Synthesis and Anticancer Evaluation of Some New 4-Amino-3-(p-methoxybenzyl)-4,5-dihydro-1,2,4-triazole-5-one Derivatives

Olcay Bekircan^a, Murat Kucuk^a, Bahittin Kahveci^b, and Hakan Bektas^a

Reprint requests to Dr. Olcay Bekircan. E-mail: obekircan@gmail.com

Z. Naturforsch. 2008, 63b, 1305 - 1314; received July 25, 2008

4-Amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-triazol-1-yl-acetic acid ethyl ester (2) was prepared from 4-amino-4,5-dihydro-1H-1,2,4-triazole-5-one (1) and ethyl bromoacetate. Compound 3 was synthesized by the condensation of 2 with hydrazine hydrate. The treatment of compound 3 with various aromatic aldehydes resulted in the formation of arylidene hydrazides as *cistrans* conformers 4a - g. Thiosemicarbazide derivative 5 was prepared by the reaction of compound 3 with phenylisothiocyanate. Cyclization of 5 with sodium hydroxide resulted in the formation of compound 6. Treatment of 6 with benzyl bromide gave compound 7. Four of the newly synthesized compounds were screened for their anticancer activity against a panel of 60 cell lines derived from nine cancer types, namely, non-small cell lung, colon, breast, ovarian, leukemia, renal, melanoma, prostate and CNS cancers at a fixed dose of $10 \, \mu M$.

Key words: 1,2,4-Triazoles, E/Z Geometrical Isomers, cis/trans Amide Conformers, Benzylidenehydrazides, Anticancer Activity

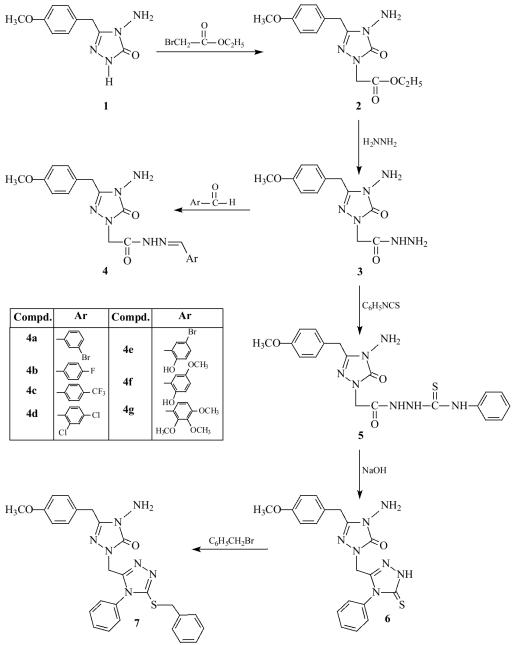
Introduction

Cancer has always been among the most incurable diseases, and man has been prone to this deadly illness for ages. Even today, we lack the effective medicine or treatment that can be applied to most cancer sufferers. Thus, the quest for certain effective and less harmful cancer drugs is the priority of science [1].

It was reported that compounds having triazole moieties, such as vorozole, letrozole and anastrozole appeared to be very effective aromatase inhibitors, which in turn prevented breast cancer [2-4]. Some 1,2,4-triazole compounds are considered interesting heterocycles since they possess important pharmacological activities such as antifungal and antiviral activities. For example, fluconazole [5], itraconazole [6], ravuconazole [7], ICI 153066 [8], posaconazole [9], and voriconazole [10] are antifungal drugs. Furthermore, certain 1,2,4-triazole derivatives have been reported as anticonvulsants [11], antimicrobial [12], antimalarial [13], antihypertensive [14], analgesic [15], antiviral [16], antiinflammatory [17], antioxidant [18, 19], antitumor [20, 21], anti HIV [22], fungicidal [23], insecticidal [24], herbicidal [25], and pesticidal agents [26]. In addition to these, N- benzylidene derivatives of acid hydrazides are also associated with diverse biological activities [27, 28]. In an attempt to obtain new compounds with possible anticancer properties, some novel 1,2,4-triazole-5-one derivatives were designed and synthesized, and their anticancer properties were evaluated.

Results and Discussion

Chemistry


The synthetic pathway leading to the title compounds is given in Scheme 1. The starting compound, 3-(4-methoxybenzyl)-4-amino-4,5-dihydro-1,2,4-triazole-5-one (1), was prepared according to the literature [29]. Treatment of 1 with ethyl bromoacetate in Na/absolute ethanol gave 1,2,4-triazol-1-yl-acetic acid ethyl ester 2. The IR spectrum of compound 2 showed absorption bands at 3291 and 3210 cm⁻¹ corresponding to the NH₂ and at 1755 and 1709 cm⁻¹ corresponding to ester C=O and triazole C=O groups, respectively. 1,2,4-Triazol-1-yl-acetic acid hydrazide 3 was prepared by the reaction of 2 and hydrazine hydrate in butanol.

Compound 3 was condensed with various aromatic aldehydes in ethanol to give the corresponding Schiff

0932–0776 / 08 / 1100–1305 \$ 06.00 © 2008 Verlag der Zeitschrift für Naturforschung, Tübingen \cdot http://znaturforsch.com

^a Department of Chemistry, Faculty of Arts & Sciences, Karadeniz Technical University, Trabzon, Turkey

^b Department of Chemistry, Faculty of Arts & Sciences, Rize University, Rize, Turkey

Scheme 1. Synthesis of the compounds.

bases $\mathbf{4a} - \mathbf{g}$ in very good yield. In the ¹H NMR spectra of compounds **4**, NCH₂, N=CH, and NH proton signals were recorded as double singlets, and in the ¹³C NMR spectra of these compounds NCH₂, triazole C-3, triazole C-5, and N=CH carbon signals were also recorded as double peaks. According to the literature, *N*-benzylidene derivatives of acid hy-

drazides may exist as E/Z geometrical isomers about C=N double bonds and *cis/trans* amide conformers (Scheme 2) [30-33]. It is known that the N=CH double bond restricts rotation and gives rise to the formation of E and Z isomers with the E isomer dominating, and that the equilibration rate is rather low [30-33]. It has been reported that when acid

Compound	Conformer	NMR	NCH ₂	N=CH	ОН	NH	Triazole C-3	Triazole C-5	Percentage of trans/cis
4a	trans	Н	4.84	7.95		11.72	-	-	71.4
-1 a	trans	C	47.24	143.01	_	-	147.81	154.38	/1.4
	cis	Н	4.42	8.15	_	11.77	-	-	28.7
	Cis	C	47.64	146.19	_	-	148.10	164.07	20.7
4b	trans	Н	4.82	7.97	_	11.64	_	-	72.7
		C	46.33	142.68	_	_	146.96	153.53	
	cis	Н	4.40	8.17	-	11.64	_	_	27.3
		C	46.67	146.00	_	_	147.21	163.00	
4c	trans	Н	4.88	8.07	-	11.86	-	-	70.9
		C	46.39	142.21	_	_	147.08	153.56	
	cis	Н	4.46	8.28	-	11.86	_	-	29.2
		C	46.87	146.77	-	-	147.32	163.38	
4d	trans	Н	4.85	8.31	_	11.83	_	_	73.2
		C	46.39	138.81	-	_	147.07	153.54	
	cis	Н	4.42	8.52	-	11.91	_	_	26.9
		C	46.92	142.05	_	_	147.34	163.29	
4e	trans	Н	4.84	8.22	10.37	11.63	_	_	61.0
		C	46.45	139.10	-	_	146.94	153.57	
	cis	Н	4.44	8.37	11.02	11.93	_	_	39.0
		C	46.85	144.76	_	_	147.36	163.11	
4f	trans	Н	4.81	8.26	9.56	11.53	_	_	56.8
		C	46.40	140.84	_	_	146.95	153.54	
	cis	Н	4.41	8.39	10.38	11.80	_	_	43.2
		C	46.77	146.65	-	_	147.31	162.90	
4g	trans	Н	4.79	8.16	_	11.50	_	_	69.6
		C	46.36	141.37	_	_	146.98	153.58	
	cis	Н	4.37	8.35	-	11.59	-	-	30.4
		C	46.85	142.66	_	_	147.26	162.68	

Table 1. ¹H NMR and ¹³C NMR chemical shifts and percentage of *cis/trans* conformers^a.

 $^{\rm a}$ 200 MHz spectrometer; all spectra in [D₆]DMSO.

Scheme 2. E/Z Isomers and cis/trans amide conformers for compounds 4.

hydrazide derivatives are dissolved in polar solvents such as $[D_6]DMSO$, the geometrical E isomers of these compounds undergo a rapid cis/trans amide equilibrium, in which the trans conformer predominates [30-33]. The E isomers and the cis/trans conformer

ratios can easily be determined by ¹H NMR integration.

The chemical shift values of *cis/trans* conformers belonging to protons of NCH₂, N=CH, OH, and NH in the ¹H NMR and to carbons of NCH₂, triazole C-3, tri-

azole C-5, and N=CH in the ¹³C NMR spectra of compounds **4** and the percentage ratios of *cis/trans* conformers are given in Table 1. These data prove the *E* isomers and *trans* conformer structures (**I**) to be dominant forms among the four possible structures [30–33]. The proton signals of N=CH, NH, and OH of the *trans* conformer are found at higher field than those of the *cis* conformer. In contrast, the N-CH₂ proton signal of the *trans* conformer is found downfield compared to the *cis* conformer, because of steric hindrance [30].

The condensation of the acid hydrazide 3 with phenyl isothiocyanate resulted in the formation of thiosemicarbazide 5. The IR spectra of 5 exhibited a strong C=S absorption at 1246 cm⁻¹. The ¹³C NMR signal of this group was observed at $\delta = 180.71$ ppm. The ¹H NMR spectrum displayed three singlets due to three different –NH groups at $\delta = 9.61$, 9.73 and 10.29 ppm. Cyclization of 5 with sodium hydroxide resulted in the formation of 1-(5-thioxo-1,2,4-triazol-3-yl)-5-oxo-4,5-dihydro-1,2,4-triazole 6. The IR spectrum of compound 6 showed a strong C=S absorption at 1358 cm⁻¹, and the ¹³C NMR signal of this group was observed at $\delta = 168.14$ ppm. The IR spectrum of **6** displayed bands at 3448 and 1358 cm $^{-1}$ associated with the N-H and C=S functionalities. In the ¹H NMR spectrum of compound **6**, the NH signal was observed as a singlet at $\delta = 13.90$ ppm. Therefore, the compound was proven to be in the thionic form [34]. Treatment of 6 with benzyl bromide in Na/absolute ethanol gave the S-benzyl derivative 7. The ¹H NMR spectrum of compound 7 showed no signal belonging to an NH group. Instead, the S-CH₂ proton signals appeared at $\delta = 4.88$ ppm as a singlet, and the S-CH₂ carbon signal at $\delta = 35.98$ ppm.

Anticancer activity

The tumor growth inhibition properties of compounds **2**, **3**, **6**, and **7** with the NCI codes NSC 741870, NSC 741871, NSC 741872, and NSC 741873, selected among compounds **1**–**7** by the National Cancer Institute (NCI), USA, were screened on 60 human tumor cell lines, derived from nine cancer types, namely, non-small cell lung, colon, breast, ovarian, leukemia, renal, melanoma, prostate, and CNS cancers [35, 36]. The results are expressed as percentage growth (PG) at the single dose of test compounds of 10 μ M. Smaller values represent better growth inhibitory activity. Negative values show the tumoricidal activity. The compounds, in general, showed mild antiproliferative ac-

Table 2. Sixty cell line *in vitro* anticancer screening (Percent Growth, PG) results for compounds **2**, **3**, **6** and **7**.

Panel/cell line	Percent growth ^a						
	2	3	6	7	Mean		
Non-small cell lung							
Cancer							
A549/ATCC	114.67	106.98	100.43	113.72	109		
EKVX	86.90	96.77	110.39	89.65	96		
HOP-62	108.56	104.23	114.40	97.75	106		
HOP-92	55.63	54.55	_	47.17	52		
NCI-H226	103.39	97.73	101.21	94.39	99		
NCI-H23	101.48	103.85	102.94	96.20	101		
NCI-H322M	110.20	121.03	95.83	83.27	103		
NCI-H460	139.00	121.41	119.90	119.78	125		
NCI-H522	110.51	98.48	102.39	82.88	99		
	103.37	100.56	105.94	91.65	100.2^{b}		
Colon cancer							
COLO 205	107.29	113.97	121.36	114.60	114		
HCC-2998	104.55	107.00	131.84		110		
HCT-116	98.71	108.04	108.19	99.94	104		
HCT-15	101.82	105.47	100.23		104		
HT29	109.21	109.69	106.34		109		
KM12	96.37	114.76	99.61	95.44	102		
SW-620	101.57	111.59		111.61	109		
Mean:	102.79	110.07	111.24	105.43	107.4 ^b		
	102.77	110.07	111.24	105.45	107.4		
Breast cancer	120.00	107.06	127.06	04.20	110		
BT-549	129.99	107.96	137.86	94.39	118		
HS 578T	115.44	116.39		122.04	116		
MCF7	130.23	144.87	120.12	129.31	131		
MDA-MB-231/ATCC	99.38	93.23	102.10		97		
MDA-MB-435	119.70	108.70	109.98		108		
NCI/ADR-RES	99.00	106.22	99.72	99.58	101		
T-47D	104.46	110.88		110.94	107		
Mean:	114.03	112.61	112.13	106.61	111.3 ^b		
Ovarian cancer							
IGROV1	120.68	120.40	112.47	30.37	96		
OVCAR-3	106.67	112.65	114.79	106.21	110		
OVCAR-4	113.36	107.26	122.22	118.54	115		
OVCAR-5	91.67	97.17	91.41	96.08	94		
OVCAR-8	102.44	104.88	105.41	104.24	104		
SK-OV-3	103.79	127.62	106.23	108.51	112		
Mean:	106.44	111.66	108.76	93.99	105.2 ^b		
Leukemia							
CCRF-CEM	66.95	-13.82	-66.63	73.73	15		
HL-6O(TB)	114.26	101.95	_	_	108		
K-562	93.13	82.05	80.60	_	85		
MOLT-4	93.41	109.27	118.54	_	107		
RPMI-8226	85.88	70.12	75.16	68.53	75		
SR	4.45	92.55	-	-	49		
Mean:	76.35	73.69	51.92	71.13	69.5 ^b		
mu.	10.55	13.07	31.72	11.13	07.5		

tivity on the whole cell panel, although they did not prove cytotoxic or cytostatic at the tested concentration (10 μ M). The screening data are presented in Table 2.

The performances of the four test compounds were evaluated individually on each cell type as well as all cell lines. The sensitivity orders of the cancer cell types to individual compounds were in the following orders

Table 2 (continued).

Panel/cell line	Percent growth ^a					
	2	3	6	7	Mean	
Renal cancer						
786-0	108.53	103.92	110.48	98.53	105	
A498	130.75	115.06	124.05	106.33	119	
ACHN	104.97	110.18	104.89	113.93	108	
CAKI-I	76.07	99.87	106.26	90.42	93	
RXF393	111.03	102.18	103.19	112.18	107	
SN12C	94.31	93.22	95.54	103.54	97	
TK10	116.48	117.49 103.60		115.12	113	
UO-31	81.24	91.20 95.92		78.83	87	
Mean:	102.92	104.14	105.49	102.36	103.7 ^b	
Melanoma						
LOX IMVI	93.86	92.31	93.93	101.73	95	
M14	109.69	119.63	125.46	108.83	116	
MALME-3M	114.42	142.34	100.12	93.23	113	
SK-MEL-2	105.68	103.51	100.53	100.31	103	
SK-MEL-28	116.19	115.78	125.39	124.19	120	
SK-MEL-5	106.93	104.65	108.61	102.10	106	
UACC-257	107.82	103.71	107.31	106.32	106	
UACC-62	93.79	93.32	97.14	92.37	94	
Mean:	106.05	109.41	107.31	103.64	106.6 ^b	
Prostate cancer						
DU-145	130.53	110.11	135.38	99.34	119	
PC-3	89.38	101.56	119.36	86.31	99	
Mean:	109.96	105.84	127.37	92.83	109.0^{b}	
CNS cancer						
SF-268	165.75	108.21	114.75	110.93	125	
SF-295	111.88	100.50	107.52	94.17	104	
SF-539	91.16	85.94	103.43	94.88	94	
SNB-19	99.85	107.86	103.18	104.04	104	
SNB-75	104.27	100.36	107.55	107.78	105	
U251	101.03	102.03	96.28	100.52	100	
Mean:	112.32	100.82	105.45	102.05	105.2 ^b	
Overall mean:	103.57	103.40	104.66	99.29		

^a Percent growth values represent the percentage of the cell growth with respect to the initial cell count at a single compound concentration (10 μ M); ^b these values are averages of all the percent growth values for all four test compounds but for a single organ specific cancers, *e. g.* non-small cell lung cancers.

(average PG values are provided in parantheses):

Compound **2**: leukemia (76.35) > colon cancer (102.79) > renal cancer (102.92) > non-small cell lung cancer (103.37) > melanoma (106.05) > ovarian cancer (106.44) > prostate cancer (109.96) > CNS cancer (112.32) > breast cancer (114.03).

Compound 3: leukemia (73.69) > non-small cell lung cancer (100.56) > CNS cancer (100.82) > re- nal cancer (104.14) > prostate cancer (105.84) > melanoma (109.41) > colon cancer (110.07) > ovar- ian cancer (111.66) > breast cancer (112.61).

Compound **6**: leukemia (51.92) > CNS cancer (105.45) > renal cancer (105.49) > non-small cell lung cancer (105.94) > melanoma (107.31) > ovarian

cancer (108.76) > colon cancer (111.24) > breast cancer (112.13) > prostate cancer (127.37).

Compound 7: leukemia (71.13) > non-small cell lung cancer (91.65) > prostate cancer (92.83) > ovarian cancer (93.99) > CNS cancer (102.05) > renal cancer (102.36) > melanoma (103.64) > colon cancer (105.43) > breast cancer (106.61).

The overall sensitivity order of the cell types to all four test compounds is leukemia (69.5) > non-small cell lung cancer (100.2) > renal cancer (103.7) > CNS cancer (105.16) > ovarian cancer (105.21) > melanoma (106.6) > colon cancer (107.4) > prostate cancer (109.0) > breast cancer (111.3).

The order of overall effectiveness of the test compounds against all tested cell lines is 7 (99.26) > 3 (103.40) > 2 (103.57) > 6 (104.66).

The highest antiproliferative activity was observed against the CCRF-CEM leukemia cell line with average PG value of 15. Tumoricidal activity was observed only with compounds **3** and **6** against CCRF-CEM cell line with PG values of -13.82 and -66.63, respectively. Because all four compounds showed promising antitumor potential against the CCRF-CEM leukemia cell line among all cancer cell lines, and compounds **3** and **6** were even tumoricidal, synthesis and anticancer evaluation of structural analogs and various derivatives of these compounds deserve attention.

Conclusion

In conclusion, a series of 4-amino-3-(p-methoxybenzyl)-4,5-dihydro-1,2,4-triazole-5-one derivatives was synthesized as potential anticancer agents. Benzylidenehydrazide derivatives 4 appear as both configurational (E/Z) and conformational (cis/trans)isomers. The E geometrical isomers and trans amide conformers are dominant forms based on ¹H and ¹³C NMR data. Compounds 2, 3, 6, and 7 were selected for a full 60-cell panel anticancer screening at a fixed dose of 10 μ M, where they showed mild activity. The highest activity was observed against leukemia cell types, with the lowest PG values. The leukemia subtype CCRF-CEM was the most susceptible to anticancer activity of the test compounds, and compounds 3 and 6 were even tumoricidal against this cell line with negative PG values. The synthesis of new analogs or derivatives of these compounds and testing of their anticancer activity especially against leukemia cancers should provide explanation in terms of structure – activity relationships and will probably yield better anticancer compounds.

Experimental Section

Chemistry

All chemicals used in this study were of high purity and purchased from Merck (Darmstadt, Germany) and Fluka (Buchs, Switzerland). Melting points were determined on a Büchi oil heated melting point apparatus (Büchi Labortechnik, Flawil, Switzerland) and are uncorrected. 1H NMR and ^{13}C NMR spectra (δ , ppm) were recorded on a Varian-Mercury 200 MHz spectrometer (Varian Inc., Palo Alto, CA, USA) using tetramethylsilane as an internal reference. The IR spectra (λ , cm⁻¹) were run on a Perkin-Elmer 1600 FTIR spectrophotometer (Perkin-Elmer, Beaconfields, England) by using KBr pellets. Microanalyses were performed on a Carlo Erba 1106 elemental analyzer (Carlo Erba, Milan, Italy). Starting compound 1 was synthesized by a published method [29].

Synthesis of 4-amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-triazol-1-yl-acetic acid ethyl ester (2)

A mixture of 1 (0.01 mol) and Na (0.01 mol) was refluxed in absolute ethanol for 2 h. Then, ethyl bromoacetate (0.01 mol) was added and refluxed for an additional 6 h. After evaporating, the solid was recyrstallized from ethanolwater (1:2). M. p. 97 – 98 °C. Yield 65 %. – IR (KBr): v =3291, 3210 (NH₂), 1755 (ester C=O), 1709 (triazole C=O), 1654 (C=N), 1240 (C-O) cm⁻¹. - ¹H NMR ([D₆]DMSO): $\delta = 1.22$ (t, 3H, J = 6.0 Hz, CH₃), 3.75 (s, 3H, OCH₃), 3.85 (s, 2H, benzyl CH₂), 4.18 (q, 2H, J = 6.0 Hz, OCH₂), 4.55 (s, 2H, NCH₂), 5.39 (s, 2H, NH₂), Ar-H [6.90 (d, J =7.4 Hz), 7.22 (d, J = 7.4 Hz)]. – ¹³C NMR ([D₆]DMSO): $\delta = 13.90 \text{ (CH}_3), 29.35 \text{ (benzyl CH}_2), 46.42 \text{ (NCH}_2), 54.91$ (OCH₃), 60.94 (OCH₂), Ar-C: [113.70 (2C), 127.43, 129.72 (2C), 157.92], 147.53 (triazole C-3), 153.17 (triazole C-5), 167.86 (ester C=O). – Anal. for $C_{14}H_{18}N_4O_4$ (306.32): calcd. C 54.89, H 5.92, N 18.29; found C 54.81, H 5.95, N 18.34.

Synthesis of 4-amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-triazol-1-yl-acetic acid hydrazide (3)

A solution of **2** (0.01 mol) and hydrazine hydrate (0.01 mol) was refluxed in butanol for 4 h. The mixture was cooled, and the solid that separated was recrystallized from ethanol. M. p. 200–201 °C. Yield 70 %. – IR (KBr): v = 3306-3166 (NH + 2NH₂), 1726 (triazole C=O), 1668 (hydrazide C=O), 1613 (C=N), 1249 (C-O) cm⁻¹. – ¹H NMR ([D₆]DMSO): $\delta = 3.70$ (s, 3H, OCH₃), 3.77 (s, 2H, benzyl CH₂), 4.18 (s, 2H, NCH₂), 4.25 (s, 2H, hydrazide NH₂), 5.24 (s, 2H, NH₂), Ar-H: [6.85 (d, 2H, J = 7.8 Hz), 7.16 (d, 2H, J = 7.8 Hz)], 9.16 (s, 1H, NH). – ¹³C NMR ([D₆]DMSO):

δ = 29.41 (benzyl CH₂), 46.27 (NCH₂), 54.93 (OCH₃), Ar-C: [113.70 (2C), 127.56, 129.79 (2C), 157.91], 147.14 (triazole C-3), 153.28 (triazole C-5), 165.92 (hydrazide C=O). – Anal. for C₁₂H₁₆N₆O₃ (292.30): calcd. C 49.31, H 5.52, N 28.75; found C 49.29, H 5.52, N 28.74.

General method for the synthesis of compounds 4

Compound 3 (0.01 mol) was refluxed with 0.01 mol of the appropriate aldehyde in ethanol for 4 h. The mixture was cooled, and the solid that separated was recrystallized from an appropriate solvent to afford the desired compound.

4-Amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-triazol-1-yl-acetic acid 3-bromo-benzylidenehydrazide (4a)

M. p. 202 – 203 °C (DMSO-water). Yield 87 %. – IR (KBr): v = 3339 (NH), 3220, 3186 (NH₂), 1724 (triazole C=O), 1672 (hydrazide C=O), 1635, 1589 (C=N) cm⁻¹. ¹H NMR ([D₆]DMSO): δ = 3.70 (s, 3H, OCH₃), 3.81 (s, 2H, benzyl CH₂), 4.84 and 4.42 (s, 2H, NCH₂, trans and cis conformers), 5.31 (s, 2H, NH₂), Ar-H: [6.84 (d, 2H, J = 8.4 Hz), 7.18 (d, 2H, J = 8.4 Hz), 7.33–7.43 (m, 1H), 7.57 - 7.71 (m, 2H)], 7.95 and 8.15 (s, 1H, N=CH, trans and cis conformers), 11.72 and 11.77 (s, 1H, NH, trans and cis conformers). – 13 C NMR ([D₆]DMSO): δ = 30.20 (benzyl CH₂), 47.24 and 47.64 (NCH₂, trans and cis conformers), 55.71 (OCH₃), Ar-C: [114.50 (2C), 122.91, 126.87, 128.38, 129.73, 130.52 (2C), 131.60, 133.20, 137.09 and 137.21 (trans and cis conformers), 158.70], 143.01 and 146.19 (N=CH, trans and cis conformers), 147.81 and 148.10 (triazole C-3, trans and cis conformers), 154.38 and 164.07 (triazole C-5, trans and cis conformers), 167.92 (hydrazide C=O). – Anal. for C₁₉H₁₉BrN₆O₃ (459.30l): calcd. C 49.69, H 4.17, N 18.30; found C 49.69, H 4.15, N 18.32.

4-Amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-triazol-1-yl-acetic acid 4-fluoro-benzylidenehydrazide (4b)

M. p. 267 - 268 °C (DMSO-water). Yield 84 %. - IR (KBr): v = 3324 (NH), 3266, 3206 (NH₂), 1719 (triazole C=O), 1695 (hydrazide C=O), 1676, 1610 (C=N) cm⁻¹. – ¹H NMR ([D₆]DMSO): δ = 3.70 (s, 3H, OCH₃), 3.81 (s, 2H, benzyl CH2), 4.82 and 4.40 (s, 2H, NCH2, trans and cis conformers), 5.31 (s, 2H, NH₂), Ar-H: [6.84 (d, 2H, J = 8.4 Hz),7.18 (d, 2H, J = 8.8 Hz), 7.28 (d, 2H, J = 8.8 Hz), 7.57 (d, 2H, J = 8.4 Hz], 7.97 and 8.17 (s, 1H, N=CH, trans and cis conformers), 11.64 (s, 1H, NH). – ¹³C NMR ([D₆]DMSO): δ = 29.36 (benzyl CH₂), 46.33 and 46.67 (NCH₂, trans and cis conformers), 54.87 (OCH₃), Ar-C: [113.65 (2C), 115.47 (2C), 127.54, 128.90 (2C), 129.67 (2C), 130.46, 157.86, 165.13], 142.68 and 146.00 (N=CH, trans and cis conformers), 146.96 and 147.21 (triazole C-3, trans and cis conformers), 153.53 and 163.00 (triazole C-5, trans and cis conformers), 167.92 (hydrazide C=O). - Anal. for C₁₉H₁₉FN₆O₃

(398.40): calcd. C 57.28, H 4.81, N 21.09; found C 57.21, H 4.73, N 21.03.

4-Amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-triazol-1-yl-acetic acid 4-(trifluoromethyl)-benzylidenehydrazide (**4c**)

M.p. 248-249 °C (DMSO-water). Yield 75 %. – IR (KBr): v = 3333 (NH), 3270, 3212 (NH₂), 1716 (triazole C=O), 1693 (hydrazide C=O), 1616, 1569 (C=N) cm⁻¹. – ¹H NMR ([D₆]DMSO): δ = 3.73 (s, 3H, OCH₃), 3.84 (s, 2H, benzyl CH₂), 4.88 and 4.46 (s, 2H, NCH₂, trans and cis conformers), 5.35 (s, 2H, NH₂), Ar-H: [6.85 (d, 2H, J = 8.4 Hz), 7.20 (d, 2H, J = 8.4 Hz), 7.78 (d, 2H, J =8.2 Hz), 7.93 (d, 2H, J = 8.2 Hz)], 8.07 and 8.28 (s, 1H, N=CH, trans and cis conformers), 11.86 (s, 1H, NH). -¹³C NMR ([D₆]DMSO): $\delta = 29.40$ (benzyl CH₂), 46.39 and 46.87 (NCH₂, trans and cis conformers), 54.88 (OCH₃), 125.56 (CF₃), Ar-C: [113.66 (2C), 126.67, 127.44 (2C), 127.55 (2C), 128.08, 129.72 (2C), 137.79, 157.88], 142.21 and 146.77 (N=CH, trans and cis conformers), 147.08 and 147.32 (triazole C-3, trans and cis conformers), 153.56 and 163.38 (triazole C-5, trans and cis conformers), 168.25 (hydrazide C=O). – Anal. for $C_{20}H_{19}F_3N_6O_3$ (448.40): calcd. C 53.57, H 4.27, N 18.74; found C 53.78, H 4.29, N 18.78.

4-Amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-tri-azol-1-yl-acetic acid 2,4-dichlorobenzylidenehydrazide (**4d**)

M. p. 270 – 271 °C (DMSO-water). Yield 92 %. – IR (KBr): v = 3336 (NH), 3287, 3225 (NH₂), 1711 (triazole C=O), 1695 (hydrazide C=O), 1615, 1589 (C=N) cm⁻¹. – ¹H NMR ([D₆]DMSO): $\delta = 3.71$ (s, 3H, OCH₃), 3.81 (s, 2H, benzyl CH₂), 4.85 and 4.42 (s, 2H, NCH₂, trans and cis conformers), 5.30 (s, 2H, NH₂), Ar-H: [6.84 (d, 2H, J = 8.4 Hz), 7.18 (d, 2H, J = 8.4 Hz), 7.43 – 7.51 (m, 1H), 7.69 (bs, 1H), 7.90 – 8.04 (m, 1H)], 8.31 and 8.52 (s, 1H, N=CH, trans and cis conformers), 11.83 and 11.91 (s, 1H, NH, trans and cis conformers). - ¹³C NMR ([D₆]DMSO): δ = 29.38 (benzyl CH₂), 46.39 and 46.91 (NCH₂, trans and cis conformers), 54.88 (OCH₃), Ar-C: [113.65 (2C), 127.82, 128.14, 129.20, 129.71 (2C), 130.15, 133.52, 134.86, 135.85, 157.87], 138.81 and 142.05 (N=CH, trans and cis conformers), 147.07 and 147.34 (triazole C-3, trans and cis conformers), 153.54 and 163.29 (triazole C-5, trans and cis conformers), 168.18 (hydrazide C=O). - Anal. for C₁₉H₁₈Cl₂N₆O₃ (449.30): calcd. C 50.79, H 4.04, N 18.70; found C 50.76, H 4.11, N18.70.

4-Amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-triazol-1-yl-acetic acid 5-bromo-2-hydroxybenzylidenehydrazide (4e)

M. p. 234-235 °C (DMSO-water). Yield 78%. – IR (KBr): v = 3348 (NH+OH), 3275, 3191 (NH₂), 1719 (triazole C=O), 1670 (hydrazide C=O), 1610, 1588

(C=N) cm⁻¹. – ¹H NMR ([D₆]DMSO): δ = 3.70 (s, 3H, OCH₃), 3.81 (s, 2H, benzyl CH₂), 4.84 and 4.44 (s, 2H, NCH₂, trans and cis conformers), 5.32 (s, 2H, NH₂), Ar-H: [6.83-6.87 (m, 3H), 7.18 (d, 2H, J = 7.6 Hz), 7.34-7.42 (m, 1H), 7.86 and 7.75 (s, 1H, trans and cis conformers)], 8.22 and 8.37 (s, 1H, N=CH, trans and cis conformers), 10.37 and 11.02 (s, 1H, OH, trans and cis conformers), 11.63 and 11.93 (s, 1H, NH, trans and cis conformers). – ¹³C NMR ([D₆]DMSO): δ = 29.41 (benzyl CH₂), 46.45 and 46.85 (NCH₂, trans and cis conformers), 54.88 (OCH₃), Ar-C: [110.77 and 110.35 (trans and cis conformers), 113.66 (2C), 118.20 and 118.47 (trans and cis conformers), 122.39 and 121.07 (trans and cis conformers), 129.71 (2C), 130.02, 133.32, 137.02, 155.40 and 156.14 (trans and cis conformers), 157.87], 139.10 and 144.75 (N=CH, trans and cis conformers), 146.94 and 147.36 (triazole C-3, trans and cis conformers), 153.57 and 163.11 (triazole C-5, trans and cis conformers), 167.90 (hydrazide C=O). - Anal. for C₁₉H₁₉BrN₆O₄ (475.30): calcd. C 48.01, H 4.03, N 17.68; found C 48.05, H 4.03, N 17.67.

4-Amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-triazol-1-yl-acetic acid 2-hydroxy-5-methoxybenzylidenehydrazide (4f)

M. p. 197 – 198 °C (DMSO-water). Yield 95 %. – IR (KBr): v = 3340 (NH), 3334 (OH), 3275, 3191 (NH₂), 1717 (triazole C=O), 1676 (hydrazide C=O), 1610, 1580 (C=N) cm⁻¹. – ¹H NMR ([D₆]DMSO): δ = 3.69 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 3.81 (s, 2H, benzyl CH₂), 4.81 and 4.42 (s, 2H, NCH2, trans and cis conformers), 5.31 (s, 2H, NH₂), Ar-H: [6.82-6.86 (m, 4H), 7.19 (d, 2H, J = 8.4 Hz), 7.25 (bs, 1H)], 8.26 and 8.39 (s, 1H, N=CH, trans and cis conformers), 9.56 and 10.38 (s, 1H, OH, trans and cis conformers), 11.53 and 11.80 (s, 1H, NH, trans and cis conformers). – ¹³C NMR ([D₆]DMSO): δ = 29.38 (benzyl CH₂), 46.40 and 46.77 (NCH₂, trans and cis conformers), 54.88 (OCH₃), 55.34 (OCH₃), Ar-C: [111.71, 113.67 (2C), 117.10, 118.06 and 118.27 (trans and cis conformers), 120.17 and 118.72 (trans and cis conformers), 127.56, 129.72 (2C), 150.42 and 151.18 (trans and cis conformers), 151.99 and 152.13 (trans and cis conformers), 157.87], 140.84 and 146.65 (N=CH, trans and cis conformers), 146.95 and 147.31 (triazole C-3, trans and cis conformers), 153.54 and 162.90 (triazole C-5, trans and cis conformers), 167.67 (hydrazide C=O). – Anal. for $C_{22}H_{26}N_6O_5$ (470.49): calcd. C 56.33, H 5.20, N 19.71; found C 56.34, H 5.35, N 19.58.

4-Amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-tri-azol-1-yl-acetic acid 2,3,4-trimethoxybenzylidenehydrazide (4g)

M. p. 179-180 °C (DMSO-water). Yield 78%. – IR (KBr): v = 3334 (NH), 3287, 3173 (NH₂), 1708 (triazole

C=O), 1687 (hydrazide C=O), 1615, 1593 (C=N) cm⁻¹. – ¹H NMR ([D₆]DMSO): $\delta = 3.36$ (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.82 (s, 2H, benzyl CH₂), 4.79 and 4.37 (s, 2H, NCH₂, trans and cis conformers), 5.31 (s, 2H, NH₂), Ar-H: [6.82 – 6.92 (m, 3H), 7.18 (d, 2H, J = 8.4 Hz), 7.51-7.60 (m, 1H)], 8.16 and 8.35 (s, 1H, N=CH, trans and cis conformers), 11.50 and 11.59 (s, 1H, NH, trans and cis conformers). – ¹³C NMR ([D₆]DMSO): δ = 29.41 (benzyl CH₂), 46.36 and 46.85 (NCH₂, trans and cis conformers), 54.90 (OCH₃), 55.88 (OCH₃), 60.37 (OCH₃), 61.63 (OCH₃), Ar-C: [108.56, 113.68 (2C), 119.96, 120.52, 127.60, 129.74 (2C), 139.71, 152.36 and 152.47 (trans and cis conformers), 154.94 and 155.13 (trans and cis conformers), 157.90], 141.37 and 142.66 (N=CH, trans and cis conformers), 146.98 and 147.26 (triazole C-3, trans and cis conformers), 153.58 and 162.68 (triazole C-5, trans and cis conformers), 167.63 (hydrazide C=O). – Anal. for $C_{22}H_{26}N_6O_5$ (470.49): calcd. C 56.16, H 5.57, N 17.86; found C 56.16, H 5.59, N 17.63.

Synthesis of 1-(4-amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-triazol-1-yl)-acetyl-4-phenyl thiosemicarbazide (5)

A mixture of 3 (0.01 mol) and phenyl isothiocyanate (0.01 mol) was refluxed in ethanol for 2 h. The mixture was cooled, and the solid that separated was recrystallized from ethanol. M. p. 179 – 180 °C. Yield 78 %. – IR (KBr): v =3338-3202 (3NH + NH₂), 1717 (triazole C=O), 1681 (exocyclic C=O), 1611 (C=N), 1246 (C=S) cm⁻¹. – ¹H NMR ([D₆]DMSO): δ = 3.70 (s, 3H, OCH₃), 3.79 (s, 2H, benzyl CH₂), 4.46 (s, 2H, NCH₂), 5.31 (s, 2H, NH₂), Ar-H: [6.84 (d, 2H, J = 7.8 Hz), 7.18 (d, 2H, J = 7.8 Hz), 7.29 - 7.43(m, 5H)], 9.64 (s, 1H, NH), 9.73 (s, 1H, NH), 10.29 (s, 1H, NH). – ¹³C NMR ([D₆]DMSO): δ = 29.59 (benzyl CH₂), 46.68 (NCH₂), 55.10 (OCH₃), Ar-C: [113.85 (2C), 125.34, 126.02, 127.59 (2C), 128.19 (2C), 129.97 (2C), 139.02, 158.08], 147.49 (triazole C-3), 153.58 (triazole C-5), 166.64 (exocyclic C=O), 180.71 (C=S). - Anal. for C₁₉H₂₁N₇O₃S (427.48): calcd. C 53.38, H 4.95, N 22.94; found C 53.39, H 4.95, N 22.73.

Synthesis of 1-(4-phenyl-5-thioxo-1,2,4-triazol-3-yl)methyl-4-amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-triazole (6)

Solid thiosemicarbazide **5** (0.01 mol) was added portionwise to 20 mL of a 2 N NaOH solution. The reaction mixture was refluxed for 2 h. The solution was cooled to r.t. and acidified to pH 3–4 with 37 % HCl. The precipitated solid was filtered, washed thoroughly with water, dried, and recrystallized from ethanol-water (1:2). M. p. 219 – 220 °C. Yield 83 %. – IR (KBr): v = 3448 (NH), 3275, 3132 (NH₂), 1731 (triazole C=O), 1613, 1516 (C=N), 1358 (C=S) cm⁻¹. –

¹H NMR ([D₆]DMSO): δ = 3.70 (s, 3H, OCH₃), 3.72 (s, 2H, benzyl CH₂), 4.63 (s, 2H, NCH₂), 5.04 (s, 2H, NH₂), Ar-H: [6.87 (d, 2H, J = 8.4 Hz), 7.05 – 7.10 (m, 2H), 7.14 (d, 2H, J = 8.4 Hz), 7.27 – 7.28 (m, 3H)], 13.90 (s, 1H, NH). – ¹³C NMR ([D₆]DMSO): δ = 29.35 (benzyl CH₂), 40.60 (NCH₂), 54.98 (OCH₃), Ar-C: [113.71 (2C), 127.25, 127.61, 127.85 (2C), 128.13 (2C), 129.80 (2C), 136.29, 157.93], 145.78 (triazole C-3), 146.83 (triazole C-3, thioxo ring), 152.34 (triazole C-5), 168.14 (triazole C-5, thioxo ring). – Anal. for C₁₉H₁₉N₇O₂S (409.47): calcd. C 55.73, H 4.68, N 23.95; found C 55.73, H 4.66, N 23.93.

Synthesis of 1-(4-phenyl-5-benzylthio-1,2,4-triazol-3-yl) methyl-4-amino-3-p-methoxybenzyl-5-oxo-4,5-dihydro-1,2,4-triazole (7)

Compound 6 (0.01 mol) was refluxed with an equivalent amount of sodium in absolute ethanol for 1 h. Then, benzyl bromide (0.01 mol) was added and the mixture refluxed for an additional 5 h. After evaporating, the solid was recyrstallized from ethanol-water (1:1). M.p. 82-83 °C. Yield 67%. – IR (KBr): v = 3321, 3210 (NH₂), 1707 (triazole C=O), 1610, 1584 (C=N) cm⁻¹. – ¹H NMR ([D₆]DMSO): $\delta = 3.70$ (s, 2H, benzyl CH₂), 3.72 (s, 3H, OCH₃), 4.32 (s, 2H, NCH₂), 4.88 (s, 2H, SCH₂), 5.06 (s, 2H, NH₂), Ar-H: [6.86 (d, 2H, J = 6.4 Hz), 7.10 - 7.14 (m, 4H), 7.25 - 7.29 $(m, 4H), 7.39 - 7.45 (m, 4H)]. - {}^{13}C NMR ([D_6]DMSO): \delta =$ 29.30 (benzyl CH₂), 35.98 (SCH₂), 46.25 (NCH₂), 54.97 (OCH₃), Ar-C: [113.71 (2C), 12.72 (2C), 127.42, 128.39 (2C), 128.86 (2C), 128.97, 129.43 (2C), 129.83 (2C), 129.91, 131.99, 136.87, 157.74], 147.52 (triazole C-3), 148.47 (triazole C-3, benzylthio ring), 152.21 (triazole C-5), 155.92 (triazole C-5, benzylthio ring). - Anal. for C₂₆H₂₅N₇O₂S (499.59): calcd. C 62.51, H 5.04, N 19.63; found C 62.51, H 5.00, N 19.76.

Pharmacology

Sixty human cancer cell line anticancer screening

The human tumor cell lines of the cancer screening panel were grown in RPMI 1640 medium containing 5% fetal bovine serum and 2 mM L-glutamine. Cells were inoculated into 96 well microtiter plates in 100 μ L samples at plating densities ranging from 5000 to 40000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the microtiter plates were incubated at 37 °C, 5% CO₂, 95% air and 100% relative humidity for 24 h prior to addition of the test compounds.

After 24 h, two plates of each cell line were fixed *in situ* with TCA, to represent a measurement of the cell population for each cell line at the time of compound addition (Tz). The compounds were solubilized in DMSO and diluted to 20 μ M, the complete medium containing 50 μ g/mL gentamicin. Aliquots of 100 μ L of the compound solution were

added to the appropriate microtiter wells already containing $100 \mu L$ of medium, resulting in the required final compound concentration ($10 \mu M$).

Following compound addition, the plates were incubated for an additional 48 h at 37 °C, 5% CO₂, 95% air, and 100% relative humidity. For adherent cells, the assay was terminated by the addition of cold TCA. Cells were fixed *in situ* by the gentle addition of 50 μ L of cold 50% (w/v) TCA (final concentration, 10% TCA) and incubated for 60 min at 4 °C. The supernatant was discarded, and the plates were washed five times with tap water and air dried. Sulforhodamine B (SRB) solution (100 μ L), 0.4% (w/v) in 1% acetic acid, was added to each well, and plates were incubated for 10 min at r. t. After staining, unbound dye was removed by washing five times with 1% acetic acid, and the plates were air dried. Bound stain was subsequently solubilized with 10 mM trizma base, and the absorbance was read on an automated plate reader at a wavelength of 515 nm.

The measured effect of the compound on a cell line was calculated according to one or the other of the following two expressions and expressed as percent growth (PG):

```
\begin{split} &\text{If } \left( \text{Mean OD}_{\text{test}} - \text{Mean OD}_{\text{tzero}} \right) < 0, \text{ then} \\ &\text{PG} = 100 \times \left( \text{Mean OD}_{\text{test}} - \text{Mean OD}_{\text{tzero}} \right) \\ & / \text{Mean OD}_{\text{tzero}} \end{split}
```

Where:

Mean OD_{tzero} = The average of optical density measurements SRB-derived color just before exposure of cells to the test compound.

Mean OD_{test} = The average of optical density measurement of SRB-derived color after 48 h exposure of cells to the test compound.

 $MeanOD_{ctrl}$ = The average of optical density measurements of SRB-derived color after 48 h with no exposure of cells to the test compound.

Smaller positive PG values are indicative of better antiproliferative activity, and negative values show that the compound is tumoricidal, killing already existing cells.

Acknowledgement

The authors thank the National Cancer Institute (NCI) at Bethesda, USA, for the anticancer screening tests of the selected compounds.

- [1] S. Eckhardt, Curr. Med. Chem.-Anti-Cancer Agents 2002, 2, 419.
- [2] K. Christov, A. Shilkaitis, A. Green, R.G. Mehta, C. Grubbs, G. Kelloff, R. Lubet, *Breast Cancer Res.* Tr. 2000, 60, 117.
- [3] T.E. Delea, K. El-Ouagari, J. Karnon, O. Sofrygin, Breast Cancer Res. Tr. 2008, 108, 375.
- [4] M. Kurosumi, Y. Takatsuka, T. Watanabe, S. Imoto, H. Inaji, H. Tsuda, F. Akiyama, G. Sakamoto, T. Ikeda, S. Noguchi, J. Cancer Res. Clin. 2008, 134, 715.
- [5] Y. Tsukuda, M. Shiratori, H. Watanabe, H. Ontsuka, K. Hattori, M. Shirai, N. Shimma, *Bioorg. Med. Chem. Lett.* 1998, 8, 1819.
- [6] L. Wei, Q. JianJun, W. Zhe, C. Wei, W. DuanLi, L. RuoYu, Chinese J. Dermatol. 2007, 40, 722.
- [7] O. Kim, Y. Zhang, J. Wichtowski, S. Huang, J. Fung-Tome, J. Bronson, Y. Ueda, J. Heterocyclic Chem. 2008, 45, 583.
- [8] F. T. Boyle, D. J. Gilman, M. B. Gravestock, J. M. Wardleworth, *Ann. NY Acad Sci.* 1988, 544, 86.
- [9] V. Nagappan, S. Deresinski, *Clin. Infect. Dis.* 2007, 45, 1610.
- [10] R. C. Lin, N. Sanduja, S. M. Hariprasad, J. Ocul. Pharmacol. Th. 2008, 24, 245.
- [11] J. Chen, X. Y. Sun, K. Y. Chai, J. S. Lee, M. S. Song, Z. S. Quan, *Bioorg. Med. Chem.* 2007, 15, 6775.
- [12] G. Turan-Zitouni, Z.A. Kaplancıklı, M.T. Yıldız,

- P. Chevallet, D. Kaya, Eur. J. Med. Chem. 2005, 40, 607.
- [13] J. S. Shukla, V. K. Agarwal, *Indian J. Chem.* 1986, 25B, 511.
- [14] H. Emilsson, K. Luthman, H. Selander, Eur. J. Med. Chem. 1986, 21, 235.
- [15] H. M. Abdel-Rahman, M. A. Hussein, Arch. Pharm. Chem. Life Sci. 2006, 339, 378.
- [16] A. R. Farghaly, H. El-Kashef, Arkivoc 2006, 11, 76.
- [17] G. Turan-Zitouni, Z. A. Kaplancikli, A. Özdemir, P. Chevallet, Arch. Pharm. Chem. Life Sci. 2007, 340, 586.
- [18] O. Bekircan, M. Kucuk, B. Kahveci, S. Kolaylı, Arch. Pharm. Chem. Life Sci. 2005, 338, 365.
- [19] O. Bekircan, T. Ozen, N. Gumrukcuoglu, H. Bektas, Z. Naturforsch. 2008, 63b, 548.
- [20] B. S. Holla, B. Veerendra, M. K. Shivananda, P. Boja, Eur. J. Med. Chem. 2003, 38, 759.
- [21] O. Bekircan, B. Kahveci, M. Kucuk, *Turk. J. Chem.* 2006, 30, 29.
- [22] T. Akhtar, S. Hameed, N. A. Al-Masoudi, K. M. Khan, Heteroatom Chem. 2007, 18, 316.
- [23] D. J. Li, H. Q. Fu, Heterocyl. Commun. 2006, 12, 383.
- [24] M. M. Ghorab, S. G. Abdel-Hamide, G. M. Ali, E. H. Shaurub, *Pestic. Sci.* 1996, 48, 31.
- [25] G. Turan-Zitouni, Z. A. Kaplancikli, A. Ozdemir, Farmaco 2002, 57, 573.

- [26] Nizamuddin, M. Gupta, M. H. Khan, M. K. Srivastava, J. Sci. Ind. Res. India 1999, 58, 538.
- [27] N. F. Eweiss, A. A. Bahajaj, E. A. Elsherbini, J. Heterocycl. Chem. 1986, 23, 1451.
- [28] N. Ulusoy, A. Gürsoy, G. Ötük, Farmaco 2001, 56, 947.
- [29] M. Karabacak, M. Sc. Thesis, Institute of Sciences, Karadeniz Technical University, Trabzon, 1998.
- [30] G. Palla, G. Predieri, P. Domiano, *Tetrahedron* 1986, 42, 3649.
- [31] A. Demirbas, Turk. J. Chem. 2004, 28, 311.

- [32] N. Demirbas, S. A. Karaoglu, A. Demirbas, K. Sancak, Eur. J. Med. Chem. 2004, 39, 793.
- [33] E. Wyrzykiewicz, D. Prukah, J. Heterocycl. Chem. 1998, 35, 381.
- [34] I. Kücükgüzel, S.G. Kücükgüzel, S. Rollas, G.O. Sanıs, O. Ozdemir, I. Bayrak, T. Altug, J. P. Stables, Farmaco 2004, 59, 893.
- [35] M. R. Boyd, K. D. Paull, *Drug Develop. Res.* **2004**, *34*,
- [36] R. H. Shoemaker, Nat. Rec. Cancer 2006, 6, 813.