Tetrahedron Letters 67 (2021) 152873

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

ELSEVIER

Synthesis of dihydro-[1,3]oxazino[4,3-a] isoindole and tetrahydroisoquinoline through Cu(OTf)₂-catalyzed reactions of *N*-acyliminium ions with ynamides

etrahedroi

Rui-Jun Ma^{a,b}, Wen-Ke Xu^a, Jian-Ting Sun^a, Ling Chen^a, Chang-Mei Si^{a,*}, Bang-Guo Wei^a

^a Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China ^b Center for Gastrointestinal Endoscopy, Shanxi Provincial People's Hospital, 29 ShuangTa Road, TaiYuan 030012, China

ARTICLE INFO

Article history: Received 31 December 2020 Revised 20 January 2021 Accepted 22 January 2021 Available online 4 February 2021

Keywords: Dihydro-[1,3]oxazino[4,3-a] isoindole Dihydro-[1,3]oxazino[4,3-a] tetrahydroisoquinoline N,O-acetals Cu(OTf)₂-Catalyzed

ABSTRACT

An efficient approach to access functionalized dihydro-[1,3]oxazino[4,3-a] isoindole and tetrahydroisoquinoline skeletons has been developed through the addition-cyclization process of ynamides **8** with *N*-acyliminium ions generated from *N*,O-acetals **6**,7. The reactions were conducted under the catalysis of Cu(OTf)₂, and a number of functionalized dihydro-[1,3]oxazino[4,3-a] isoindoles **9a-9y** and tetrahydroisoquinolines **10a-10g**, **11a-11p** were generated in 48–98% yields. When chiral ynamides **8n-8u** were used, optically pure products **11a-11p** could be obtained with good to excellent yields and diastereoselectivities.

© 2021 Elsevier Ltd. All rights reserved.

Discovery of efficient methodology to access skeletons for pharmaceutical use is one of the most important research areas in synthetic chemistry [1]. Nitrogen-containing heterocycles, due to wide existence in nature, are valuable subunits in these fields [2]. As a prime instance (Fig. 1), substituted isoindoline and tetrahydroisoquinoline (THIQ) skeletons 1 and 2 [3,4], the key frameworks of several pharmacologically interesting molecules and clinical drugs, have received intensive attention in recent years. Emetine (3) exhibits antiprotozoic activity [5] and is used in the treatment of lymphatic leukemia [6]. In addition, its close structural analogue, tubulosine, shows potent antitumor activity [7]. So far, tremendous efforts have been devoted to the construction of functionalized isoindoline skeleton 1 or tetrahydroisoquinoline scaffold 2, and several important methods have been established. However, drug-like fragments like dihydro-[1,3]oxazino[4,3-a] isoindole 4 and tetrahydroisoquinoline skeletons **5** are rarely investigated [8].

N-Acyliminium ions [9], acting as important organic synthetic intermediates, are widely used in the formation of C—C and C-heteroatom bonds [10], mostly through intermolecular addition and intramolecular cyclization [11] with various nucleophilic reagents. For examples, Hiemstra and Speckamp group achieved a synthetic method to oxazinones through the intermolecular reactions of

* Corresponding author. E-mail address: sicm@fudan.edu.cn (C.-M. Si). N-alkoxycarbonyliminium ions with propargyltrimethylsilane (Fig. 2, 1) [12a]. Recently, Maruoka group established a BF₃-catalyzed process to form the same skeleton through the reactions of Boc-protected aminals with alkynes (Fig. 2, 2) [12b]. Ynamides, known as nitrogen-substituted alkynes with an electron-withdrawing group at the nitrogen atom, have undoubtedly become one of the most popular synthons due to their high reactivity and high regio- and stereoselectivity [13]. As a result, they have been successfully applied in the syntheses of many important skeletons in the past decade [14-21]. In recent years, we studied various nucleophilic reactions of N-acyliminium ions, and established facile approaches to pyrido or pyrrolo[1,2-c] [1,3]oxazin-1-ones and 3,4-dihydro-1,3-oxazin-2-ones by reacting with alkynes or ynamides (Fig. 2, 3-4) [22]. On the basis of our continuous efforts in N, O-acetals and ynamides, we envisioned that the iminium ions derived from the *N*, *O*-acetals **6** and **7** [22f] could undergo a nucleophilic addition-cyclization process with ynamides **8** [22a,b] to give substituted dihydro-[1,3]oxazino[4,3-a] isoindole and tetrahydroisoquinoline skeletons, respectively (Fig. 2, 5).

Our investigation started with the reaction of *N*,*O*-acetal **6a** with ynamide **8a**. When the mixture of **6a** and **8a** was stirred without any Lewis acid at room temperature, no desired product was afforded (Table 1, entry 1). The treatment with TMSOTf or BF₃OEt₂ at -78 °C ~ -45 °C for 2 h could lead to the desired product **9a** in 45% and 70% yield, respectively (Table 1, entries 2–3). Unfortunately, the reaction became complicated at room temperature. In

Fig. 1. Several structures of privileged azacycles and corresponding benzo heterocycles.

Hiemstra and Speckamp's work.^{12a}

Fig. 2. Lewis Acid-promoted nucleophilic addition-cyclization of *N*, *O*-acetals with ynamides.

7 (n=1)

Tetrahedron Letters 67 (2021) 152873

Entries ^a	LA (equiv.)	Temp/°C	Solvent	Y%(9a) ^b
1	-	rt	DCM	NR
2	TMSOTf (1.0)	-78 to -45	DCM	45
3	$BF_{3}OEt_{2}$ (1.0)	-78 to -45	DCM	70
4	$AuCl_{3}(0.1)$	rt	DCM	23
5	$AgSbF_6$ (0.1)	rt	DCM	<10
6	SIPrAuCl (0.1)	rt	DCM	34
7	SIPrAuCl/AgSbF ₆ (0.1)	rt	DCM	37
8	PPh ₃ AuCl/AgNTf ₂ (0.1)	rt	DCM	26
9	PPh ₃ AuCl/AgSbF ₆ (0.1)	rt	DCM	31
10	$Cu(OTf)_2(0.1)$	rt	DCM	54
11	$Cu(OTf)_2$ (0.2)	rt	DCM	73
12	$Cu(OTf)_2$ (0.5)	rt	DCM	40
13	CuSO ₄ (0.2)	rt	DCM	NR
14	$CuCl_2$ (0.2)	rt	DCM	22
15	$CuBr_2(0.2)$	rt	DCM	20
16	$Cu(OTf)_2$ (0.2)	rt	DCE	62
17	$Cu(OTf)_2$ (0.2)	rt	THF	18
18	$Cu(OTf)_2$ (0.2)	rt	Toluene	Trace

^a The reaction was performed with **6a** (0.5 mmol), **8a** (0.6 mmol) and catalyst in dry solvent (3 mL) at assigned reaction temperature for 2 h under Ar atmosphere.
^b Isolated yield; NR = no reaction.

order to improve the yield under mild reaction conditions, various metal Lewis acids were screened. AuCl₃, AgSbF₆, SIPrAuCl, SIPrAuCl/AgSbF₆, PPh₃AuCl/AgNTf₂, PPh₃AuCl/AgSbF₆ could afford the desired product, albeit with low yield (<10~31%, Table 1, entries 4–9). Delightfully, Cu(OTf)₂ could lead to the desired product **9a** in 54% yield (Table 1, entry 10). When the use of Cu (OTf)₂ was increased to 0.2 equivalent, the yield could be significantly improved to 73% (Table 1, entry 11). Further increasing the use of Cu(OTf)₂ to 0.5 equivalent led to the erosion of yield to 40% (Table 1, entry 12). Other copper salts, like CuSO₄, CuCl₂ and CuBr₂ did not result in any satisfactory yield. Different reaction solvents including DCE, THF, toluene were also examined. Among them, DCE led to moderate yield of **9a** (62%, Table 1, entry 16), while THF gave much lower yield of **9a** and toluene was not suitable for this transformation at all (Table 1, entries 17 and 18).

Next, we turned to investigate the scope and limitation of such cyclization of N,O-acetals 6a-6e with ynamides 8a-8l (Table 2). A variety of substitutions at the acetylene phenyl ring and nitrogen of ynamides 8a-81 were investigated. TsNBn-type ynamides with different para-substituted (methyl, methoxyl and halogen) aryls were surveyed under the optimal conditions, as summarized in Table 2. In general, all these substituted aryl TsNBn ynamides (8b-8g) could smoothly react with N, O-acetals 6a, affording the desired products 9b-9g in moderate yields. Thiophene substituted TsNBn vnamide 8h was also a suitable substrate for this cyclization reaction, leading to the desired products **9h** in 62% yield. When Bn group in ynamides was replaced with different aryl, alkyl, allyl groups, the corresponding derivatives 8i-8l also worked well to give the desired 9i-91 in moderate yields. Different substitutions at the isoindole ring were also investigated. 5-Chloro-substituted isoindole N, O-acetal 6b could smoothly react with ynamides 8a-81, affording the desired products 9m-9u in 66-87% yields. 6bromo, 4-bromo, 6-methoxy isoindole N, O-acetals 6c-6e were also

10,11 (n=1)

Table 2

The reactions of N,O-acetals 6a-6e with Ynamides 8a-8l.^{a-b}

^a The reaction was performed with **6** (0.5 mmol), **8** (0.6 mmol) and $Cu(OTf)_2$ (0.1 mmol) in dry DCM (3 mL) under Ar atmosphere at room temperature for 2 h. $^{\rm b}$ Isolated yield.

suitable substrates for this cyclization reaction, and the desired products 9v-9x could be obtained in 64-86% yields. In addition, the replacement of Ts group in ynamides with Ms also gave positive results under the optimal conditions, and the desired products 9y was obtained in 61% yield. The chemical structures of 9a-9y were unambiguously confirmed based on the X-ray crystallographic analysis of compound **91** (see the Supporting Information) [23].

After the successful cyclization of isoindole N, O-acetals 6a-6e with ynamides 8a-81 to produce a variety of substituted dihydro-[1,3]oxazino[4,3-a] isoindoles, we turned our attention to investigate the reaction of tetrahydroisoquinoline N, O-acetal **7a** with

Table 3

The reactions of N,O-acetal **7a** with Ynamides **8a-8g.**^{a-b}

^a The reaction was performed with **7a** (0.5 mmol), **8** (0.6 mmol) and $Cu(OTf)_2$ (0.1 mmol) in dry DCM (3 mL) under Ar atmosphere at room temperature for 2 h. ^b Isolated yield.

ynamides in order to achieve dihydro-[1,3]oxazino[4,3-a] tetrahydroisoquinoline skeleton (Table 3). To our delight, Bn, Me, $n-C_4H_9$ -NTs ynamides **8a-8c** could react with *N*, *O*-acetal **7a**, affording the desired dihydro-[1,3]oxazino[4,3-a] tetrahydroisoquinolines **10a-10c** in 86%, 64%, 93% yields, respectively. The replacement of Ts group in ynamides with Ms and 4-ClC₆H₄SO₂ also gave positive results under the optimal conditions, and the desired products **10d** and **10f** were obtained in 98% and 87% yields, respectively. Notably, oxazolidinone substituted ynamide **8m** could also afford the desired product **10e** in moderate yield. In addition, the replacement of phenyl group in ynamide **10a** with 4-Me-phenyl also worked well to give the desired products **10g** in 96% yield. The chemical structures of **10a-10g** were unambiguously confirmed based on the X-ray crystallographic analysis of compound **10g** (see the Supporting Information) [24].

Motivated by the successful reaction with oxazolidinone ynamide **8m**, we further explored the use of several chiral oxazolidinone ynamides. As summarized in Table 4, when optically pure phenyloxazolidinone and isopropyloxazolidinone ynamides were used, the desired products **11a-11k** were successfully obtained in 68%-97% yields, albeit with moderatate diastereoselectivities. Interestingly, chiral benzyloxazolidinone and (4R,5S)-4-methyl-5phenyloxazolidinone ynamides could afford the desired products **11l-11p** in 57%-84\% yields, along with excellent diastereoselectivities (up to dr > 20:1).

Tetrahedron	Letters	67	(2021)) 152873
retrancaron	Luuis	01	2021	152015

Table 4 The reactions of N,O-acetals 7 with Ynamides 8n-8u.^{a-b}

^a The reaction was performed with **7a-7c** (0.5 mmol), **8n-8u** (0.6 mmol) and Cu (OTf)₂ (0.1 mmol) in dry DCM (3 mL) under Ar atmosphere at room temperature for 2 h.

^c dr was determined by HPLC.

To determine the relative configuration by crystals, we tried to introduce a large group. Dihydro-[1,3]oxazino[4,3-a] tetrahydroisoquinolin **11f** and **11m** were coupled with 2-naphthaleneboronic acid, under standard Suzuki-Miyaura conditions [PdCl₂ (dppf)₂/K₃PO₄], smoothly afforded products **12** and **13** in 62% and 58% yields (Scheme 1) [25]. Unfortunately, both products obtained were foam solids and failed for crystallization.

The ECD calculations were used to assign the absolute configuration of **12**. As shown in Fig. 3, the experimental ECD curve of **12** was in good agreement with the calculated one for M336-S. Therefore, the absolute configurations of the new stereogenic centers for **11a-11p** were determined as S [26].

^b Isolated yield.

Scheme 1. Suzuki-Miyaura coupling reaction of **11f** and **11 m** with boronic acid.

Fig. 4. Proposed mechanism for Cu(OTf)₂-catalyzed nucleophilic addition-cyclization process.

A plausible mechanism for this Cu(OTf)₂-catalyzed nucleophilic addition-cyclization process was illustrated in Fig. 4 on the basis of our obtained experimental results and the precedent ynamide chemistry [27]. First, the triple bond in ynamide **8** was activated by copper (II) triflate. Then, the resulting vinyl Cu(II) intermediate **int-1** was attacked by **6**/7 through the cleavage of *t*-butyl group to give **int-2**, in which an intramolecular cyclization occurred to form the desired product **9**/10/11.

In summary, we established a novel and efficient approach for the synthesis of functionalized dihydro-[1,3]oxazino[4,3-a] isoindole **9a-9y** and tetrahydroisoquinoline **10a-10g**, **11a-11p**. Both isoindole *N*, *O*-acetals **6** and tetrahydroisoquinoline *N*, *O*-acetals **7** proved to be suitable dipolarophiles for such a Cu(OTf)₂-catalyzed nucleophilic addition-cyclization process. As a result, a number of functionalized dihydro-[1,3]oxazino[4,3-a] isoindole **9a-9y** and tetrahydroisoquinoline **10a-10g**, **11a-11p** were achieved in moderate to good yields (48–98%). In addition, the chiral ynamides **8n-8u** could lead to optically pure products **11a-11p** with moderate to excellent yields and diastereoselectivities.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank the National Natural Science Foundation of China (21702032 to C.-M. Si and 21772027 to B.-G. Wei) for financial support. The authors also thank Dr. Han-Qing Dong (Arvinas, Inc.) for helpful suggestions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tetlet.2021.152873.

References

- (a) A.P. Taylor, R.P. Robinson, Y.M. Fobian, D.C. Blakemore, L.H. Jones, O. Fadeyi, Org. Biomol. Chem. 14 (2016) 6611–6637;
 - (b) S.G. Moss, I.A. Pocock, J.B. Sweeney, Chem. Eur. J. 23 (2017) 101–104,
 (c) J. Aretz, U.R. Anumala, F.F. Fuchsberger, N. Molavi, N. Ziebart, H. Zhang, M. Nazare, C. Rademacher, J. Am. Chem. Soc. 140 (2018) 14915–14925;
 (d) C. Patel, M. Mohnike, M.C. Hilton, A. McNally, Org. Lett. 20 (2018) 2607–
 - 2610; (c) X Zhang A McNally ACS Catal 0 (2010) 4962 4866;
 - (e) X. Zhang, A. McNally, ACS Catal. 9 (2019) 4862–4866;
 - (f) B. Zhao, L. Li, Y. Wang, Z. Zhou, Chin. Chem. Lett. 30 (2019) 643–649;
 (g) R. Gujjarappa, N. Vodnala, C.C. Malakar, Adv. Synth. Catal. 362 (2020) 4896–4990;
 - (h) O.O. Grygorenko, Tetrahedron Lett. 61 (2020) 151645.
- [2] (a) R.D. Taylor, M. MacCoss, A.D. Lawson, Rings in drugs, J. Med. Chem. 57 (2014) 5845–5859;
 (b) E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257–
- (b) E. Vitaku, D.I. Sinthi, J.I. Natuason, J. Wed. Chem. 57 (2014) 10257– 10274;
 (c) O.I. Afanasyev, E. Podyacheva, A. Rudenko, A.A. Tsygankov, M. Makarova, D.

(c) O.I. Afanasyev, E. Podyacheva, A. Rudenko, A.A. Isygankov, M. Makarova, D. Chusov, J. Org. Chem. 85 (2020) 9347–9360.

- [3] (a) N. Hucher, A. Daich, B. Decroix, J. Heterocycl. Chem. 35 (1998) 1477–1483;
 (b) A. Aliyenne, F. Pin, V.D. Nimbarte, A.M. Lawson, S. Comesse, M. Sanselme, V. Tognetti, L. Joubert, A. Daich, Eur. J. Org. Chem. 2016 (2016) 3592–3602;
 (c) S. Takizawa, M. Sako, M.A. Abozeid, K. Kishi, H.D.P. Wathsala, S. Hirata, K. Murai, H. Fujioka, H. Sasai, Org. Lett. 19 (2017) 5426–5429;
 (d) M. Hatano, K. Nishikawa, K. Ishihara, J. Am. Chem. Soc. 139 (2017) 8424–8427.
- [4] (a) H. Richter, R. Froehlich, C.-G. Daniliuc, O. Garcia Mancheno, Angew. Chem., Int. Ed. 51 (2012) 8656–8660;
 (b) S. Lin, L. Deiana, A. Tseggai, A. Cordova, Eur. J. Org. Chem. 2012 (2012) 398–

408; (c) W. Li, Q. Jia, Z. Du, K. Zhang, J. Wang, Chem. - Eur. J. 20 (2014) 4559–4562; (d) L. Mengozzi, A. Gualandi, P.G. Cozzi, Chem. Sci. 5 (2014) 3915–3921;

(e) Z. Xie, X. Zan, S. Sun, X. Pan, L. Liu, Org. Lett. 18 (2016) 3944–3947.

Rui-Jun Ma, Wen-Ke Xu, Jian-Ting Sun et al.

[5] (a) G.R. Pettit, N. Melody, J.-C. Chapuis, J. Nat. Prod. 81 (2018) 458-464;

- (b) W.S.F. Junior, M.P. Cruz, L.L. dos Santos, M.F.T.J. Mederios, Herb. Med. 2 (2012) 103-112;
- (c) W. Wiegrebe, W.J. Kramer, M. Shamma, J. Nat. Prod. 47 (1984) 397-408;
- (d) C. Szantay, L. Toke, P. Kolonits, J. Org. Chem. 31 (1966) 1447–1451.
 [6] (a) S.C. Miller, R. Huang, S. Sakamuru, S.J. Shukla, M.S. Attene-Ramos, P. Shinn, D. Van Leer, W. Leister, C.P. Austin, M. Xia, Biochem. Pharmacol. 79 (2010) 1272-1280:
 - (b) K. Boon-Unge, Q. Yu, T. Zou, A. Zhou, P. Govitrapong, J. Zhou, Chem. Biol. 14 (2007) 1386-1392
- [7] (a) C. Szantay, G. Kalaus, Chem. Ber. 102 (1969) 2270-2272; (b) B.-H. Kim, E.H. Yi, S.-K. Ye, B.-H. Kim, S.-K. Ye, E.H. Yi, S.-K. Ye, Y.-C. Li, I.-C. Park, J.Y. Park, S.-K. Ye, J. Breast Cancer 22 (2019) 362-374.
- [8] (a) T. Ullrich, K. Baumann, K. Welzenbach, S. Schmutz, G. Camenisch, J.G. Meingassner, G. Weitz-Schmidt, Bioorg. Med. Chem. Lett. 14 (2004) 2483-2487:

(b) Z.-R. Xu, C.M. Tice, W. Zhao, S. Cacatian, Y.-J. Ye, S.B. Singh, P. Lindblom, B. M. McKeever, P.M. Krosky, B.A. Kruk, J. Berbaum, R.K. Harrison, J.A. Johnson, Y. Bukhtiyarov, R. Panemangalore, B.B. Scott, Y. Zhao, J.G. Bruno, J. Togias, J. Guo, R. Guo, P.J. Carroll, G.M. McGeehan, L. Zhuang, W. He, D.A. Claremon, J. Med. Chem. 54 (2011) 6050-6062.

- [9] P. Wu, T.E. Nielsen, Chem. Rev. 117 (2017) 7811-7856.
- [10] (a) For selected examples, see: P.M. Esch, H. Hiemstra, W.N. Speckamp Tetrahedron Lett. 29 (1988) 367-370;
 - (b) M.J. Fisher, L.E. Overman, J. Org. Chem. 55 (1990) 1447-1459;
 - (c) S. Suga, A. Nagaki, Y. Tsutsui, J. Yoshida, Org. Lett. 5 (2003) 945–947;

(d) A. Galván, J. Calleja, F.J. Fañanás, F. Rodríguez, Chem. Eur. J. 21 (2015) 3409-3414:

- (e) L. Chen, J.-L. Yu, S.-B. Tang, Y. Shao, J.-T. Sun, Org. Lett. 21 (2019) 9050-9054.
- [11] (a) W.N. Speckamp, M.J. Moolenaar, Tetrahedron 56 (2000) 3817-3856; (b) L. Andna, L. Miesch, Org. Lett. 20 (2018) 3430-3433.
- [12] (a) P.M. Esch, H. Hiemstra, W.N. Speckamp, Tetrahedron 48 (1992) 3445–3462; (b) T. Kano, K. Yasumoto, K. Maruoka, Asian J. Org. Chem. 7 (2018) 1575–1578.
- [13] (a) For selected reviews of ynamides, see: B. Zhou, T.-D. Tan, X.-Q. Zhu, M. Shang, L.-W. Ye ACS Catal. 9 (2019) 6393-6406; (b) L. Hu, J. Zhao, Synlett 28 (2017) 1663-1670; (c) X.-N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B.L. Kedrowski, R.P.
 - Hsung, Acc. Chem. Res. 47 (2014) 560-578; (d) K.A. DeKorver, H. Li, A.G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R.P. Hsung,
- Chem. Rev. 110 (2010) 5064-5106. [14] (a) For selected recent references about the application of ynamides, see: W.
 - Zang, Y. Wei, M. Shi Org. Lett. 22 (2020) 5466-5472;
 - (b) J. Im, S.I. Shin, C.-G. Cho, S. Shin, J. Org. Chem. 85 (2020) 6935-6950; (c) A.Y. Dubovtsev, N.V. Shcherbakov, D.V. Dar'in, V.Y. Kukushkin, Adv. Synth.
 - Catal. 362 (2020) 2672-2682;

(d) A. Di Nicola, V. Marsicano, A. Arcadi, V. Michelet, Tetrahedron Lett. 61 (2020) 151725;

(e) Z. Cao, S. Yan, C. Zhao, X. Sun, L. Tian, X. Meng, Tetrahedron 75 (2019) 130534.

[15] (a) For selected recent references about the application of ynamides to benzofurans, see: D.-X. Zhang, J.-J. Man, Y. Chen, L. Yin, J.-C. Zhong, Q.-F. Zhang RSC Adv. 9 (2019) 12567–12571;

(b) T. Okitsu, K. Nakata, K. Nishigaki, N. Michioka, M. Karatani, A. Wada, J. Org. Chem. 79 (2014) 5914–5920.

[16] (a) For selected recent references about the application of ynamides to enamides, see: K. Wang, Z. Zhuang, H. Ti, P. Wu, X. Zhao, H. Wang Chin. Chem.

Lett. 31 (2020) 1564-1567:

- (b) N. Dwadnia, H. Lingua, D. Mouysset, L. Mimoun, D. Siri, M.P. Bertrand, L. Feray, J. Org. Chem. 85 (2020) 4114-4121;
- (c) Z. Peng, Z. Zhang, X. Zeng, Y. Tu, J. Zhao, Adv. Synth. Catal. 361 (2019) 4489-4494
- (d) L. Lin, X. Zeng, B. Xu, J. Org. Chem. 84 (2019) 11240-11246;
- (e) L.L. Baldassari, A. de la Torre, J. Li, D.S. Luedtke, N. Maulide, Angew. Chem., Int. Ed. 56 (2017) 15723-15727.
- [17] (a) For selected recent references about the application of ynamides to amidines, see: P.-P. Ruan, H.-H. Li, X. Liu, T. Zhang, S.-X. Zuo, C. Zhu, L.-W. Ye J. Org. Chem. 82 (2017) 9119-9125; (b) A. Hentz, P. Retailleau, V. Gandon, K. Cariou, R.H. Dodd, Angew. Chem., Int. Ed. 53 (2014) 8333-8337.
- [18] (a) For selected recent references about the application of ynamides to oxazoles, see: X. Tian, L. Song, C. Han, C. Zhang, Y. Wu, M. Rudolph, F. Rominger, A.S.K. Hashmi Org. Lett. 21 (2019) 2937-2940; (b) L. Liao, H. Zhang, X. Zhao, ACS Catal. 8 (2018) 6745-6750.
- [19] (a) For selected recent references about the application of ynamides to quinolines, see: Y.-C. Hsu, S.-A. Hsieh, R.-S. Liu Chem. - Eur. J. 25 (2019) 5288-5297;

(b) Z. Zeng, H. Jin, M. Rudolph, F. Rominger, A.S.K. Hashmi, Angew. Chem., Int. Ed. 57 (2018) 16549-16553.

[20] (a) For selected recent references about the application of ynamides to functional indoles, see: Z.-S. Wang, Y.-B. Chen, H.-W. Zhang, Z. Sun, C. Zhu, L.-W. Ye J. Am. Chem. Soc. 142 (2020) 3636-3644; (b) J. Zhang, M. Guo, Y. Chen, S. Zhang, X.-N. Wang, J. Chang, Org. Lett. 21

(2019) 1331-1336; (c) C. Ao, X. Yang, S. Jia, X. Xu, Y. Yuan, D. Zhang, W. Hu, J. Org. Chem. 84 (2019)

15331-15342;

(d) D. Allegue, J. Gonzalez, S. Fernandez, J. Santamaria, A. Ballesteros, Adv. Synth. Catal. 361 (2019) 758-768.

[21] (a) For selected recent references about the application of ynamides to pyridines, see: E.M. Arce, S.G. Lamont, P.W. Davies Adv. Synth. Catal. 362 (2020) 2503-2509: (b) X. Tian, L. Song, M. Rudolph, Q. Wang, X. Song, F. Rominger, A.S.K. Hashmi, Org. Lett. 21 (2019) 1598-1601;

(c) J.P. Markham, B. Wang, E.D. Stevens, S.C. Burris, Y. Deng, Chem. - Eur. J. 25 (2019) 6638-6644; (d) M. Garzon, E.M. Arce, R.J. Reddy, P.W. Davies, Adv. Synth. Catal. 359 (2017)

- 1837–1843. [22] (a) P. Han, Z.-Y. Mao, C.-M. Si, Z. Zhou, B.-G. Wei, G.-Q. Lin, J. Org. Chem. 84
- (2019) 914-923; (b) C. Wang, Z.-Y. Mao, Y.-W. Liu, Q.-E. Wang, C.-M. Si, B.-G. Wei, G.-Q. Lin, Adv. Synth. Catal. 362 (2020) 822-831; (c) Y.-X. Zhang, L.-Y. Chen, J.-T. Sun, C.-M. Si, B.-G. Wei, J. Org. Chem. 85 (2020) 12603-12613; (d) X.-L. Han, X.-D. Nie, Z.-D. Chen, C.-M. Si, B.-G. Wei, G.-Q. Lin, J. Org. Chem.

85 (2020) 13567–13578 [23] CCDC 2052484 (91) contains the supplementary crystallographic data for this

- paper.
- [24] CCDC 2052485 (10g) contains the supplementary crystallographic data for this paper.
- [25] Y. Tang, Y. Liu, Q. Ruan, M. Zhao, Z. Zhao, H. Cui, Org. Lett. 22 (2020) 1336-1339.
- C. Valente, S. Calimsiz, K.H. Hoi, D. Mallik, M. Sayah, M.G. Organ, Angew. [26] Chem., Int. Ed. 51 (2012) 3314-3332.
- [27] H. Li, R.P. Hsung, K.A. DeKorver, Y. Wei, Org. Lett. 12 (2010) 3780-3783.