ISSN 1070-4272. Russian Journal of Applied Chemistry, 2006, Vol. 79, No. 5, pp. 783–786. © Pleiades Publishing, Inc., 2006. Original Russian Text © V.M. Chernyshev, A.V. Chernysheva, V.A. Taranushich, 2006, published in Zhurnal Prikladnoi Khimii, 2006, Vol. 79, No. 5, pp. 792–795.

> ORGANIC SYNTHESIS AND INDUSTRIAL ORGANIC CHEMISTRY

Synthesis of Esters and Amides of 5-Amino-1,2,4-triazole-3-carboxylic and 5-Amino-1,2,4-triazol-3-ylacetic Acids

V. M. Chernyshev, A. V. Chernysheva, and V. A. Taranushich

South-Russian State Technical University, Novocherkassk, Rostov oblast, Russia

Received October 4, 2005

Abstract—Various synthetic routes to esters and amides of 5-amino-1,2,4-triazole-3-carboxylic and 5-amino-1,2,4-triazol-3-ylacetic acids were examined.

DOI: 10.1134/S1070427206050168

5-Amino-1,2,4-triazole-3-carboxylic (I) and 5-amino-1,2,4-triazol-3-ylacetic (II) acids and their esters and amides are valuable chemicals for the synthesis of drugs, herbicides [1-5], dyes [6-8], and high-energy-capacity compounds [9].

The goal of this study was the development of improved procedures for preparing esters and amides of acid I and II.

The above esters are most frequently prepared by esterification of acids **I** and **II** with alcohols in the presence of dry HCl [2, 4, 10, 11]. The reaction is reversible; therefore, its products are formed in moderate yields, and a large excess of anhydrous alcohol is required; to be reused, the alcohol should be dehydrated. The recently suggested [1] procedure for esterification of acid **I** with methanol in the presence of SOCl₂ (total yield of ester **III** 67%) eliminates this drawback; however, the reaction takes much time (24 h) and is performed at low temperature.

We found that methyl and ethyl esters **III–VI** can be prepared in good yields by esterification of acids **I** and **II** with alcohols in the presence of $SOCl_2$ with refluxing [reaction (1), see table]; in so doing, the synthesis time is as short as 4 h, and the spent alcohol can be repeatedly reused without preliminary dehydraion.

where n = 0 (I, III, V), 1 (II, IV, VI); R = Me (III, IV), Et (V, VI).

One of the simplest routes to amides of acids **I** and **II** might be the reaction of chlorides of these acids with amines. However, we failed to prepare the required acid chlorides. Refluxing of acids **I** and **II** with $SOCl_2$ or their heating with PCl_5 yielded an unseparable mixture of products, apparently because of side reactions such as self-acylation of amino group and nitrogen atoms of the triazole ring with the COCl group. Attempts to prepare the desired amides by the reaction of acids **I** and **II** with thionyl chloride and amines in pyridine at $0-100^{\circ}C$ also failed.

The synthesis of amide of acid **I** by heating of ester **III** with aqueous ammonia was reported in [12]. However, we failed to prepare other amides by this procedure. The reactions of **III–VI** with amines in THF, performed by the procedure suggested previously [5] for preparing amides of 5-amino-4-alkyl-1,2,4-triazole-3-carboxylic acids, were very slow, probably because of the low solubility of the esters in THF. The best results were obtained when esters **III–VI** were heated with aliphatic amines in the presence of triethylamine at 85–90°C [reaction (2), see table]:

$$\mathbf{III}-\mathbf{VI} \xrightarrow{\mathbf{RNHR'}}_{\mathbf{Et}_{3}\mathbf{N}} \xrightarrow{\mathbf{HN}}_{\mathbf{H}_{2}\mathbf{N}} \xrightarrow{\mathbf{N}}_{\mathbf{N}} \xrightarrow{\mathbf{O}}_{n} \xrightarrow{\mathbf{R'}}, \qquad (2)$$
$$\mathbf{VII}-\mathbf{XIII} \xrightarrow{\mathbf{R}}$$

where n = 0 (VII, IX, XI, XIII), 1 (VIII, X, XII); NRR' = morpholine (VII, VIII), pyrrolidine (IX, X); R = Bn, R' = H (XI, XII; R = *i*-Pr, R' = H (XIII).

With less nucleophilic anilines containing various

Synthesis conditions, yields, and properties of III-XVIII

Com- pound no.	Yield, % (method)	mp, °C*	¹ Η NMR spectrum, δ, ppm	Found, %				Calculated, %		
				С	Н	N	Formula	С	Н	N
III	69	217–218**	4.00 s (3H, OCH ₃), 6.00 s (2H, NH ₂), 12.35 s (1H, NH)	33.7	4.2	39.4	C ₄ H ₆ N ₄ O ₂	33.8	4.3	39.4
IV	55	164–165	3.40 s (2H, CH ₂), 3.62 s (3H, OCH ₃), 5.65 s (2H, NH ₂), 11.58 s (1H, NH)	38.2	5.16	35.8	$C_5H_8N_4O_2$	38.5	5.16	35.9
V	70	242–243**	1.35 t (3H, CH ₃), 4.23 q (2H, OCH ₂), 6.00 s (2H, NH ₂), 12.38 s (1H, NH)	38.6	5.2	36.0	$C_5H_8N_4O_2$	38.5	5.2	35.9
VI	68	156–158**	1.25 t (3H, CH ₃), 3.40 s (2H, CH ₂), 4.20 q (2H, OCH ₂), 5.60 s (2H, NH ₂), 11.56 s (1H, NH)	42.2	6.1	40.1	$C_6H_{10}N_4O_2$	42.4	5.9	39.9
VII	74 (a)	222–224	3.55 m (8H, 4CH ₂), 5.62 s (2H, NH ₂), 11.52 s (1H, NH)	43.0	5.6	35.4	$C_7H_{11}N_5O_2$	42.6	5.6	35.5
VIII	54 (a)	240–242	3.58 m (10H, 5CH ₂), 5.62 s (2H, NH ₂), 11.58 s (1H, NH)	45.8	6.1	33.4	$C_8H_{13}N_5O_2$	45.5	6.2	33.2
IX	84 (a)	284–286	1.90 m (4H, 2CH ₂), 3.47 m (2H, NCH ₂), 3.82 m (2H, NCH ₂), 5.80 s (2H, NH ₂), 12.05 s (1H, NH)	46.4	6.2	38.4	C ₇ H ₁₁ N ₅ O	46.4	6.1	38.7
X	54 (a)	266–268	1.80 m (4H, 2CH ₂), 3.22 t (2H, NCH ₂), 3.38 s (2H, CH ₂), 3.49 t (2H, NCH ₂), 5.83 s (2H, NH ₂), 11.67 s (1H, NH)	49.0	6.8	36.0	C ₈ H ₁₃ N ₅ O	49.2	6.7	35.9
XI	78 (a)	236–238	4.42 d (2H, NCH ₂), 5.89 s (2H, NH ₂), 7.21 m (5H, arom.), 8.27 s (1H, NH), 12.33 s (1H, NH)	55.4	5.2	32.0	C ₁₀ H ₁₁ N ₅ O	55.3	5.1	32.2
XII	76 (a)	172–175	3.31 s (2H, CH ₂), 4.26 d (2H, NCH ₂), 5.87 s (2H, NH ₂), 7.23 m (5H, arom.), 8.43 s (1H, NH), 11.58 s (1H, NH)	56.9	5.7	30.6	C ₁₁ H ₁₃ N ₅ O	57.1	5.7	30.3
XIII	61 (a)	247–250	1.16 m (6H, 2CH ₃), 4.03 m (1H, NCH), 5.71 s (2H, NH ₂), 7.33 m (1H, NH), 12.31 s (1H, NH)	42.4	6.4	41.7	C ₆ H ₁₁ N ₅ O	42.6	6.6	41.4
XIV	58 (b)	235–237	6.01 s (2H, NH ₂), 7.01 m (1H, arom.), 7.24 m (2H, arom.), 7.77 m (2H, arom.), 9.60 s (1H, NH), 12.41 s (1H, NH)	53.0	4.6	34.4	C ₉ H ₉ N ₅ O	53.2	4.5	34.5
XV	46 (b)	209–210	3.45 s (2H, CH ₂), 5.83 s (2H, NH ₂), 7.01 m (1H, arom.), 7.26 m (2H, arom.), 7.56 m (2H, arom.) 10.23 s (1H, NH), 11.72 s (1H, NH)	55.5	5.2	32.2	C ₁₀ H ₁₁ N ₅ O	55.3	5.1	32.2
XVI	74 (b)	280–282	6.00 s (2H, NH ₂), 7.24 m (2H, arom.), 7.82 m (2H, arom.), 9.84 s (1H, NH), 12.41 s (1H, NH)	45.8	3.2	29.4	C ₉ H ₈ N ₅ ClO	45.5	3.4	29.5
XVII	51 (b)	221–223	3.45 s (2H, CH ₂), 5.84 s (2H, NH ₂), 7.33 m (2H, arom.), 7.60 m (2H, arom.), 10.26 s (1H, NH), 11.74 s (1H, NH)	47.7	4.1	28.1	C ₁₀ H ₁₀ N ₅ ClO	47.7	4.0	27.8

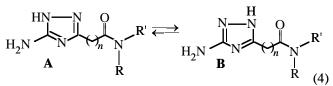
RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 79 No. 5 2006

Table (Contd.)

Com- pound no.	Yield, %	mp, °C*	¹ H NMR spectrum, δ, ppm	Found, %			Formula	Calculated, %		
				С	Н	N	Formula	С	Н	N
XVIII	64 (b)	276–278	3.75 s (3H, OMe), 5.97 s (2H, NH ₂), 6.81 m (2H, arom.), 7.66 m (2H, arom.), 9.48 s (1H, NH), 12.36 s (1H, NH)	51.2	4.7	29.7	C ₁₀ H ₁₁ N ₅ O ₂	51.5	4.8	30.0

* Compounds III and V were recrystallized from H₂O; IV, VI–X, XII, XIII, and XV–XVII, from EtOH; and XI, XIV, and XVIII, from DMF.

** Published data, mp, °C: III, 220 [10]; V, 247 [11]; VI, 156-158 [3].


substituents in the benzene ring, the desired amides were not formed under the above conditions, and under more severe conditions (heating to 150°C without solvent or refluxing in DMF) an unseparable mixture of products was obtained.

We managed to prepare the anilides by treatment of anilines with PCl_3 followed by the reaction of the resulting organophosphorus compound, without its isolation, with acids I and II. By this procedure we prepared compounds **XIV**–**XVIII** [reaction (3), see table]:

where n = 0 (**XIV**, **XVI**, **XVIII**), 1 (**XV**, **XVII**); R = Ph (**XIV**, **XV**), *p*-ClC₆H₄ (**XVI**, **XVII**), *p*-MeOC₆H₄ (**XVIII**).

The compositions and structures of the compounds prepared were determined by elemental analysis, ¹H NMR spectroscopy, and mass spectrometry; their purity was confirmed by HPLC.

The compounds obtained exhibit prototropy and can exist in the form of tautomers **A** and **B** [equilibrium (4)]. According to ¹H NMR spectra, in DMSO tautomer **A** prevails [δ (NH₂) 5.6–6.0 ppm, see table]. Minor amounts of tautomer **B** were detected in the spectra of amides **VII**, **IX**, **X**, **XIV**, and **XVIII** (additional broadened singlet ot the amino group at 4.8– 5.1 ppm). The chemical shifts of amino group protons in tautomers **A** and **B** are consistent with published data for other 3(5)-amino-1,2,4-triazoles [13].

The mass spectra of all the compounds prepared contain a strong peak of molecular ion.

EXPERIMENTAL

The ¹H NMR spectra were recorded on a Varian Unity 300 spectrometer (300 MHz, DMSO- d_6 , internal reference TMS). The mass spectra were taken on a Finnigan MAT-Incos 50 device with direct sample inlet (electron impact, 70 eV). The melting points were determined with a PTP device. The HPLC analysis was performed with a Milikhrom-5 chromatograph equipped with a UV detector and an 80 × 2-mm column packed with Separon C₁₈; the mobile phase was methanol (flow rate 80 μ l min⁻¹). The detection was performed at λ 210 nm.

Acids I and II were predried in a vacuum at $105-110^{\circ}$ C for 24 h.

Esters of 5-amino-1,2,4-triazole-3-carboxylic (III, V) and 5-amino-1,2,4-triazol-3-ylacetic (IV, VI) acids. A 0.047-mol portion of SOCl₂ was added dropwise with stirring to a mixture of 0.047 mol of acid I or II and 0.4 mol of anhydrous methanol or ethanol. The mixture was heated to boil and refluxed for 1 h, after which an additional 0.047 mol of SOCl₂ was added, and the refluxing was continued for 3 h more. Excess alcohol was distilled off in a water-jet-pump vacuum, and a saturated solution of sodium acetate was added with cooling to the residue to pH 5–6. The precipitate thus obtained was filtered off, washed with water, and recrystallized.

Amides of 5-amino-1,2,4-triazole-3-carboxylic (VII, IX, XI, XIII, XIV, XVI, XVIII) and 5-amino-1,2,4-triazol-3-ylacetic (VIII, X, XII, XV, XVII) acids. (a) A mixture of 0.1 mol of ester III–VI, 0.02 mol of triethylamine, and 0.012 mol of aliphatic amine was heated at 85–90°C for 3 h (synthesis of XIII was performed in a sealed ampule), after which triethylamine and excess aliphatic amine were distilled off in a vacuum, 2–3 ml of water was added to the residue, and the precipitate was filtered off and recrys-tallized.

(b) A 0.006-mol portion of PCl₃ was added with stirring and cooling to a mixture of 0.012 mol of appropriate aniline and 4 ml of pyridine. The mixture was stirred for 10 min at room temperature, after which 0.01 mol of acid I or II was added, the mixture was stirred for an additional 10 min at room temperature, heated to $110-120^{\circ}$ C, kept at this temperature for 45 min, and diluted with 10 ml of H₂O. The precipitate thus formed was filtered off and recrystallized.

CONCLUSIONS

(1) It is advisable to prepare methyl and ethyl esters of 5-amino-1,2,4-triazole-3-carboxylic and 5-amino-1,2,4-triazol-3-ylacetic acids by esterification of the corresponding acids with alcohols in the presence of $SOCl_2$ with refluxing (yield 55–70%).

(2) It is advisable to prepare amides of 5-amino-1,2,4-triazole-3-carboxylic and 5-amino-1,2,4-triazol-3-ylacetic acids by the reactions of aliphatic amines with methyl or ethyl esters of the corresponding acids at 85–90°C in the presence of triethylamine (yield 54–84%) or by successive treatment of aromatic amines with PCl₃ and the corresponding acids in pyridine (the second step, at 110–120°C); yield 46–74%.

REFERENCES

- 1. Dżygiel, A., Rzeszotarska, B., Masiukiewicz, E., et al., *Chem. Pharm. Bull.*, 2004, vol. 52, no. 2, pp. 192–198.
- Kofman, T.P., Uvarova, T.A., and Kartseva, G.Yu., *Zh. Org. Khim.*, 1995, vol. 31, no. 2, pp. 271–275.
- Kiseleva, V.V., Gakh, A.A., and Fainzil'berg, A.A., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1990, no. 9, pp. 2075–2084.
- Bos, B.G., Koopmans, M.J., and Huisman, H.O., *Recl. Trav. Chim. Pays-Bas*, 1960, vol. 79, no. 8, pp. 807–822.
- 5. US Patent 5021081.
- 6. US Patent 5541299.
- 7. US Patent 4051117.
- 8. US Patent 4039539.
- Pevzner, M.S., Ross. Khim. Zh., 1997, vol. 41, no. 2, pp. 73–83.
- 10. Chipen, G.I. and Grinshtein, V.Ya., Izv. Akad. Nauk Latv. SSSR, Ser. Khim., 1965, no. 2, pp. 204-208.
- 11. Thiele, J. and Manchot, W., *Lieb. Ann.*, 1898, vol. 303, pp. 33–56.
- 12. USSR Inventor's Certificate no. 320497.
- Reiter, J., Pongó, L., Somorai, T., and Dvortsák, P., J. Heterocyclic Chem., 1986, vol. 23, no. 2, pp. 401– 408.