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Abstract: Functionalized resorcins are regioselectively prepared
by cyclization of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with
3,3-dimethoxypentanoyl chloride. The regioselectivity is controlled
by the type of Lewis acid employed.
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A great variety of pharmacologically important natural
products are biosynthetically derived from poly(b-
oxo)carboxylic acids (polyketides).1 Harris and cowork-
ers reported the biomimetic synthesis of various 1,3,5,7-
tetracarbonyl compounds and their higher homologues
based on condensations of 1,3-dicarbonyl dianions or
1,3,5-tricarbonyl trianions with esters and diesters, Wein-
reb amides, and salts of b-keto esters.2 These products are
unstable and rapidly undergo an intramolecular aldol con-
densation to give polyhydroxylated arenes present in
many poylyketide-derived natural products. 1,3-Bis(tri-
methylsilyloxy)-1,3-butadienes can be regarded as elec-
troneutral equivalents of 1,3-dicarbonyl dianions (masked
dianions).3,4 Chan and coworkers were the first to report
the reaction of 1-methoxy-1,3-bis(trimethylsiloxy)-1,3-
butadiene with acetyl chloride.5 Salicylates were prepared
by Lewis acid mediated [5+1] cyclization of 1-methoxy-
1,3,5-tris(trimethylsiloxy)-1,3,5-hexatriene with acid
chlorides and imidazolides.6 We reported on the reaction
of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with various
acid chlorides.7,8 g-Alkylidenebutenolides are available
by cyclization of 1,3-bis(silyl enol ethers) with oxalyl
chloride9 and phthaloyl chloride.10 Recently, we reported
the synthesis of new 1,3,5,7-tetracarbonyl compounds by
condensation of 1,3-bis(trimethylsilyloxy)-1,3-buta-
dienes with methyl malonyl chloride.11 Herein, we report
an efficient synthetic approach to functionalized resorcins
based on what are, to the best of our knowledge, the first
formal [3+3] cyclizations of 1,3-bis(silyl enol ethers) with
3,3-dimethoxypentanoyl chloride.12

3,3-Dimethoxypentanoyl chloride was prepared in three
steps as shown in Scheme 1. The TMSOTf-catalyzed re-
action of 4 with 1,3-bis(trimethylsilyloxy)-1,3-butadienes
5a–l, prepared from the corresponding b-keto esters,3 af-
forded the 6-hydroxysalicylates 6a–l (Scheme 2,

Table 1).13 The best yields were obtained when 0.5 equiv-
alents of TMSOTf were employed. The yield decreased
when the amount of TMSOTf was reduced. The use of
more Lewis acid (1.0 equiv) did not result in an increase
of the yield. The formation of the products can be ex-
plained by regioselective attack of the terminal carbon
atom of the 5a–l onto the acetal and subsequent attack
from the central carbon onto the acid chloride.

Scheme 1 Synthesis of 4. Reagents and conditions: (i) HC(OMe)3

(6.0 equiv), Amberlite IR 120+; (ii) NaOH, H2O, 12 h, 20 °C; (iii)
(COCl)2, C6H6, 2 h, reflux.

Scheme 2 Synthesis of 6a–l. Reagents and conditions: (i) TMSOTf
(0.5 equiv), CH2Cl2, –78 °C to 20 °C.
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The TiCl4-mediated reaction of 4 with 1,3-bis(trimethyl-
silyloxy)-1,3-butadienes 5 afforded the 4-hydroxysalicy-
lates 7a–i (Scheme 3, Table 2).14 The formation of
products 7 can be explained by regioselective attack of the
terminal carbon atom of the 1,3-bis(trimethylsilyloxy)-
1,3-butadiene onto the acid chloride and subsequent at-
tack of the central carbon atom onto the acetal.

In conclusion, functionalized resorcins were prepared by
cyclization of 1,3-bis(trimethylsilyloxy)-1,3-butadienes
with 3,3-dimethoxypentanoyl chloride. The regioselectiv-
ity depends on the type of Lewis acid employed. The re-
gioselectivity might be explained based on the HSAB
principle. The acid chloride is selectively activated by the
‘hard’ Lewis acid TiCl4. In contrast, TMSOTf is known to
readily activate ketals and acetals, but not ketones and al-
dehydes.7,15 On the other hand, acid chlorides are readily
activated by TMSOTf.3,7,9 The observed selectivity in fa-
vor of the activation of the ketal (rather than the acid chlo-
ride) might again be explained based on the HSAB
principle.
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5, 6 R1 R2 Yield of 6 (%)a
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a Yields of isolated products.

Scheme 3 Synthesis of 7a–i. Reagents and conditions: (i) 1) TiCl4
(1.0 equiv), CH2Cl2, –78 °C to 20 °C; 2) H2O.
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Table 2 Synthesis of 7a–i

5 7 R1 R2 Yield of 7 (%)a

5a 7a H Me 61

5b 7b H Et 40

5d 7c H CH2Ph 34

5e 7d H (CH2)2OMe 40

5f 7e Me Me 65

5h 7f i-Bu Me 66

5m 7g n-Hex Me 52

5n 7h n-Hept Me 57

5o 7i n-Oct Et 53

a Yields of isolated products.
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