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Abstract: Here, we report the method for copper-catalyzed N-arylation of diverse oxadiazolones by
diaryliodonium salts under mild conditions in high yields (up to 92%) using available CuI as a catalyst. The
developed method allows utilizing both symmetric and unsymmetric diaryliodonium salts bearing auxiliary
groups such as 2,4,6-trimethoxyphenyl (TMP). We found that the steric effects in aryl moieties determined the
chemoselectivity of N- and O-arylation of the 1,2,4-oxadiazol-5(4H)-ones. Mesityl-substituted diaryliodonium
salts demonstrated the high potential as a selective arylation reagent. The structural study suggests that steric
accessibility of N-atom in 1,2,4-oxadiazol-5(4H)-ones impact to arylation with sterically hindered diary-
liodonium salts. The synthetic application of proposed method was also demonstrated on selective arylation of
1,3,4-oxadiazol-2(3H)-ones and 1,2,4-oxadiazole-5-thiol.
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Introduction

Heterocyclic compounds are a pivotal class of organic
substances, which widely spread among natural and
artificial products. Nitrogen-containing heterocyclic
compounds are found in such substances as α-amino
acids and peptides, DNA, RNA, while the high affinity
of N-heterocyclic compounds to biological molecules
allows implementing it in drug design, pharmacology,

and medicinal chemistry.[1–4] Due to this reason, the
development of new approaches and methods to the
synthesis of heterocyclic core and its modification can
be considered as an essential task for organic
chemistry.[5]

One of the promising classes of heterocyclic
organic compounds is oxadiazolones, revealing versa-
tile biological activity (Figure 1). For instance, 1,3,4-
oxadiazol-2(3H)-one based compounds have been
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applied for the treatment of type 2 diabetes and
dementia (Capeserod).[6,7] The derivative of 1,2,4-
oxadiazol-4(5H)-ones, Azilsartan medoxomil, is regis-
tered as a drug for the therapy of hypertonia.[8] Another
example of perspective targets is 3-(2-meth-
oxyphenyl)-4-(3-(trifluoromethyl)phenyl)-1,2,4-oxa-
diazol-5(4H)-one demonstrating HIV inhibition
activity.[9] Despite the broad applicability of oxadiazo-
lones, the further evaluation of the biological activity
of these compounds can be hampered due to limited
numbers of synthetic approaches and methods of late-
stage modification, including N-arylation of 1,2,4-
oxadiazol-4(5H)-ones.

The reported synthesis of N-arylated 1,2,4-oxadia-
zol-5(4H)-one can be separated into two main ap-
proaches: a) condensation of N-hydroximoyl chlorides;
and b) direct arylation of 1,2,4-oxadiazol-5(4H)-one
core (Scheme 1). The first approach was reported in
the XIX century and consumed condensation of N-
hydroximoyl chlorides and anilines with the formation
of N’-hydroxy-N-arylbenzimidamide following carbox-
ylation with phosgene, ethyl chloroformate, or 1,1’-
carbonyldiimidazole.[10–12] Recently, Sharma et al. re-
ported a convenient way for the construction of 1,2,4-
oxadiazol-5(4H)-one core via interaction of cyana-
mides and N-hydroximoyl chlorides with the formation
of 1,2,4-oxadiazol-5(4H)-imine, which was readily
converted to 1,2,4-oxadiazol-5(4H)-one by simple
hydrolysis.[13]

To the best of our knowledge, the direct arylation
of 1,2,4-oxadiazol-5(4H)-ones is investigated poorly.
The formation of arylated derivatives was demon-
strated by Wang et al. in 2018[14] in the reaction

between aryne precursor and 1,2,4-oxadiazol-5(4H)-
ones. This approach has notably high chemoselectivity
of N/O-arylation in dependence on the presence of Ag-
catalyst. Despite this, the main drawbacks of this
method are the low regioselectivity of arylation by
substituted aryne precursors, low synthetic availability
and relatively high cost of ortho-(trimethylsilyl)phenyl
triflates.

We proposed that diaryliodonium salts are able to
be a source of electrophilic aryl intermediates in the
reaction with 1,2,4-oxadiazol-5(4H)-ones similarly to
arylation of various nucleophiles demonstrated
previously.[15–17] The hypervalent iodine reagents are
widely used for the transfer of alkynyl-,[16,18–20] alkenyl-
,[16,21,22] aryl groups,[16,23–26] etc.[27] Particularly important
the direct arylation of various nucleophiles by diary-
liodonium salts. Thus, the strong nucleophiles are able
to react with electron-poor aryl electrophile without
the addition of transition metals (for instance,
amines,[28–31] alkoxides,[32–34] S-nucleophiles,[35,36] etc.).
The weaker nucleophiles require higher temperatures
or the addition of transition metals, especially

Figure 1. Examples of biologically active oxadiazolones.

Scheme 1. Synthetic pathways to N-arylated 1,2,4-oxadiazol-
5(4H)-ones.
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copper.[24] The particular interest has been appealed by
the N-arylation of heterocycles. The electron-rich
heterocycles can be arylated by iodonium salts in
relatively mild conditions,[37–40] while electron-poor
(especially cyclic amides and related compounds)
require the addition of catalyst.[41–46] Also, the synthetic
procedures for preparing diaryliodonium salts make
available the versatile scope of these compounds with
high yields from common laboratory reagents.[47–54]

Nevertheless, the chemoselectivity of arylation of
N,O-containing heterocycles presents a challenging
task in hypervalent iodine chemistry. For instance,
selective N- and O-arylation of pyridine-2-ones was
problematic[58,59] until a recent report, where base-tuned
chemoselectivity has been applied.[60] It should also be
noted that the arylation of weak nucleophiles by
iodonium salts represents a complex task, which
affects the synthetic applicability of hypervalent iodine
reagents.

In the proposed contribution, we report a mild and
effective arylation procedure of oxadiazolones by
symmetrical and unsymmetrical diaryliodonium salts.

The developed approach displays the high applicability
for the functionalization of both 1,2,4-oxadiazol-
5(4H)-ones and 1,3,4-oxadiazol-2(3H)-ones bearing
various substituents. Moreover, the evaluation of
auxiliary group effects in unsymmetrical iodoniums
salts demonstrated the high regioselectivity of inter-
action with readily available aryl(mesityl)iodonium
salts.

Results and Discussion
We initially evaluated prospects of the arylation of 1a
employing diphenyliodonium triflate 2a. Indeed, the
current trends in the arylation of N-centered nucleo-
philes consume metal-free conditions, but the low
nucleophilicity of 1a did not favor the direct arylation
(Table 1, Entries 1–4). In order to find suitable con-
ditions, we added CuI as a cheap and available
catalyst, which has been already applied for the
arylation of hydantoins,[42] 2,7-naphthyridin-1(2H)-
one,[43] and other weak N-centered nucleophiles.[15,61]
The addition of 10 mol% CuI in the presence of

Table 1. Optimization of the arylation of 3-(p-tolyl)-1,2,4-oxadiazol-5-one with diphenyliodonium salts.[a]

Entry X� Base, (1.5 equiv.) Solvent T, °C Cat., (mol%) Yield,[b] %

1 TfO� tBuONa 1,2-DCE rt. None NR[c]

2 TfO� aq. NH3 1,2-DCE rt None NR[c]

3 TfO� Cs2CO3 1,2-DCE rt None NR[c]

4 TfO� NaOH 1,2-DCE rt None NR[c]

5 TfO� tBuONa 1,2-DCE rt CuI, (10) NR[c]

6 TfO� aq. NH3 1,2-DCE rt CuI, (10) NR[c]

7 TfO� Cs2CO3 1,2-DCE rt CuI, (10) 2
8 TfO� NaOH 1,2-DCE rt CuI, (10) 6
9 TfO� NaOH 1,2-DCE 60 CuI, (10) 77(59)[d]
10 TfO� NaOH 1,2-DCE 80 CuI, (10) 44
11 TfO� Et3N 1,2-DCE 60 CuI, (10) 83
12 TfO� Et3N 1,2-DCE 60 CuBr, (10) 76
13 TfO� Et3N 1,2-DCE 60 CuBF4 (MeCN)4 82
14 TfO� Et3N 1,2-DCE 60 Cu(OTf)2 65
15 TfO� Et3N MeCN 60 CuI, (10) 80
16 CF3COO� Et3N 1,2-DCE 60 CuI, (10) 77
17 BF4� Et3N 1,2-DCE 60 CuI, (10) 83
18 Br� Et3N 1,2-DCE 60 CuI, (10) 19
19 TfO� Et3N 1,2-DCE 60 CuI, (10) 58[e]
20 TfO� Et3N 1,2-DCE 60 CuI, (5) 52
[a] Reaction conditions: 1a (0.5 mmol), 2a (0.75 mmol), of 2a, base (0.75 mmol) in 5 mL of solvent for 24 h in Ar.
[b] Isolated yield.
[c] According to TLC.
[d] Reaction performed in air.
[e] 0.625 mmol of 2a was used.
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Cs2CO3 or NaOH furnished 3 in low yields (Table 1,
Entries 5–8). The increase of reaction temperature up
to 60 °C allowed the isolation of 3 in a better yield
(77%, Table 1, Entry 9), but a further increase of
temperature (up to 80 °C) led to the decrease the yield
(44%; Table 1, Entry 10). In view of that, the heating
of the reaction mixture up to 60 °C was considered as
an optimal. Under such conditions, we attempted to
avoid the use of argon, but the reaction conducted in
air resulted in a significant yield drop (59%; Table 1,
Entry 9). In the next stage, we changed the NaOH to
the triethylamine, which allowed the isolation of target
3 in 83% yield (Table 1, Entry 11). The reaction was
not sensitive to solvent and the anion in the catalyst
(Table 1, Entries 12–13, 15). An only slight decrease
of the yield (approximately 5%) was observed in the
case of CuBr (Table 1, Entry 12). However, utilization
of Cu(II)-catalyst decrease the yield down to 65%
(Table 1, Entry 14). The reaction was tolerant of the
non-coordinating anions in diaryliodonium salt (Ta-
ble 1, Entries 16–17). However, in the case of
diphenyliodonium bromide, the yield dramatically
drops to 19% due to competitive arylation of bromide-
anion (Table 1, Entry 18). The proposed method was
sensitive to the amounts of reacting compounds. Thus,
the addition of 5 mol% of the catalyst (Table 1,
Entry 20) or decreased amount of 2a (Table 1,
Entry 19) led to a sufficient decrease the yield of 3.

The best result was achieved (Table 1, Entries 11
and 17) when 2a or 2aBF4 were used as the aryl-
source. In a further study, we used diaryliodonium
triflates due to the convenience of its preparation using
Oxone[53,54] or mCPBA[62,63] as oxidants.

With optimized conditions in hands, we evaluated
the scope and limitations of the proposed method using
1,2,4-oxadiazol-5(4H)-ones 1a–o and symmetric dia-
ryliodonium salts 2a–f (Scheme 2). The arylation of
1a–o by 2a demonstrated the good tolerance to
electronic and steric effect of substituents in 1,2,4-
oxadiazol-5(4H)-one. 3-Aryl-1,2,4-oxadiazol-5(4H)-
ones 1a–g,i,k bearing moderate electron-withdrawing
and electron-donating substituents reacted with 2a to
give high yields of arylation products 3aa–ga,ia,ka
(>82%). Only for the NO2-substituent we observed a
slight decrease of product yield (70%), probably, due
to the limited solubility of 1h. Particularly important,
the reaction involving sterically-hindered ortho-substi-
tuted oxadiazolones 1c,f as reactants proceeded
smoothly to provide 3ca and 3fa in high to excellent
yields (86% and 92% correspondingly). The sufficient
decrease of yield was observed only for ortho-OMe
substituted 1 l, and product 3 la was isolated in 63%
yield. Looking ahead, we consider that ortho-OMe
substituted oxadiazolone 1 l demonstrated lower reac-
tivity in the reaction with other iodonium salts
(3 lb,ld,lf).

The reaction proceeded smoothly with oxadiazo-
lone 1j bearing competitive nucleophilic center as the
AcNH-group. We did not observe the arylation of
acetamido group, which evidenced high chemoselec-
tivity of reaction. Nevertheless, the yield of target 3ja
was slightly lower (61%). The suggested approach was
also applicable for the functionalization of oxadiazo-
lones containing heterocyclic (1m) and alkyl moieties
(1n–o). In both cases, the desired products were
isolated in good yields (3ma 77%, 3na 85%, and 3oa
82%).

The evaluation of scope using symmetrical iodo-
nium salts displays high acceptability toward halo-
substituted diaryliodonium salts 2b–c provided 3 in
higher yield for most substrates compared with 2a (the
only exception 3gc). In contrast, reaction with diary-
liodonium salt 2d bearing electron-withdrawing
groups (CF3) proceeded with lowered yield (3dd,
67%; 3 ld, 30%). Unsuccessful arylation was observed
for dibenziodolium triflate that resulted in the decom-
position of iodonium salt with the formation of 2-
iodobiphenyl. Besides the electronic effect in diary-
liodonium salts 2, the steric accessibility affects both
reaction pathways and product yields. In the case of
sterically hindered 2e having 2,5-xylyl-group, yields
of 3 decreased by approximately 10–20%. The bulkier
mesityl-derived iodonium salts 2f reacted differently
depend on steric effects in 1. Notable that for ortho-
substituted 1c,f,l the corresponding product was
prepared selectively in high yield for 3cf (82%) and
moderate yield for 3ff and 3 lf (62% and 43%
correspondingly). In contrast, the interaction of less
sterically hindered 1 with 2f, afforded both N-arylated
and O-arylated products with low yields (<27%)
(Scheme 3). Evaluation of results does not reveal any
dependence of yield and products ratio on electron
effects of substituents in 1.

Notably, the molecular structure of seven com-
pounds 3 was confidently confirmed by single-crystal
XRD analysis. The obtained crystal structure of 3 can
indirectly explain observed selectivity for ortho-sub-
stituted 1c,f,l that exhibited larger angle between plane
normals (ffα) of aryl ring (belong to 1), and 1,2,4-
oxadiazol-5-one rings in 3. For instance, in ortho-
substituted 3fa,ff,lb it is more than 55°, while in para-
substituted 3ea and 3ka, and in reported structure 3ba
(CDS code: FOVVUH01)[13] the ffα less 36°. The plane
angles in the product can explain the steric hindrance
for bulky mesityl species (Figure 2, a–b). Notably, that
in cases when the phenyl ring rotated oppositely, the
determined ffα is more than 90° we used for compar-
ison calculated adjacent angle (180°–ffα) (Figure 2, c–
d). Moreover, observed selectivity N,O-arylation of
para-substituted with 2f can be explained by lower
steric hindrance of O-atom compared to N-atom in
combination with kinetic features of reaction to lower
nucleophilicity of oxygen than nitrogen.
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Scheme 2. Scope of arylation of 1,2,4-oxadiazol-5(4H)-ones 1a–o by symmetric diaryliodonium salts 2a–f (Top panel); single
crystal XRD structures of products 3 (Bottom panel, the detailed description is provided in SI).[a,b]
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Based on experimental results and previous
reports[24,42,46] we proposed the mechanism of the N-
and N/O-arylation of 1,2,4-oxadiazol-5-ones (Sche-
me 4,a). Plausible mechanism includes the oxidative
addition of CuI complex with Et3N to diaryliodonium
salt following ligand exchange with deprotonated
oxadiazolone and reductive elimination (Scheme 4,a).
In the case of N/O-arylation of 1, we suppose that the
attack of product of oxidative addition is hampered for
N-nucleophilic site due to steric hindrance. Thus, the
kinetically controlled product of O-arylation has been
formed in the more considerable amount (Scheme 4,b)

In the next step, we tested the applicability of the
unsymmetrical iodonium salts in the arylation of 1a
under optimized conditions (Table 2, Entries 1–4). The
main drawback of unsymmetrical iodonium salts is
connected with regioselectivity issues controlled by

steric or electronic effects in iodonium salts[64] or
external physical triggers such as plasmon
resonance.[65] However, the application of unsymmet-
rical iodonium salts can access arylation products,
which are difficult to prepare using symmetrical
iodonium salts due to synthetic limitations. For
instance, preparation of symmetrical iodonium salts
bearing electron-withdrawing groups proceed in low
yields and often required expensive reagents as
corresponding boronic acid.[66,67] Similar issues are
revealed in the case of challenging regiospecific syn-
thesis of symmetrical iodonium salts.

Previously, Stuart et al. reported the preparation and
synthetic applicability of aryl(2,4,6-trimethoxyphenyl)
iodonium salts as selective arylation agents for various
nucleophiles (C, N, O, and S).[50,51,68] We tested readily
accessed phenyl(2,4,6-trimethoxyphenyl)iodonium to-
sylates and trifluoroacetates for arylation of 1a. In
both cases, we succeeded in isolation of desired
products with a slightly higher yield of 3aa (85%)
(Table 2, Entries 1–3). Our previous results in arylation
by bis(mesityl)iodonium salt 2f were promising for
aryl(mesityl)iodonium salts as a selective reagent for
arylation of 1. Indeed, utilization of 2 i leads to
selective formation of 3aa in the highest yields (87%).

Further comparison of iodonium salts reactivity
demonstrated that utilization of unsymmetrical iodo-
nium salts bearing electron-withdrawing substituent as
CF3-group was more efficient and led to the sufficient
increase of yields up to 86% (reaction of 2d gave 3dd
only in 67% yield – (Scheme 2)). Nevertheless, the
application of mesityl-substituted iodonium salts (such
as 2k) led to the formation of O-arylated product in
low yield (compound B, Table 2), hampering the
isolation of A.

We found a few more reasons for the preferable
utilization of 2,4,6-trimethoxyphenyl-substituted
(TMP-substituted) iodonium salts instead of mesityl
ones. First of all, TMP-substituted iodonium salt
bearing NO2-group 2 l was more reactive over mesityl-

Scheme 3. Arylation of 1,2,4-oxadiazol-5(4H)-one 1 with 2 f.[a,b]

Figure 2. Steric accessibility of N-atom in dependence on
angles between plane normals.
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analog 2m (80% vs. 53% yield of 3al). Similar
behavior has been demonstrated in the arylation of
oxadiazolone 1 l by 2j and 2k with the formation of

3 ld product. 3-(2-Methoxyphenyl)-4-(3-(trifluorometh-
yl)phenyl)-1,2,4-oxadiazol-5(4H)-one 3 ld has been
proved as a potent anti-human immunodeficiency virus

Scheme 4. Plausible mechanism of arylation of 1,2,4-oxadiazol-5-ones with diaryliodonium salts.
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(HIV) molecule.[9] Our initial experiments with sym-
metric iodonium salts allowed to isolate 3 ld in 30%
yields (Scheme 2). Implementation of TMP-substituted
iodonium salt 2j resulted only in 43% (Table 2,
Entries 7 and 8). Overall, albeit mesityl-substituted
iodonium salt in some cases demonstrated better yield
than TMP-substituted iodonium salt, the utilization of
the last ones sufficiently increased the yield of 3 ld up
to 75%, while the use of mesityl-substituted iodonium
salt 2k ones led to more sustainable results in both
selectivity and yield of arylation.

The evaluation of iodonium salts reactivity allowed
us to sufficiently improve the yields of products 3
compared to symmetrical iodonium salts. Thus, we
successfully prepared the arylated oxadiazolones 3al–
ks using unsymmetrical 2 l,n–s with better yields (68–
88%) (Scheme 5). The yield of product does not
depend on the electronic effects of substituents in the
para-position of diaryliodonium salts The reaction
proceeded smoothly with electron-withdrawing (3al,
80%; 3kq, 70%) and electron-donating groups (3cn,
68%; 3gp 77%). The reaction with meta-substituted
iodonium salts 2j,o,r give good yields (3 fo, 72%; 3ar
81%). However, in the case of sterically hindered
ortho-chlorophenyl-substituted iodonium salt 2s, the
desired product 3cs was isolated in lower yield 19%
for ortho-substituted oxadiazolone 1c and in trace
amount for 1b. The decrease of yield is in agreement
with the behavior of sterically hindered diaryliodonium
salt 2f and reported data about arylation of N-
nucleophiles with TMP-substituted iodonium
salts.[37,39,42]

To our delight, the reaction‘s scope could be
extended to 1,3,4-oxadiazol-2(3H)-ones 5 (Scheme 6,
a). The published approaches to arylation of 1,3,4-
oxadiazol-2(3H)-ones limited only to corresponding 5-
alkyl-derivatives prepared by interaction with haloar-

Table 2. Optimization and initial evaluation of arylation of 1,2,4-oxadiazol-5(4H)-one 1 by unsymmetrical iodonium salts.[a]

Entry Substrates Time, h Yield of A,[b] % Yield of B, % Yield of C, %
1, R1 2, R2 Aux X–

1 1a, 4-Me 2g, H TMP TsO� 5 3aa, 74 – -
2 2h, H TMP CF3COO� 5 3aa, 78 – –
3 2h, H TMP CF3COO� 24 3aa, 85 – –
4 2 i, H 2,4,6-(Me)3C6H2 TfO� 24 3aa, 87 – –
5 1d, 3-Me 2 j, 3-CF3 TMP CF3COO� 24 3dd, 82 – –
6 2k, 3-CF3 2,4,6-(Me)3C6H2 TfO� 24 3dd, 86c) 9[c] –
7 1 l, 2-OMe 2 j, 3-CF3 TMP CF3COO� 24 3 ld, 75 – –
8 2k, 3-CF3 2,4,6-(Me)3C6H2 TfO� 24 3 ld, 43c) 7[c] –
9 1a, 4-Me 2 l, 4-NO2 TMP CF3COO� 24 3al, 80 – –
10 2m, 4-NO2 2,4,6-(Me)3C6H2 TfO� 24 3al, 53c) 6[c] 4[b]

[a] Conditions: 0.5 mmol of 1, 0.75 mmol of 2, 0.75 mmol of Et3N, 10 mol% CuI in 5 mL of 1,2-DCE in Ar atmosphere.
[b] Isolated yield.
[c] According to the NMR experiments.

Scheme 5. Arylation of 1,2,4-oxadiazol-5(4H)-one 1 by unsym-
metrical diaryliodonium salts 2.[a,b]
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enes under harsh conditions.[69,70] The application of
the developed procedure allowed to isolate the appro-
priate derivatives 6 in good yields (>65%) independ-
ently from the electronic and steric effect of substitu-
ents in 5 The products 6b and 6f was obtained
selectively in high yield (86 and 84% correspondingly)
albeit the use of sterically hindered iodonium salts 2e
and 2f. Obviously, the efficiency of reaction with 5
revealed a similar to 1 pattern and proceeded smoothly
for most substrates. In further experiments, we exam-
ined the synthetic applicability of the method for
arylation of 3-(p-tolyl)-1,2,4-oxadiazole-5-thiol 7
(Scheme 6, b). The soft nucleophilic nature of S-center
in 7 sufficiently changed the reaction selectivity
towards S-arylation.[35] The reaction proceeded

smoothly, and product 8 was formed after 1 h of
stirring. Notable, that arylation of 3-(aryl)-1,2,4-
oxadiazole-5-thiol is unknown and proposed procedure
can be effective tool for synthesis of 5-(arylthio)-3-
(aryl)-1,2,4-oxadiazoles.

Conclusion
In conclusion, we have developed the method for the
N-arylation of oxadiazolones derivatives with symmet-
ric and unsymmetric diaryliodonium salts under mild
conditions using inexpensive CuI as a catalyst. The
utilization of symmetric and unsymmetric diaryliodo-
nium salts sufficiently facilitates access to valuable
arylated cyclic amides. Impact of steric effects in

Scheme 6. Arylation of 1,3,4-oxadiazol-2(3H)-ones 5 and 3-(p-tolyl)-1,2,4-oxadiazole-5-thiol 7 by symmetric diaryliodonium
salts.[a,b]
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diaryliodonium salts and 1,2,4-oxadiazol-5(4H)-ones
allow to utilize ready available mesityl-substituted
iodonium salts as an alternative to highly selective aryl
(TMP)iodonium salts. The proposed method facilitates
access to novel derivatives of oxadiazolones, including
N-arylated 1,2,4-oxadiazol-5(4H)-ones and 1,3,4-oxa-
diazol-2(3H)-ones, and S-arylated 1,2,4-oxadiazole-5-
thiols. We believe that the proposed approach is able to
increase the synthetic applicability of iodonium salts
and, moreover, provide a novel way for the design of
heterocycles based on oxadiazolones.[56]

Experimental Section
General procedure for the preparation of 3, 4, 6. The solution of
triethylamine (0.75 mmol, 104 μL) in 1,2-DCE (5 mL) was
added to mixture of oxadiazolone (1 or 5, 0.5 mmol, prepared
by slightly modified reported procedures),[71,72] diaryliodonium
salt (2, 0.75 mmol) and CuI (10 mol%, 9.5 mg) under Ar
atmosphere. The resulted mixture was heated at 60 °C for
24 hours. Then the solvent was removed under reduced
pressure, and the product was purified by silica gel column
chromatography (eluent hexane : EtOAc, EtOAc 0!20% or
hexane : DCM, DCM 0!50% for the synthesis with TMP-
substituted iodonium salts).
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