT )
DS1(IT )

(35)

By combining (33) and (34) with the dilation operation
Ds1(X) = [ds1,1,ds1,2, . . . ds1,mn] of the sth scale, the calcu-
lation of [δ/δDS1(IT )]ES2[DS1(IT )] is presented as follows:

q
Es2, j
i = δEs2, j

δds1,i
=
{

1, if ds1,i =minr∈(s2B)( j ){ds1,r}
0, if ds1,i >minr∈(s2B)( j ){ds1,r} . (36)

Substituting (33)–(36), we can compute the subgradient
of [δ(W (IT ))/δ(IT )] which is required to compute the
model (32).

3) Solution of Background (IB)

The solution of Step 2.3 in Algorithm 1 is described below

min
IB

{
a

2

∥∥∥∥IN + IB + IT − ID − IZ
a

∥∥∥∥
2

F

+
3∑

i=1

ρi

2

∥∥∥∥IB − Yi − Si

ρi

∥∥∥∥
2

F

}
. (37)

The minimizer

IB =
a(ID − IN − IT ) + IZ +

3∑
i=1

(ρiYi + Si )

a + ρ1+ρ2+ρ3
. (38)

4) Solution of Yi

The solution of Step 2.4 in Algorithm 1 is described below

min
Yi

aui�(Yi )(i)�P
w,sp + ρi

2

∥∥∥∥Yi −
(
IB − Si

ρi

)∥∥∥∥
2

F
(39)

where i = 1, 2, 3. Then, model (39) can be rewritten as

min
Yi

2αui

ρi
�(Yi )(i)�P

w,sp +
∥∥∥∥Yi −

(
IB − Si

ρi

)∥∥∥∥
2

F
(40)

Algorithm 2 Solution Model (40) via Generalized Soft
Thresholding
1: Input: X , {w j }r

j=1 in non-descending order, l, and p.
2: Output: Y
3: X = U

∑
V T ,

∑ = diag(δ1, . . . , δr );
4: for j = 1 to r

5: τ (w j ) = (2w j (1 − p)
) 1

2−p + wp
(
2w j (1 − p)

) p−1
2−p

6: if
∣∣δ j
∣∣ ≤ τ (w j )

7: σ j = 0;
8: else

∣∣δ j
∣∣ ≤ τ (w j )

9: σ0 = ∣∣δ j
∣∣;

10: for i = 0, 1, . . . , l
11: σi+1 = ∣∣δ j

∣∣− w j p(σi )
p−1;

12: i = i + 1;
13: end
14: σ j = sgn(δ j )σ j ;
15: end
16: end
17: 
 = diag(σ1, . . . , σr );
18: Y = U
V T .

where 2αui/ρi is a tradeoff parameter to balance the data
fidelity and regularization. Here, inspired by [28], we solved
model (40) using Algorithm 2. Let G = IB −Si/ρi , we com-
pute all of the G mode expansion matrices and finally calculate
the average. First, Gi = U

∑
V T by SVD, where Gi indicates

the mode i of G, and
∑ = diag(δ1, . . . , δr ), where r =

min (m, n). Suppose all the singular values are arranged in
nonincreasing order, then the solution of model (40) is be
Yi = U
V T with 
 = diag(σ1, . . . , σr ), where σ is given.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we make use of a series of structural exper-
iments to illustrate the performance of the proposed method.
First, we introduce the evaluation metrics and the baseline
methods for comparison in this article. After that, we discuss
the effects of the parameters of the proposed method and the
information of real image sequences by performing simulation
experiments. Finally, we perform experiments on real image
sequences to evaluate the performance of the proposed method.
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A. Evaluation Metrics and Baseline Methods

1) Evaluation Metrics: The probability of detection and
false alarm rate are the most important metrics to quantify the
performance of small target detection methods. The probability
of detection represents the probability that the true target is
determined as the target, and the false alarm rate represents
the probability that a false target is determined as the target,
which can be defined as follows:

Pd = number of true infrared targets

number of actual infrared targets
(41)

Fa = number of false infrared targets

number of all test infrared images
. (42)

In this article, it is noticeable that the target position is
detected if the detection result satisfies two requirements at
the same time: 1) the real target and the detection result have
overlapping pixels and 2) the distance between the real target
center and the detection result center pixel is at a threshold
(three pixels) inside.

The SCR gain (SCRG) and the background suppression
factor (BSF) are also commonly used indicators to detect
the performance of small target detection methods [6]. Larger
SCRG and BSF values indicate better small target enhance-
ment and background suppression.

2) Baseline Methods: To prove the superiority and robust-
ness of the proposed method, we use different baseline meth-
ods for comparison.

1) Weighted Local Difference Measure [17]: WLDM is
a method of using multiscale local difference priors
around the target.

2) Infrared Patch Image Model [2]: IPM exploits the low
rank of nonlocal backgrounds and the sparseness of
targets to translate target detection problems into low-
rank and sparse recovery problems.

3) Directional Saliency-Based Method [20]: Using the dif-
ference in optical point spread between the infrared
small target and the background, DSBM formulates the
target detection problem as significant area detection.

4) Spatio–Temporal Saliency Approach [19]: STSA uses
the temporal saliency and spatial saliency information
between different image frames and proposes a local
adaptive contrast operation to extract the spatiotemporal
saliency map of tensor data.

5) New Top-Hat Transform [36]: NTHT defines two dif-
ferent but related structural elements to enhance the
classic top hat transformation and consider the difference
information between the target and the surrounding area.

6) Reweighted Infrared Patch Tensor [6]: RIPT proposes
a novel reweighted infrared patch-tensor model based
on nonlocal self-correlationship in patch space and local
structure prior of the target.

B. Setting of Parameters and the Data Sets

In this section, we discuss the effects of the parameters in
our proposed method, including the values of p, the sharp
of the structuring element. After that, we perform seven real
image experiments to evaluate the effects of different values of

TABLE I

COMPARISON THROUGH DIFFERENT TOP-HAT REGULARIZATION

p on the traditional morphological constraints and ring mor-
phological constraints. Finally, we describe the information of
the real image sequences and compare the 3D maps of the
different methods in the different image sequences.

1) Parameter Settings: In the following experiments,
we compared the results in modeling with traditional top-hat
regularization and ring top-hat regularization. To verify the
superiority of ring top-hat regularization, we randomly select
several experimental results and calculate the average SCRG
and BSF, which are listed in Table I. We can clearly see the
improvement of the indicator, which also proves that the ring
top-hat regularization can utilize the information of the target
and surrounding pixels and improve the performance of the
detection.

In this article, we choose a larger size of s2B and a smaller
size of s1B when fixing s Bo. We set s2B = s BO , s BO ,
and s Bi as closely as possible in this article. Regarding the
setting of the parameter s Bo, we need to consider the shape
of the target. In general, the more similar s Bo is to the target,
the better the effect, including the shape of the structuring
element and the size of its pixels.

In this recovery of background, the value of p in the
weighted Schatten p-norm is especially important. Through
experiments, we fixed the value of p to 0.1. The detailed is
shown as Section IV-D.

For our proposed model, we set 2αWi /ρi , which is an
important parameter for optimization, to 1/

√
m, according to

the original work, where m is the number of rows of the
matrix obtained when the tensor is expanded in mode i . For
our model, we set w j = 1/(δ j (X)+ε), and ε = 10−16, where
ε prevents the denominator from becoming zero.

2) Data Sets: To facilitate visualizing the test data, we have
shown a single-frame image of each of the different test
sequences and the corresponding 3D map in Fig. 3.

Taking the diversity of the goals and the complexity of
the background into account, we used multiple real sequence
images to test our proposed method. In sequence 1, the target
is a slow-moving airplane, and the background is covered by
a large number of clouds. In sequence 2, the target is a long-
distance, regular-shaped ship, and there is a blurred sea–sky
background. In sequence 3, the target is a moving, irregularly
shaped aircraft, and there is a heavy sky cluttered background.
In sequence 4, the target is a moving, irregularly shaped ship,
and there is a blurred sea–sky background. In sequence 5,
the target is a moving, regular-shaped helicopter, and there is
a heavy sky cluttered background. In sequence 6, the target
is a short-distance, regular-shaped ship and there is a blurred
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Fig. 3. Real infrared image. The first row denotes the seven real image sequences, and the second row denotes the corresponding 3D gray distributions.

Fig. 4. (a1)–(a7) Denote the detected results of seven real images by using our method.

TABLE II

DETAILS OF REAL IMAGE SEQUENCES

sea–sky background. In sequence 7, the target is a fast-moving
ship with an irregular shape, and there is a heavy sea clutter
background. The details of each image include a heavy sea
cluttered background. The details of each image sequence are
described in Table II. Furthermore, we present the detected
results of seven original images in Fig. 4.

To evaluate our proposed method, we compare the 3D maps
of the different methods. The results of each image sequence
are shown in Fig. 5. From the 3D map of the target obtained
using our proposed method, we can see that the target area is
very prominent and that the proposed method suppressed the
background well. Fig. 5(e1)–(e7), show that the performance

of the NTHT [36] method is not ideal. The target area is much
cluttered, and it is difficult to distinguish the target location.
It can be seen from Fig. 5(f1)–(f7) that the target area has
been enhanced, but its clutter is too much, and background
suppression is not good. Obviously, our proposed method has
most outstanding performance for all the seven real image
sequences.

C. Tests on Real Images

In this section, we perform numerous experiments to
demonstrate the superiority of our method. First, we com-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHU et al.: INFRARED SMALL TARGET DETECTION VIA LOW-RANK TCTHR 9

Fig. 5. Enhanced results obtained through different baseline methods. (a1)–(a7), (b1)–(b7), (c1)–(c7), (d1)–(d7), (e1)–(e7), (f1)–(f7), and (g1)–(g7) Enhanced
results obtained by using the WLDB, IPM, DSBM, STSA, NTHT, RIPT, and our method, respectively.

pare the BSF and SCRG values of different real image
sequences with different methods. In addition, we compared
the Pd and Fa of each sequence and plotted the receiver

operating characteristic curve (ROC) plot. Finally, we com-
pared the area under curve (AUC) values of the different
sequences.
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Fig. 6. Characteristic (ROC) curves of six methods for the seven real image sequences. (a) Real image sequence 1. (b) Real image sequence 2. (c) Real
image sequence 3. (d) Real image sequence 4. (e) Real image sequence 5. (f) Real image sequence 6. (g) Real image sequence 7.

TABLE III

AVERAGE VALUES OF SCRG AND BSF OBTAINED THROUGH DIFFERENT METHODS

TABLE IV

AVERAGE VALUES OF PD AND FA OBTAINED THROUGH DIFFERENT METHODS

TABLE V

VALUES OF AUC OBTAINED THROUGH DIFFERENT METHODS

For the successive several frame images randomly selected
from the seven real infrared image sequences, the average
values of the BSF and SCRG obtained using WLDB [17],
IPM [2], DSBM [20], STSA [19], NTHT [36], RIPT [6],

and our method are listed in Table III. We find that the
indicator values of the baseline methods are low, while our
proposed method improved the indicator value of these images
significantly. Table III shows that the indicator values of the
NTHT [36] method are small, and the RIPT [6] method has
a better performance than the other baseline methods for the
seven real sequences. Overall, our proposed method has the
best performance for all seven real image sequences. These
experimental results show that our method can significantly
highlight the goals and better suppress the background.

In addition, we computed the corresponding Pd and Fa for
the earlier images. The details are listed in Table IV. We find
that the results of the other baseline methods are poor, while
the proposed method can improve the performance of these
images significantly. Table IV shows that the performance of
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TABLE VI

VALUES OF SCRG AND BSF OBTAINED THROUGH RING TOP-HAT REGULARIZATION BY USING DIFFERENT VALUE OF p

the NTHT [36] method in terms of Pd and Fa is not ideal
and that the IPM [2] method has a better performance. When
keeping Fa constant, we can see that the Pd value of our
proposed method is higher than that of the baseline methods.
Overall, our proposed method has an outstanding performance
for all seven real image sequences. These experimental results
show that our proposed method can significantly highlight the
goals, better suppress the background and identify targets more
accurately.

The characteristic ROC curve is a graphical plot of the
detection probabilities versus the false alarm rates. We provide
the ROC curves obtained by the baseline methods and the
proposed method for the seven image sequences in Fig. 6.
We see that our method has a better performance than the
baseline methods, especially for real sequences 3, 4, and 7.
The horizontal axis of the ROC curve is the Fa of the sequence.
The vertical axis is the Pd of the sequence. In addition,
we calculate the area under the curve AUC of each method.
The area under the ROC curve is widely utilized to evaluate the
classification performance of true or false targets. The values
of the AUC are within the range of 0–1. A larger AUC value
means a better target detection performance in the ROC curve
evaluation system. The AUC values are shown in Table V.
We can find that the AUC values of our proposed method are
larger than those of the baseline methods, which means that
our proposed method can better detect the target.

D. Parameter Analysis

In this article, the value of p in the weighted Schatten p-
norm is especially important for the detection result. From
the above-mentioned definition, we know that the Schatten p-
norm degenerates to the nuclear norm when p is taken as 1.
Therefore, to achieve a better target detection effect, we set
different p-values and conducted comparative experiments
when the values of p are taken as p =0.1, 0.3, 0.5, 0.7, and
0.9. We have listed the specific indicators in Table VI.

Here, we visually see the p-value corresponding to the
highest value of the indicator for different sequence data. For
sequence 1, the indicators reach a peak when the value of p
is 0.3 and 0.9. For sequence 5, the indicators reach a peak
when the value of p is 0.7. However, for sequences 2, 3, 4,
6, and 7, the indicators reach a peak when the value of p
is 0.1. Therefore, after weighing all the experimental results
in Table VI, we chose p = 0.1 in this article.

E. Complexity Analysis and Running Time

Here, we discuss the computational complexity of our model
and real running time with detailed specification of the running
environment. As shown in Algorithm 1, the algorithm com-
plexity is mainly composed of two parts: the solution of target
and generalized soft-thresholding computation (Algorithm 2).
Here, we define that the image size is M × N , and m, n are
the rows and columns of the mode-3 unfolding.

For the solution of the target, the computational complexity
is mainly determined by the ring top-hat regularization. The
dilate operation is computed in O(m ×n) time, and therefore,
the ring open operation can be computed in O(m2 × n2).
For the generalized soft thresholding, the computational com-
plexity is mainly composed of two parts: the complexity of
SVD (Algorithm 2, step 1) needs O(m × n); the complexity
of others step needs O(r × l), where, r is the number of
nonzero singular values, and l is the number of iterations in the
generalized soft thresholding. The computational complexity
of generalized soft thresholding is O(m × n + r × l). Based
on the earlier analysis, the computational complexity of our
model is around O(k(m2 × n2 + m × n + r × l)), where k is
the iteration number of the algorithm. Taking sequence 4 as
an example, the complexity is O(km2n2)), and we perform
the test using MATLAB R2016a on a laptop with Intel Core
i5-4210 CPU and 4-GB RAM, and the computational time is
10.30 s.

V. CONCLUSION

This article proposes a TCTHR model for the purpose
of infrared small target detection based on low-rank tensor
completion and ring top-hat regularization, which can be
solved efficiently using ADMM. Combining the structural
characteristics of low-rank tensors and the prior knowledge of
the structure of morphological structuring elements, our model
has achieved good infrared small target detection performance.
Through the experiments, we can intuitively observe that the
algorithm not only significantly increases the SCR and BSF
values of the image but also achieves a high-accuracy level
and low false alarm rate. We conducted many experiments on
the background of small target images in different complex
scenes, showing that our method is significantly better than
the classic methods.
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