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ABSTRACT: A copper-catalyzed three-component reaction of cyclo-
butanone oxime esters and 1,3-enynes in the presence of TMSCN or
TMSCF3 has been developed. This mild protocol enjoys a broad substrate
scope tolerating many functional groups, providing a facile access to 1,7-
double-functionalized allenes, which are difficult to prepare. The allenyl
nitrile products may be easily transformed into allenoic acid derivatives and stereodefined tetrasubstituted alkenes, demonstrating
their potentials as platform molecules in synthesis. A mechanism has been proposed on the basis of mechanistic studies.
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Organic synthesis is based on the transformation of
various functional groups.1 Therefore, syntheses of

various multiple functionalized molecules are of great
significance. Allenes have become a class of very important
building blocks in organic syntheses,2 with much attention
being paid to their syntheses (Scheme 1A).3 However,
syntheses of multiple-functionalized allenes4 albeit highly
desirable, are still challenging due to the availability of the
starting materials for the known syntheses (Scheme 1B).2

Recently, attention has been paid to the reactions of 1,3-
enynes, some of which efficiently afford allenes with a single
synthetically reactive functional group (Scheme 1A).5−7 We
envisioned a concept of remote double functionalization based
on the C−C cleavage of cyclic precursors, which would
generate in situ the first functionality FG1 in FG1−(CH2)n
species8 and subsequently react with conjugated enynes
followed by propargyl−allenyl isomerization and trapping
with M−FG2 species to afford not readily available remote
double-functionalized allenes (Scheme 1C). Recently, during
our study on the ring-opening reactions of cyclic substrates,9

we noticed two-component reactions of cyclobutanone oximes
with other nucleophiles or olefins followed by β-H elimination
(Scheme 1D).10,11 However, there have been no reports on
three-component reactions, mostly due to excessive compet-
itive side reactions of the two-component reactions, including
direct two-component couplings between any two of the three
starting materials and β-H elimination of a radical intermediate
to afford the Heck-type product via literature survey.10,11
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Scheme 1. Enyne Approaches to Functionalized Allenes and
Transition-Metal-Catalyzed Two-Component Reactions
Involving Cyclobutanone Oxime Derivatives
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Herein, we describe an efficient copper-catalyzed three-
component synthesis of synthetically versatile 6,7-alkadienyl
nitriles with an extra nitrile group directly connected to the
allene unit (Scheme 1E). They have been demonstrated as
versatile platform molecules for the efficient syntheses of
allenes and other functional molecules. Mechanistic studies
confirmed a radical process.
In the beginning, we conducted the reaction of 2-phenyloct-

1-en-3-yne 1a, cyclobutanone oxime ester 2a, and TMSCN 3
under the catalysis of Cu(CH3CN)4PF6 (10 mol %) and 1,10-
phen (12 mol %) at 25 °C in CHCl3 for 12 h (entry 1, Table
1). The expected side reaction products are dinitrile A (direct
two-component coupling product), nitrile B (β-H elimination
product), C (1,2-addition product), and D (3,4-addition
product). To our disappointment, we did not obtain the
desired product 4aa or other side products A−D with 90%
recovery of 1a and 100% recovery of 2a. The reaction in
CH3CN or MTBE failed to afford the product, and the
reaction in DMF delivered better results in comparison to
those in NMP, DMSO, or DMA (entries 2−7, Table 1). It was
found that when the reaction was conducted in DMF with a
concentration of 0.1 mol/L, the yield of 4aa was 72% with a
25% recovery of 1a (entry 8, Table 1). Further screening of the
ligand effect for the reaction in DMF (entries 10−12, Table 1)
led to the observation that bipyridine L4 was better than 1,10-
phen L1 with a yield of 86%. In comparison with ligands with a

rigid tricyclic skeleton, i.e., L1−L3, the coordination of
bipyridine with copper is more flexible and thus more effective.
In the presence of bipyridine L4, the copper catalyst screening
shows a limited difference among Cu(CH3CN)4PF6 and
noncationic Cu(I) catalysts including CuOAc, CuCl, CuBr,
and CuI (entries 12−16, Table 1), and CuBr with the highest
yield of 89% was chosen for further study (entry 14, Table 1).
Further control experiments suggested that both CuBr and
bipyridine L4 were indispensable to the success of this protocol
(entries 17 and 18, Table 1). It is worth mentioning that the
selectivity of the reaction was excellentthe formation of A
was 5% and the other side products B−D were not
observed.10b−d

With the optimized reaction conditions in hand (entry 14,
Table 1), we next investigated the scope of 1,3-enynes. The
reaction tolerated a wide array of functional groups with
different electronic natures on the benzene ring of substrate 1
to generate various double-functionalized or multiple-function-
alized allenes (Table 2). A variety of different substituents,
including electron-donating groups (4ba−4da) and electron-
withdrawing groups (4ka), were accommodated to afford
double-functionalized allenyl nitriles in moderate to good
yields (64−85%). In addition, biologically or synthetically
useful groups such as F, Cl, Br, I (4ea−4ja), and CH3CO (4la)
at the para, ortho, or meta position were accommodated to
afford the multiple-functionalized allenyl nitriles in moderate

Table 1. Optimization of the Conditionsa

entry solvent C (mol/L) L [Cu] t (h) yield of 4aa/1a recovered/2a recovered (NMR)b (%)

1 CHCl3 0.05 L1 Cu(CH3CN)4PF6 12 ND/90/100
2 CH3CN 0.05 L1 Cu(CH3CN)4PF6 12 ND/79/100
3 MTBE 0.05 L1 Cu(CH3CN)4PF6 11 ND/100/100
4 DMSO 0.05 L1 Cu(CH3CN)4PF6 13 63/18/23
5 NMP 0.05 L1 Cu(CH3CN)4PF6 11 64/32/0
6 DMA 0.05 L1 Cu(CH3CN)4PF6 11 68/32/0
7 DMF 0.05 L1 Cu(CH3CN)4PF6 15.5 70/30/0
8 DMF 0.1 L1 Cu(CH3CN)4PF6 13 72/25/0
9 DMF 0.2 L1 Cu(CH3CN)4PF6 10.5 52/44/0
10 DMF 0.1 L2 Cu(CH3CN)4PF6 16 69/28/0
11 DMF 0.1 L3 Cu(CH3CN)4PF6 13 72/17/0
12 DMF 0.1 L4 Cu(CH3CN)4PF6 16 86/7/0
13 DMF 0.1 L4 CuI 16 79/1/0
14 DMF 0.1 L4 CuBr 16 89 (82)/c0/0
15 DMF 0.1 L4 CuCl 16 82/6/0
16 DMF 0.1 L4 CuOAc 16 80/10/0
17d DMF 0.1 L4 - 16 ND/98/100
18e DMF 0.1 - CuBr 16 ND/73/100

aReaction conditions: 1a (0.2 mmol), 2a (1.8 equiv), 3 (2.5 equiv), [Cu] (10 mol %), and ligand (12 mol %) in solvent unless otherwise noted.

bDetermined by 1H NMR analysis of the crude product using mesitylene or CH2Br2 as the internal standard.
cIsolated yield. dNo CuBr was added

to the reaction system. eNo ligand was added to the reaction system.
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to good yields (72−86%). The naphthyl-substituted allenyl
nitrile 4ma could also be prepared in a decent yield. When the
substituent at the 2-position (R1) was an alkyl group, including
methyl (10), ethyl (36), or cyclohexyl (38) instead of aryl, the
reaction also worked with yields of 36−57%. However, the
reaction of an enyne without a substituent at the 2-position
(11) failed to afford the trisubstituted allene (12) with 40%
recovery of 11. We next investigated the reactivity of various
1,3-enynes with R2 bearing different functional groups, such as
cyclopropanyl (4na), benzyl (4oa), halide (4pa), ester (4qa),
imide (4ra), and indole (4sa). These were all tolerated,
affording double-functionalized or multiple-functionalized
allenyl nitriles in yields of 74−89%. An enyne with a free
hydroxyl unit, 6-phenylhept-6-en-4-ynol, failed to afford the
corresponding allenol; however, with the hydroxy group being
protected as a TMS or TBS ether, the reaction worked to

afford multiple-functionalized allenyl nitriles 4ta and 4ua. A
glucose-derived enyne also afforded 4va in a yield of 51%. R2

was not limited to alkyl groups, as aryl substituents also
worked. A series of double-functionalized or multiple-function-
alized allenyl nitriles were prepared in moderate yields (68−
77%) with versatile substituent(s) on the aromatic rings:
electron-donating groups such as p-Me (4xa) and p-OMe
(4ya) or electron-withdrawing groups such as p-Cl (4za) and
p-Br (6). Due to the importance of pyridine in pharmaceuticals

Table 2. Scope of Enynes: Syntheses of Double- or Multiple-
Functionalized Allenesa

aReaction conditions: 1 (1 equiv), 2 (1.8 equiv), 3 (2.5 equiv), CuBr
(10 mol %), and L4 (12 mol %) in DMF (10 mL) at 25 °C on a 1.0
mmol scale unless otherwise noted. b2.0 equiv of 2a was used. c3.0
equiv of 2a and 2.7 equiv of 3 were used. d2.5 equiv of 2a was used,
the reaction was conducted at 40 °C, and the recovery of 9 was 33%
by NMR. e3.0 equiv of 2a was used, the reaction was conducted at 40
°C, and the recovery of 35 or 37 was 25% by NMR. fThe recovery of
1a was 11% by NMR.

Scheme 2. Mechanistic Experiments

Scheme 3. Proposed Mechanism
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and natural products,12 a phenyl ring was also replaced with a
pyridinyl ring (7) and the reaction also worked with a yield of
70% for the corresponding product 8. The reaction tolerated a
diversified range of cyclobutanone oxime esters with bio-
logically relevant functionalities, including ester (2b),
protected piperidine (2c), benzyloxy (2d), and phenyl (2e)
groups at the 3-position, leading to the corresponding allenyl
nitriles 4ab−4ae with 65−80% yields. Different groups at the
2-position of cyclobutanone oxime esters, including n-butyl

(2f) and benzyl (2g), also worked to afford 4af in an 78% yield
and 4ag in a 81% yield, respectively. In addition, 3-oxetanone
oxime esters 2h also worked to afford 40, albeit in 33% yield.
To gain insight into the mechanism, some control

experiments have been conducted (Scheme 2). When the
reaction was run with a stoichiometric amount of CD3OD, no
deuterated product 30 was observed with a 70% yield of 4ad
and 10% yield of dinitrile 31 (Scheme 2a),10b−d illustrating
that carbanion 29 was not involved in the reaction. Meanwhile,
when the reaction was run in the presence of a stoichiometric
amount of the radical trapper TEMPO, the expected reaction
was completely inhibited, and the TEMPO-trapped product 13
could be isolated in 48% yield, indicating the formation of
radical intermediate Int-2 (Scheme 2b). With this confirmed,
we conducted a radical clock experiment: the reaction of 2-
cyclopropylenyne 14 produced cyclopropyl-substituted allenyl
nitrile 15 instead of the ring-opening product 34. Due to the
rapid and irreversible ring opening of cyclopropyl,13 we believe
that the propargyl−allenyl isomerization is much faster than
the ring-opening, which is the key to the success of such an
exclusive allene synthesis (Scheme 2c). In addition, when
terminal alkyne 16 and nonterminal alkyne 17 were submitted
to the standard conditions, the formation of addition products
to alkynes was not observed and 84% and 87% of alkynes were
recovered, indicating that the C−C triple bond is NOT
reactive under the optimal conditions (Scheme 2d).
On the basis of the aforementioned experimental results, we

propose a possible mechanism (Scheme 3a). Initially, the
[Cu(I)] species Int-1 reacts with 2a to afford the [Cu(II)]
species Int-3 and cyanoalkyl radical Int-2 via a single-electron-
transfer process.10a−g The radical Int-2 could be stabilized via
the copper species.14 Then the addition of this cyanoalkyl
radical with the CC bond in enyne 1 would highly
regioselectively produce the propargyl radical Int-4. Due to
the steric hindrance of the Ar group, the propargyl radical Int-
4 was in rapid resonance with allenyl radical Int-5 with less
steric hindrance, rather than directly coupled with TMSCN to
generate propargyl cyanides C. Then Int-6, which is generated
by ligand exchange of Int-3 with TMSCN, would couple with
Int-5 to generate the allenyl copper(III) species Int-7.
Subsequent reductive elimination would yield the final product
allene 4 and regenerate LCuBr species Int-1 to complete this
catalytic cycle. There is an alternative pathway of abstraction of
the CN ligand from Int-6 to generate the product 4 and Int-1.
It can be seen from Scheme 3a that the key intermediates Int-
2, Int-5, and Int-7 are very polar, thus polar aprotic solvents
are beneficial to the reaction (entries 1−7, Table 1).
Furthermore, CF3-containing compounds have broad

applications in fluorinated agrochemicals and pharmaceuticals
owing to their potential for improving the metabolic stability,
lipophilicity, and selectivity of bioactive molecules.15 Copper-
catalyzed or -mediated trifluoromethylation has emerged as an
attractive approach to generate C−CF3 bonds16,17 with very
limited success for the corresponding allene synthesis.18,19

Therefore, we wondered whether trifluoromethyl allene 19
could be obtained through the reductive elimination of the
intermediate Int-8 (Scheme 3b). Interestingly, when TMSCF3
replaced TMSCN under the standard conditions, the
corresponding trifluoromethyl allene 19aa was afforded, albeit
in 44% yield (Table 3). A further screening of the solvent and
concentration led to the observation that the reaction in
DMSO with a concentration of 0.05 mol/L afforded 19aa in
59% yield (Table 3). p-F, p-Cl, and p-Br on the benzene ring

Table 3. Reaction with TMSCF3 instead of TMSCN

aReaction conditions: 1 (1 equiv), 2 (1.8 equiv), 3 (2.5 equiv), CuBr
(10 mol %), and L4 (12 mol %) in DMF (10 mL) at 25 °C on a 1.0
mmol scale unless otherwise noted. bReaction conditions: 1 (1
equiv), 2 (1.8 equiv), 3 (2.5 equiv), CuBr (10 mol %), and L4 (12
mol %) in DMSO (20 mL) at 25 °C on a 1.0 mmol scale unless
otherwise noted. cThe recovery of 1f was 2% by NMR. dThe recovery
of 1p was 3% by NMR.

Scheme 4. Applications as Platform Molecules
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survived under the modified reaction conditions (19ea−19ia).
Even the very reactive p-I functionality (1j) was tolerated to
give 19ja, albeit in a yield of 33%. Different R2 groups bearing
halide, ester, or TBS ether were accommodated, affording
trifluoromethyl-substituted allenes 19pa, 19qa, and 19ua in
yields of 59−61% (Table 3).
In order to showcase the synthetic utility of the method,

transformations of the allenyl nitrile products were demon-
strated (Scheme 4). Easily separated trisubstituted regioiso-
meric alkenyl boron compounds 20 and 21 could be readily
prepared through the borylcupration of 4aa.20 Such alkenyl
boron reagents could be further transformed to tetrasub-
stituted olefins 22 and 23, which are difficult to prepare yet
very useful (Scheme 4A).21,22 In addition, 4aa could be readily
converted into easily separated Z and E isomers of 3-iodoalka-
2,4-dienyl nitrile 24 in 88% yield with 1.3 equiv of NIS
(Scheme 4B). Such alkenyl nitriles are commonly found in
bioactive natural products as well as pharmaceutical com-
pounds.23 Moreover, the reduction of 4aa using 4 equiv of
DIBAL-H provided dialdehyde 41. When 1.1 equiv of DIBAL-
H was used, the nitrile group attached to the allene unit could
be reduced highly selectively to monoaldehyde 42 in 40% yield
with 2% of 41 (Scheme 4C).10g Furthermore, the trifluor-
omethyl-substituted allenyl nitrile 19aa was been demon-
strated as the starting material for the efficient synthesis of
trifluoromethyl-substituted allenoic acid 25,24 allenyl amide
26,25 aldehyde 27,10g and N-allenyl amide 2810g via hydrolysis
or reductions under different conditions (Scheme 4D). Such
allenoic acid derivative units are widely present in many natural
products.4

In summary, we have developed the first example of remote
double functionalization of 1,3-enynes, which provides an
efficient protocol for 7-trifluoromethyl- or 7-cyano-substituted
allenyl nitriles. This method uses a readily available catalyst
and starting materials, has high catalytic activity, uses mild
conditions, and has a broad substrate scope, tolerating many
potentially useful functional groups. Mechanistic studies
suggested that the reaction proceeded via a radical pathway
involving the resonance of a propargyl radical with an allenyl
radical and the involvement of Cu species of different oxidation
states. Further studies on the new remote difunctionalizations
shown in Scheme 1C are being actively pursued in our
laboratory.
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