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1,3-Azoles are common structures in many biologically
active natural compounds, pharmaceuticals, and organic
functional materials, and many of these molecules have an
alkyl substituent at the 2-position (Figure 1).! Therefore,
functionalization of the alkyl side chain of 1,3-azoles is of
great importance for the construction of complex mole-
cules containing 1,3-azole scaffolds.? Among the methods
for functionalization of alkyl groups, C(sp?)-H borylation is
attractive because alkylboron compounds are versatile syn-
thetic intermediates with broad functional group compati-
bility, and air- and moisture stability.3# Despite recent sig-
nificant progress in this area, the site-selective borylation of
unactivated C(sp3)-H bonds over potentially more reactive
C-H bonds such as C(sp?)-H bonds remains challenging.>-1°
Moreover, the stereoselective borylation of C(sp3)-H bonds
is underdeveloped.5¢>g>h.7.10a

Recently, we have reported the heteroatom-directed bo-
rylation of C(sp?)-H bonds bearing N-heteroarenes or car-
bonyl-based functional groups catalyzed by rhodium or

(HIV protease inhibitor)

Figure 1 Representative compounds containing the 2-alkyl-1,3-azole
scaffold

iridium systems based on solid-supported monophos-
phines with mono-P-ligating features (Figure 2).1° This
strategy allowed site-selective borylation of the N-adja-
cent'% or unactivated’>1%2<d C(sp3)-H bonds located y to N
or O atoms on the directing groups. The regioselectivity
was due to the proximity effect by the heteroatom-to-metal
coordination. In fact, cyclic and acyclic alkyl substituents at
the 2-position of pyridines underwent the C(sp?)-H boryla-
tion with excellent site- and stereoselectivities.'® Later, we
found that 1,3-azoles also worked as suitable directing
groups for the C(sp?)-H boylation of small-ring carbocycles
such as cyclopropanes and cyclobutanes.” However, its ap-
plicability for linear alkyl groups and normal-sized (five-to-
seven-membered) carbocycles has not been explored.
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Figure 2 Solid-supported monophosphines

Herein, we report a heteroatom-directed C(sp*)-H bory-
lation of alkyl side chains of 1,3-azoles with a silica-sup-
ported monophosphine-iridium catalyst. Owing to the
proximity effect by N-to-iridium coordination, the boryla-
tion occurred under relatively mild reaction conditions
with high site- and stereoselectivities. This catalytic system
was applicable for the reaction of primary and secondary
C(sp?)-H bonds of linear and cyclic alkyl substituents in
1,3-azoles, including thiazoles, oxazoles, and imidazoles.

Initially, we examined the borylation of 2-ethylbenzo-
thiazole (1a, 0.6 mmol) with bis(pinacolato)diboron
(B,pin,) (2, 0.2 mmol) in THF at 60 °C for 15 hours in the
presence of various iridium catalysts (2 mol% Ir), which
were prepared in situ from [Ir(OMe)(cod)], and different li-
gands. The results are summarized in Table 1.

In contrast to the C(sp?)-H borylation of 2-alkylpyri-
dines reported previously,'°* for which all solid-supported
monophosphines shown in Figure 1 were effective ligands
(Silica-SMAP,1% Silica-TRIP,'% Silica-TPP,1% and PS-TPP!0d),
the borylation of 1a was specifically promoted by commer-
cially available Silica-SMAP, affording the terminal C(sp3)-H
borylation product 3a and the geminal bisborylation prod-
uct 4a in 82% and 32% NMR yields, respectively (Table 1, en-
try 1).1112 The reactivity of the alkyl side chain in 1a seems
to be lower than that in the pyridine analogue. Indeed, 2-
ethylpyridine underwent efficient C(sp3)-H borylation with
the Silica-SMAP-Ir system at 25 °C,'% while 1a was intact
under identical conditions (data not shown). The ligand
specificity of Silica-SMAP in the present borylation reaction
may suggest a requirement for the high electron density of
the metal and/or sparse nature of the catalytic environment
provided by the compact ligand. The total borylation yields
over 100% based on B,pin, (2) indicated that pinacolborane
(HBpin), which was a byproduct of the reaction with B,pin,,
also served as a borylating reagent, although it was less re-
active than 2. The C(sp?)-H bonds of the benzothiazole ring

Table 1 Ligand Effects in Iridium-Catalyzed Borylation of 2-Ethylben-
zothiazole (1a) with Bis(pinacolato)diboron (2)?

N
Q\\ N
Me  [Ir(OMe)(cod)], Q\\
s)\/ )\/\Bpin

(Ir : 2 mol%) S
Ilgand (2 mol%)

THF(1 mL)
60°C, 15h BP'”
(-HBpin) Bpin

1a (3 equiv)

pinB—Bpin, 2
(0.2 mmol)
P
[%j Bu Bu Me Me
Si — — — —
/ \ Me / \ Me
@ \_ /s \ Y
Ph-SMAP Dtbpy Me4Phen
Entry Ligand Yield of 3a (%) Yield of 4a (%)°

1 Silica-SMAP 82¢(75)¢ 32
2¢ Silica-SMAP 71 (54) 12
3f Silica-SMAP 2 97 (89)¢
4 Silica-TRIP 0 0
5 Silica-TPP 0 0
6 PS-TPP 0 0
7 Ph-SMAP 0 0
8 Ph,P 0 0
gn Dtbpy 0 0
10" Me,Phen 0 0
11 none 0 0

2 Conditions: 1a (0.6 mmol), 2 (0.2 mmol), [Ir(OMe)(cod)], (2 mol% Ir), li-
gand (2 mol%), THF (1 mL), 60 °C, 15 h.

bTH NMR yield based on 2. Isolated yields shown in parentheses.

¢The C=N reduction product of 1a (4%) was formed.

4 The isolated product 3a was contaminated with 4a (<1%) and traces of
impurities.

e Conditions: 1a (15 mmol), 2 (5 mmol), [Ir(OMe)(cod)], (0.5 mol% Ir), Sili-
ca-SMAP (0.5 mol%), THF (5 mL), 90 °C, 24 h.

f Conditions: 1a (0.2 mmol), 2 (0.4 mmol), [I(OMe)(cod)], (2 mol% Ir), Sili-
ca-SMAP (2 mol%), THF (1 mL), 60 °C, 24 h. Yields of 3a and 4a were based
on la.

9 The isolated product 4a was contaminated with 3a (2%).

" Arylboronates were formed in entries 9 and 10 (4% and 3%, respectively).

and the C(sp3)-H bonds at the position a to the azole group
were intact. A larger-scale reaction (5 mmol for 2) at 0.5
mol% iridium loading proceeded efficiently at 90 °C to give
3ain 54% isolated yield (Table 1, entry 2). The geminal dibo-
rylation product 4a could be obtained as a major product in
89% isolated yield by the reaction with two equivalents of 2
(2 mol% Ir, 60 °C, Table 1, entry 3).

Table 1 also shows the inefficiency of homogeneous cat-
alytic systems. The use of monophosphines such as Ph-
SMAP'? and Ph;P did not promote the C(sp?)-H borylation
(Table 1, entries 7 and 8). Bipyridine-based ligands such as
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Dtbpy and Me,Phen resulted in only aromatic C-H boryla-
tion with lower efficiencies (<4% yields of arylboronates, Ta-
ble 1, entries 9 and 10).' No reaction occurred without an
exogenous ligand (Table 1, entry 11).

The Silica-SMAP-Ir system was applicable to various
1,3-(benzo)azoles 1, including thiazoles, oxazoles, and im-
idazoles. Some of the borylation products 3 obtained in this
manner were converted into the corresponding alcohols 5
through subsequent oxidation for facile product isolation.!
The results are summarized in Table 2.

Table 2 Silica-SMAP-Ir-Catalyzed C(sp?)-H Borylation of 2-Alkyl-1,3-azoles 1 with Diboron 2 Followed by Oxidation?

[Ir(OMe)(cod)] (Ir: 2 mol%) ) NaBOg#4H,0
{“ 0, Silica-SMAP (2 mol%) N Bpin (5 equiv) N OH
+ B—B ! _— !
X R® o] o) THF, 15 h X R®  THF/H;O (1:1) X Re
R' R2 (- HBpin) R' R2 rt,5h R' R?
1(3 equiv) pinB—Bpin, 2 3 s
(0.2 mmol)
Entry Substrate 1 Borylation product 3 Temp (°C)  VYield of 3 (%)  Oxidation product 5¢ Yield of 5 (%)®
Qv O
1 | 60 78 (48)' - -
0)\/Me 0)\/\Bpin
1b 3b
Qv . Om |
2 50 38449
M . - -
3 N)\/ © N)\/\Bpin 50 604 (54)
i /
Me Me
1c 3c
Iy Iy Uy
4 N Me N)\(\Bpin 80 83d N)\K\OH (59)
Mé Me M&l Me Me/ Me
1d 3d 5d
Iy W Iy
5 ;“JXMe N - 80 87 /N%(\OH (68)
Me Me Me Me Me Me Me Me Me
1e 3e 5e
O O Or
! Me ) )
N N Bpin N OH
6 I | 70 86 | @)
1f 3f 5f
Me. Me,
7 «2/\ | we—d ) 60 80 (63)
Me e - N
s Me S)\/\Bpin
g 3g
Qv Qo Qi
3 N N 80 81de N A (69)
md md wd l =
1h 3h 5h
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Table 2 (continued)

Cluster

Entry Substrate 1 Borylation product 3

Temp (°C)

9 N N 80
o Cwd

1i 3i
Qv Qe
10 ;\1)\/\/\Me ;V)\/k/\Me 90
Me Me
1j 3
Qv Qg
11 N 90
wé md
1k 3k (cis/trans = 4:1)
N N Bpin
\_/ \ /)
12 N N7 70
md wé
1l 3l
Qv Oy
| |
13 N N)"" 80
mé mé
Tm 3m

Yield of 3 (%)°  Oxidation product 5¢ Yield of 5 (%)°
\ / {\l OH
ggde N (70)
md
5i

Omy o
- I, o

5k (cis): (67)
5k’ (trans): (16)i

N OH
112de Q\\
N
we
O o
N)
w
5l

83de (55)

N

Q%
|
720 N) (43y
me
5m

2 Conditions for C-H borylation: 1 (0.6 mmol), 2 (0.2 mmol), [I(OMe)(cod)], (2 mol% Ir), Silica-SMAP (2 mol% P), THF (1 mL), 15 h. Conditions for oxidation: the
crude products of the C(sp?)-H borylation (3), NaBO;-4H,0 (1 mmol), THF (1 mL), H,O (1 mL), r.t.,, 5 h.

bTH NMR yield based on 2. Isolated yields shown in parentheses.

¢ Geminal diborylation products 4 were formed in entries 1-3 and 7 (26%, 19%, 31%, 34%, respectively).

4 The C=N reduction products of 1 were formed in entries 1-4 and 8-13 (30%, 64%, 42%, 85%, 40%, 59%, 84%, 35%, 83%, 41%, respectively).
¢ Arylboronates were formed in entries 1, 8-13 (5%, 7%, 6%, 11%, 4%, 8%, 2%, respectively).

flsolated product was contaminated with arylboronates (9%) and the diborylation product (1%).

9 The C=N reduction product of 3¢ (structure not determined, ca. 20%) was formed.

" Cyclooctene (0.2 mmol) was used as an additive.
"Isolated product was contaminated with the diborylation product (<1%).

Tlsolated products in entries 11-13 were contaminated with phenol derivatives (1%, 5%, 2%, respectively), which were derived from the corresponding arylboro-

nates.

The reaction with 2-ethylbenzoxazole (1b) proceeded
smoothly at 60 °C to give the monoborylation product 3b
and the geminal diborylation product 4b in 78% and 26%
yields, respectively, with the formation of small amounts of
C(sp?)-H borylation products (5%, Table 2, entry 1). 2-Ethyl-
benzimidazole (1c¢) was borylated at 50 °C, affording the
monoborylation product 3¢ and the diborylation product
4c in 38% and 19% yields, respectively (Table 2, entry 2).
However, the formation of a significant amount of a C=N re-
duction product of 3¢ (structure not determined, ca. 20%)
was observed in the 'H NMR spectrum of the crude reaction
mixture. The use of cyclooctene as an additive effectively
suppressed the C=N reduction of 3¢, resulting in an increase
in yields of 3¢ and 4c to 60% and 31%, respectively (Table 2,
entry 3).'6 Benzimidazoles bearing bulky alkyl groups, such

as isopropyl (1d) and tert-butyl (1e) groups, at their 2-posi-
tions were successfully borylated at the terminal C(sp3)-H
bonds (Table 2, entries 4 and 5). The methyl C(sp?)-H bory-
lation of polycyclic compound 1f gave primary alkylboro-
nate 3f as a sole product (Table 2, entry 6). Monocyclic 1,3-
thiazole 1g was also a suitable substrate for the terminal
C(sp?)-H borylation (Table 2, entry 7).1”

Internal C(sp3)-H bonds in 2-alkyl-1,3-azoles success-
fully participated in the borylation with the Silica-SMAP-Ir
system under relatively mild conditions (2 mol% Ir, 70-90
°C), affording the corresponding secondary alkylboronates
(Table 2, entries 8-13). For example, the reactions of 1h or
1i containing a phenyl substituent proceeded with excel-
lent site selectivity at the C(sp?)-H bonds located y to the
directing sp?-hybridized N atoms (Table 2, entries 8 and 9).
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The site-selective borylation occurred efficiently with 2-
pentylbenzimidazole (1j) to provide alkylboronate 3j (Table
2, entry 10).

As was the case for the small-sized carbocycles,’® nor-
mal-sized ring compounds were also borylated site- and
stereoselectively. Specifically, the reaction of 2-cyclopentyl-
N-methylbenzimidazole (1k) at 90 °C afforded the boryla-
tion product 3k as a mixture of cis and trans isomers in a
4:1 ratio (Table 2, entry 11). The cyclohexyl and cycloheptyl
groups in 11 and 1m, respectively, reacted at 70-80 °C with
exceptional trans selectivity (Table 2, entries 12 and 13).

To demonstrate the synthetic utility of the present bor-
ylation reaction, transformations of alkylboronate 3a were
performed as shown in Scheme 1. The boronate 3a was con-
verted into tertiary amine 6 through a copper-catalyzed re-
action with N-methylaniline in the presence of Ag,CO5 as
an oxidant.'® The Suzuki-Miyaura cross-coupling of 4-chlo-
roanisole with a RuPhos-ligated palladacycle precatalyst
provided the sp3-sp? coupling product 7.'9-?! The one-car-
bon homologation-oxidation sequence afforded the corre-
sponding primary alcohol 8.22

Cu(OAc)2 (10 mol%)
HNMePh (1.5 equiv)

Ag>COj3 (2 equiv) N
toluene, 100 °C, 12 h l\llle
6 80%
Pd precatalyst (5 mol%) Q\N
Q\N 4-MeOCgH4CI (1 equiv) \
SJ\/\Bpm KoCOs (3 equiv) s)\/\©\
toluene/H 0 (1:1)
3a 90°C, 24 h 7 63% OMe
1.0 equiv for 6 and 8
[ 1.1 equiv for 7 }

1) BrCH,ClI (2 equiv)
nBuLi (1.8 equiv)

THF, 78 “Ctort, 3 h Q\N
2) NaBOg#4H,0 (3 equiv) J\/\/OH

THF/H,0 (1:1), r.t., 3 h S
. BES%® .
Cy,P
HoN— Pd—RuPhos ! O/Pr
“ OoiPr
Pd precatalyst RuPhos

Scheme 1 Transformations of 3a

In summary, a heterogeneous iridium catalyst system
with silica-supported cage-type trialkylphosphine Silica-
SMAP enabled C(sp?)-H borylation of alkyl side chains of
1,3-azoles, including thiazoles, oxazoles, and imidazoles,
under relatively mild conditions with high site- and stereo-
selectivities. The borylation occurred not only at terminal
C(sp?)-H bonds but also at internal secondary C(sp3)-H
bonds in linear alkyl groups or carbocyclic rings. The ob-

tained alkylboronates serve as precursors for C-N and C-C
bond-formation reactions. Thus, this heterogeneous iridi-
um catalysis offers a useful method for rapid access to func-
tionalized molecules with 1,3-azole scaffolds.
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